/*- * Copyright (c) 2001 Atsushi Onoe * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef IEEE80211_SUPPORT_SUPERG #include #endif #ifdef IEEE80211_SUPPORT_TDMA #include #endif #include #include #include #if defined(INET) || defined(INET6) #include #endif #ifdef INET #include #include #include #endif #ifdef INET6 #include #endif #include #define ETHER_HEADER_COPY(dst, src) \ memcpy(dst, src, sizeof(struct ether_header)) static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *, u_int hdrsize, u_int ciphdrsize, u_int mtu); static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int); #ifdef IEEE80211_DEBUG /* * Decide if an outbound management frame should be * printed when debugging is enabled. This filters some * of the less interesting frames that come frequently * (e.g. beacons). */ static __inline int doprint(struct ieee80211vap *vap, int subtype) { switch (subtype) { case IEEE80211_FC0_SUBTYPE_PROBE_RESP: return (vap->iv_opmode == IEEE80211_M_IBSS); } return 1; } #endif /* * Transmit a frame to the given destination on the given VAP. * * It's up to the caller to figure out the details of who this * is going to and resolving the node. * * This routine takes care of queuing it for power save, * A-MPDU state stuff, fast-frames state stuff, encapsulation * if required, then passing it up to the driver layer. * * This routine (for now) consumes the mbuf and frees the node * reference; it ideally will return a TX status which reflects * whether the mbuf was consumed or not, so the caller can * free the mbuf (if appropriate) and the node reference (again, * if appropriate.) */ int ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m, struct ieee80211_node *ni) { struct ieee80211com *ic = vap->iv_ic; struct ifnet *ifp = vap->iv_ifp; int mcast; if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && (m->m_flags & M_PWR_SAV) == 0) { /* * Station in power save mode; pass the frame * to the 802.11 layer and continue. We'll get * the frame back when the time is right. * XXX lose WDS vap linkage? */ if (ieee80211_pwrsave(ni, m) != 0) if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); ieee80211_free_node(ni); /* * We queued it fine, so tell the upper layer * that we consumed it. */ return (0); } /* calculate priority so drivers can find the tx queue */ if (ieee80211_classify(ni, m)) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, ni->ni_macaddr, NULL, "%s", "classification failure"); vap->iv_stats.is_tx_classify++; if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); m_freem(m); ieee80211_free_node(ni); /* XXX better status? */ return (0); } /* * Stash the node pointer. Note that we do this after * any call to ieee80211_dwds_mcast because that code * uses any existing value for rcvif to identify the * interface it (might have been) received on. */ m->m_pkthdr.rcvif = (void *)ni; mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0; BPF_MTAP(ifp, m); /* 802.3 tx */ /* * Check if A-MPDU tx aggregation is setup or if we * should try to enable it. The sta must be associated * with HT and A-MPDU enabled for use. When the policy * routine decides we should enable A-MPDU we issue an * ADDBA request and wait for a reply. The frame being * encapsulated will go out w/o using A-MPDU, or possibly * it might be collected by the driver and held/retransmit. * The default ic_ampdu_enable routine handles staggering * ADDBA requests in case the receiver NAK's us or we are * otherwise unable to establish a BA stream. * * Don't treat group-addressed frames as candidates for aggregation; * net80211 doesn't support 802.11aa-2012 and so group addressed * frames will always have sequence numbers allocated from the NON_QOS * TID. */ if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) && (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)) { if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) { int tid = WME_AC_TO_TID(M_WME_GETAC(m)); struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; ieee80211_txampdu_count_packet(tap); if (IEEE80211_AMPDU_RUNNING(tap)) { /* * Operational, mark frame for aggregation. * * XXX do tx aggregation here */ m->m_flags |= M_AMPDU_MPDU; } else if (!IEEE80211_AMPDU_REQUESTED(tap) && ic->ic_ampdu_enable(ni, tap)) { /* * Not negotiated yet, request service. */ ieee80211_ampdu_request(ni, tap); /* XXX hold frame for reply? */ } } } #ifdef IEEE80211_SUPPORT_SUPERG /* * Check for AMSDU/FF; queue for aggregation * * Note: we don't bother trying to do fast frames or * A-MSDU encapsulation for 802.3 drivers. Now, we * likely could do it for FF (because it's a magic * atheros tunnel LLC type) but I don't think we're going * to really need to. For A-MSDU we'd have to set the * A-MSDU QoS bit in the wifi header, so we just plain * can't do it. * * Strictly speaking, we could actually /do/ A-MSDU / FF * with A-MPDU together which for certain circumstances * is beneficial (eg A-MSDU of TCK ACKs.) However, * I'll ignore that for now so existing behaviour is maintained. * Later on it would be good to make "amsdu + ampdu" configurable. */ else if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { if ((! mcast) && ieee80211_amsdu_tx_ok(ni)) { m = ieee80211_amsdu_check(ni, m); if (m == NULL) { /* NB: any ni ref held on stageq */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: amsdu_check queued frame\n", __func__); return (0); } } else if ((! mcast) && IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) { m = ieee80211_ff_check(ni, m); if (m == NULL) { /* NB: any ni ref held on stageq */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: ff_check queued frame\n", __func__); return (0); } } } #endif /* IEEE80211_SUPPORT_SUPERG */ /* * Grab the TX lock - serialise the TX process from this * point (where TX state is being checked/modified) * through to driver queue. */ IEEE80211_TX_LOCK(ic); /* * XXX make the encap and transmit code a separate function * so things like the FF (and later A-MSDU) path can just call * it for flushed frames. */ if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { /* * Encapsulate the packet in prep for transmission. */ m = ieee80211_encap(vap, ni, m); if (m == NULL) { /* NB: stat+msg handled in ieee80211_encap */ IEEE80211_TX_UNLOCK(ic); ieee80211_free_node(ni); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return (ENOBUFS); } } (void) ieee80211_parent_xmitpkt(ic, m); /* * Unlock at this point - no need to hold it across * ieee80211_free_node() (ie, the comlock) */ IEEE80211_TX_UNLOCK(ic); ic->ic_lastdata = ticks; return (0); } /* * Send the given mbuf through the given vap. * * This consumes the mbuf regardless of whether the transmit * was successful or not. * * This does none of the initial checks that ieee80211_start() * does (eg CAC timeout, interface wakeup) - the caller must * do this first. */ static int ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m) { #define IS_DWDS(vap) \ (vap->iv_opmode == IEEE80211_M_WDS && \ (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0) struct ieee80211com *ic = vap->iv_ic; struct ifnet *ifp = vap->iv_ifp; struct ieee80211_node *ni; struct ether_header *eh; /* * Cancel any background scan. */ if (ic->ic_flags & IEEE80211_F_SCAN) ieee80211_cancel_anyscan(vap); /* * Find the node for the destination so we can do * things like power save and fast frames aggregation. * * NB: past this point various code assumes the first * mbuf has the 802.3 header present (and contiguous). */ ni = NULL; if (m->m_len < sizeof(struct ether_header) && (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, "discard frame, %s\n", "m_pullup failed"); vap->iv_stats.is_tx_nobuf++; /* XXX */ if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return (ENOBUFS); } eh = mtod(m, struct ether_header *); if (ETHER_IS_MULTICAST(eh->ether_dhost)) { if (IS_DWDS(vap)) { /* * Only unicast frames from the above go out * DWDS vaps; multicast frames are handled by * dispatching the frame as it comes through * the AP vap (see below). */ IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS, eh->ether_dhost, "mcast", "%s", "on DWDS"); vap->iv_stats.is_dwds_mcast++; m_freem(m); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); /* XXX better status? */ return (ENOBUFS); } if (vap->iv_opmode == IEEE80211_M_HOSTAP) { /* * Spam DWDS vap's w/ multicast traffic. */ /* XXX only if dwds in use? */ ieee80211_dwds_mcast(vap, m); } } #ifdef IEEE80211_SUPPORT_MESH if (vap->iv_opmode != IEEE80211_M_MBSS) { #endif ni = ieee80211_find_txnode(vap, eh->ether_dhost); if (ni == NULL) { /* NB: ieee80211_find_txnode does stat+msg */ if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); m_freem(m); /* XXX better status? */ return (ENOBUFS); } if (ni->ni_associd == 0 && (ni->ni_flags & IEEE80211_NODE_ASSOCID)) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, eh->ether_dhost, NULL, "sta not associated (type 0x%04x)", htons(eh->ether_type)); vap->iv_stats.is_tx_notassoc++; if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); m_freem(m); ieee80211_free_node(ni); /* XXX better status? */ return (ENOBUFS); } #ifdef IEEE80211_SUPPORT_MESH } else { if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) { /* * Proxy station only if configured. */ if (!ieee80211_mesh_isproxyena(vap)) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_MESH, eh->ether_dhost, NULL, "%s", "proxy not enabled"); vap->iv_stats.is_mesh_notproxy++; if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); m_freem(m); /* XXX better status? */ return (ENOBUFS); } IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, "forward frame from DS SA(%6D), DA(%6D)\n", eh->ether_shost, ":", eh->ether_dhost, ":"); ieee80211_mesh_proxy_check(vap, eh->ether_shost); } ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m); if (ni == NULL) { /* * NB: ieee80211_mesh_discover holds/disposes * frame (e.g. queueing on path discovery). */ if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); /* XXX better status? */ return (ENOBUFS); } } #endif /* * We've resolved the sender, so attempt to transmit it. */ if (vap->iv_state == IEEE80211_S_SLEEP) { /* * In power save; queue frame and then wakeup device * for transmit. */ ic->ic_lastdata = ticks; if (ieee80211_pwrsave(ni, m) != 0) if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); ieee80211_free_node(ni); ieee80211_new_state(vap, IEEE80211_S_RUN, 0); return (0); } if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0) return (ENOBUFS); return (0); #undef IS_DWDS } /* * Start method for vap's. All packets from the stack come * through here. We handle common processing of the packets * before dispatching them to the underlying device. * * if_transmit() requires that the mbuf be consumed by this call * regardless of the return condition. */ int ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m) { struct ieee80211vap *vap = ifp->if_softc; struct ieee80211com *ic = vap->iv_ic; /* * No data frames go out unless we're running. * Note in particular this covers CAC and CSA * states (though maybe we should check muting * for CSA). */ if (vap->iv_state != IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_SLEEP) { IEEE80211_LOCK(ic); /* re-check under the com lock to avoid races */ if (vap->iv_state != IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_SLEEP) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, "%s: ignore queue, in %s state\n", __func__, ieee80211_state_name[vap->iv_state]); vap->iv_stats.is_tx_badstate++; IEEE80211_UNLOCK(ic); ifp->if_drv_flags |= IFF_DRV_OACTIVE; m_freem(m); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return (ENETDOWN); } IEEE80211_UNLOCK(ic); } /* * Sanitize mbuf flags for net80211 use. We cannot * clear M_PWR_SAV or M_MORE_DATA because these may * be set for frames that are re-submitted from the * power save queue. * * NB: This must be done before ieee80211_classify as * it marks EAPOL in frames with M_EAPOL. */ m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA); /* * Bump to the packet transmission path. * The mbuf will be consumed here. */ return (ieee80211_start_pkt(vap, m)); } void ieee80211_vap_qflush(struct ifnet *ifp) { /* Empty for now */ } /* * 802.11 raw output routine. * * XXX TODO: this (and other send routines) should correctly * XXX keep the pwr mgmt bit set if it decides to call into the * XXX driver to send a frame whilst the state is SLEEP. * * Otherwise the peer may decide that we're awake and flood us * with traffic we are still too asleep to receive! */ int ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = vap->iv_ic; int error; /* * Set node - the caller has taken a reference, so ensure * that the mbuf has the same node value that * it would if it were going via the normal path. */ m->m_pkthdr.rcvif = (void *)ni; /* * Attempt to add bpf transmit parameters. * * For now it's ok to fail; the raw_xmit api still takes * them as an option. * * Later on when ic_raw_xmit() has params removed, * they'll have to be added - so fail the transmit if * they can't be. */ if (params) (void) ieee80211_add_xmit_params(m, params); error = ic->ic_raw_xmit(ni, m, params); if (error) { if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1); ieee80211_free_node(ni); } return (error); } /* * 802.11 output routine. This is (currently) used only to * connect bpf write calls to the 802.11 layer for injecting * raw 802.11 frames. */ int ieee80211_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, struct route *ro) { #define senderr(e) do { error = (e); goto bad;} while (0) struct ieee80211_node *ni = NULL; struct ieee80211vap *vap; struct ieee80211_frame *wh; struct ieee80211com *ic = NULL; int error; int ret; if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { /* * Short-circuit requests if the vap is marked OACTIVE * as this can happen because a packet came down through * ieee80211_start before the vap entered RUN state in * which case it's ok to just drop the frame. This * should not be necessary but callers of if_output don't * check OACTIVE. */ senderr(ENETDOWN); } vap = ifp->if_softc; ic = vap->iv_ic; /* * Hand to the 802.3 code if not tagged as * a raw 802.11 frame. */ if (dst->sa_family != AF_IEEE80211) return vap->iv_output(ifp, m, dst, ro); #ifdef MAC error = mac_ifnet_check_transmit(ifp, m); if (error) senderr(error); #endif if (ifp->if_flags & IFF_MONITOR) senderr(ENETDOWN); if (!IFNET_IS_UP_RUNNING(ifp)) senderr(ENETDOWN); if (vap->iv_state == IEEE80211_S_CAC) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, "block %s frame in CAC state\n", "raw data"); vap->iv_stats.is_tx_badstate++; senderr(EIO); /* XXX */ } else if (vap->iv_state == IEEE80211_S_SCAN) senderr(EIO); /* XXX bypass bridge, pfil, carp, etc. */ if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack)) senderr(EIO); /* XXX */ wh = mtod(m, struct ieee80211_frame *); if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != IEEE80211_FC0_VERSION_0) senderr(EIO); /* XXX */ if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh)) senderr(EIO); /* XXX */ /* locate destination node */ switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { case IEEE80211_FC1_DIR_NODS: case IEEE80211_FC1_DIR_FROMDS: ni = ieee80211_find_txnode(vap, wh->i_addr1); break; case IEEE80211_FC1_DIR_TODS: case IEEE80211_FC1_DIR_DSTODS: ni = ieee80211_find_txnode(vap, wh->i_addr3); break; default: senderr(EIO); /* XXX */ } if (ni == NULL) { /* * Permit packets w/ bpf params through regardless * (see below about sa_len). */ if (dst->sa_len == 0) senderr(EHOSTUNREACH); ni = ieee80211_ref_node(vap->iv_bss); } /* * Sanitize mbuf for net80211 flags leaked from above. * * NB: This must be done before ieee80211_classify as * it marks EAPOL in frames with M_EAPOL. */ m->m_flags &= ~M_80211_TX; /* calculate priority so drivers can find the tx queue */ /* XXX assumes an 802.3 frame */ if (ieee80211_classify(ni, m)) senderr(EIO); /* XXX */ IEEE80211_NODE_STAT(ni, tx_data); if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { IEEE80211_NODE_STAT(ni, tx_mcast); m->m_flags |= M_MCAST; } else IEEE80211_NODE_STAT(ni, tx_ucast); /* NB: ieee80211_encap does not include 802.11 header */ IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len); IEEE80211_TX_LOCK(ic); /* * NB: DLT_IEEE802_11_RADIO identifies the parameters are * present by setting the sa_len field of the sockaddr (yes, * this is a hack). * NB: we assume sa_data is suitably aligned to cast. */ ret = ieee80211_raw_output(vap, ni, m, (const struct ieee80211_bpf_params *)(dst->sa_len ? dst->sa_data : NULL)); IEEE80211_TX_UNLOCK(ic); return (ret); bad: if (m != NULL) m_freem(m); if (ni != NULL) ieee80211_free_node(ni); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return error; #undef senderr } /* * Set the direction field and address fields of an outgoing * frame. Note this should be called early on in constructing * a frame as it sets i_fc[1]; other bits can then be or'd in. */ void ieee80211_send_setup( struct ieee80211_node *ni, struct mbuf *m, int type, int tid, const uint8_t sa[IEEE80211_ADDR_LEN], const uint8_t da[IEEE80211_ADDR_LEN], const uint8_t bssid[IEEE80211_ADDR_LEN]) { #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_tx_ampdu *tap; struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); ieee80211_seq seqno; IEEE80211_TX_LOCK_ASSERT(ni->ni_ic); wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { switch (vap->iv_opmode) { case IEEE80211_M_STA: wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; IEEE80211_ADDR_COPY(wh->i_addr1, bssid); IEEE80211_ADDR_COPY(wh->i_addr2, sa); IEEE80211_ADDR_COPY(wh->i_addr3, da); break; case IEEE80211_M_IBSS: case IEEE80211_M_AHDEMO: wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; IEEE80211_ADDR_COPY(wh->i_addr1, da); IEEE80211_ADDR_COPY(wh->i_addr2, sa); IEEE80211_ADDR_COPY(wh->i_addr3, bssid); break; case IEEE80211_M_HOSTAP: wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; IEEE80211_ADDR_COPY(wh->i_addr1, da); IEEE80211_ADDR_COPY(wh->i_addr2, bssid); IEEE80211_ADDR_COPY(wh->i_addr3, sa); break; case IEEE80211_M_WDS: wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; IEEE80211_ADDR_COPY(wh->i_addr1, da); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, da); IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); break; case IEEE80211_M_MBSS: #ifdef IEEE80211_SUPPORT_MESH if (IEEE80211_IS_MULTICAST(da)) { wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; /* XXX next hop */ IEEE80211_ADDR_COPY(wh->i_addr1, da); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); } else { wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; IEEE80211_ADDR_COPY(wh->i_addr1, da); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, da); IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); } #endif break; case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ break; } } else { wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; IEEE80211_ADDR_COPY(wh->i_addr1, da); IEEE80211_ADDR_COPY(wh->i_addr2, sa); #ifdef IEEE80211_SUPPORT_MESH if (vap->iv_opmode == IEEE80211_M_MBSS) IEEE80211_ADDR_COPY(wh->i_addr3, sa); else #endif IEEE80211_ADDR_COPY(wh->i_addr3, bssid); } *(uint16_t *)&wh->i_dur[0] = 0; /* * XXX TODO: this is what the TX lock is for. * Here we're incrementing sequence numbers, and they * need to be in lock-step with what the driver is doing * both in TX ordering and crypto encap (IV increment.) * * If the driver does seqno itself, then we can skip * assigning sequence numbers here, and we can avoid * requiring the TX lock. */ tap = &ni->ni_tx_ampdu[tid]; if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) { m->m_flags |= M_AMPDU_MPDU; } else { if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK, type & IEEE80211_FC0_SUBTYPE_MASK)) /* * 802.11-2012 9.3.2.10 - QoS multicast frames * come out of a different seqno space. */ if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; } else { seqno = ni->ni_txseqs[tid]++; } else seqno = 0; *(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); M_SEQNO_SET(m, seqno); } if (IEEE80211_IS_MULTICAST(wh->i_addr1)) m->m_flags |= M_MCAST; #undef WH4 } /* * Send a management frame to the specified node. The node pointer * must have a reference as the pointer will be passed to the driver * and potentially held for a long time. If the frame is successfully * dispatched to the driver, then it is responsible for freeing the * reference (and potentially free'ing up any associated storage); * otherwise deal with reclaiming any reference (on error). */ int ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type, struct ieee80211_bpf_params *params) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ieee80211_frame *wh; int ret; KASSERT(ni != NULL, ("null node")); if (vap->iv_state == IEEE80211_S_CAC) { IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, ni, "block %s frame in CAC state", ieee80211_mgt_subtype_name(type)); vap->iv_stats.is_tx_badstate++; ieee80211_free_node(ni); m_freem(m); return EIO; /* XXX */ } M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); if (m == NULL) { ieee80211_free_node(ni); return ENOMEM; } IEEE80211_TX_LOCK(ic); wh = mtod(m, struct ieee80211_frame *); ieee80211_send_setup(ni, m, IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1, "encrypting frame (%s)", __func__); wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; } m->m_flags |= M_ENCAP; /* mark encapsulated */ KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?")); M_WME_SETAC(m, params->ibp_pri); #ifdef IEEE80211_DEBUG /* avoid printing too many frames */ if ((ieee80211_msg_debug(vap) && doprint(vap, type)) || ieee80211_msg_dumppkts(vap)) { printf("[%s] send %s on channel %u\n", ether_sprintf(wh->i_addr1), ieee80211_mgt_subtype_name(type), ieee80211_chan2ieee(ic, ic->ic_curchan)); } #endif IEEE80211_NODE_STAT(ni, tx_mgmt); ret = ieee80211_raw_output(vap, ni, m, params); IEEE80211_TX_UNLOCK(ic); return (ret); } static void ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg, int status) { struct ieee80211vap *vap = ni->ni_vap; wakeup(vap); } /* * Send a null data frame to the specified node. If the station * is setup for QoS then a QoS Null Data frame is constructed. * If this is a WDS station then a 4-address frame is constructed. * * NB: the caller is assumed to have setup a node reference * for use; this is necessary to deal with a race condition * when probing for inactive stations. Like ieee80211_mgmt_output * we must cleanup any node reference on error; however we * can safely just unref it as we know it will never be the * last reference to the node. */ int ieee80211_send_nulldata(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct mbuf *m; struct ieee80211_frame *wh; int hdrlen; uint8_t *frm; int ret; if (vap->iv_state == IEEE80211_S_CAC) { IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, ni, "block %s frame in CAC state", "null data"); ieee80211_unref_node(&ni); vap->iv_stats.is_tx_badstate++; return EIO; /* XXX */ } if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) hdrlen = sizeof(struct ieee80211_qosframe); else hdrlen = sizeof(struct ieee80211_frame); /* NB: only WDS vap's get 4-address frames */ if (vap->iv_opmode == IEEE80211_M_WDS) hdrlen += IEEE80211_ADDR_LEN; if (ic->ic_flags & IEEE80211_F_DATAPAD) hdrlen = roundup(hdrlen, sizeof(uint32_t)); m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0); if (m == NULL) { /* XXX debug msg */ ieee80211_unref_node(&ni); vap->iv_stats.is_tx_nobuf++; return ENOMEM; } KASSERT(M_LEADINGSPACE(m) >= hdrlen, ("leading space %zd", M_LEADINGSPACE(m))); M_PREPEND(m, hdrlen, M_NOWAIT); if (m == NULL) { /* NB: cannot happen */ ieee80211_free_node(ni); return ENOMEM; } IEEE80211_TX_LOCK(ic); wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */ if (ni->ni_flags & IEEE80211_NODE_QOS) { const int tid = WME_AC_TO_TID(WME_AC_BE); uint8_t *qos; ieee80211_send_setup(ni, m, IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL, tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); if (vap->iv_opmode == IEEE80211_M_WDS) qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; else qos = ((struct ieee80211_qosframe *) wh)->i_qos; qos[0] = tid & IEEE80211_QOS_TID; if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy) qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; qos[1] = 0; } else { ieee80211_send_setup(ni, m, IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, IEEE80211_NONQOS_TID, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); } if (vap->iv_opmode != IEEE80211_M_WDS) { /* NB: power management bit is never sent by an AP */ if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && vap->iv_opmode != IEEE80211_M_HOSTAP) wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; } if ((ic->ic_flags & IEEE80211_F_SCAN) && (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) { ieee80211_add_callback(m, ieee80211_nulldata_transmitted, NULL); } m->m_len = m->m_pkthdr.len = hdrlen; m->m_flags |= M_ENCAP; /* mark encapsulated */ M_WME_SETAC(m, WME_AC_BE); IEEE80211_NODE_STAT(ni, tx_data); IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni, "send %snull data frame on channel %u, pwr mgt %s", ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "", ieee80211_chan2ieee(ic, ic->ic_curchan), wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); ret = ieee80211_raw_output(vap, ni, m, NULL); IEEE80211_TX_UNLOCK(ic); return (ret); } /* * Assign priority to a frame based on any vlan tag assigned * to the station and/or any Diffserv setting in an IP header. * Finally, if an ACM policy is setup (in station mode) it's * applied. */ int ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m) { const struct ether_header *eh = mtod(m, struct ether_header *); int v_wme_ac, d_wme_ac, ac; /* * Always promote PAE/EAPOL frames to high priority. */ if (eh->ether_type == htons(ETHERTYPE_PAE)) { /* NB: mark so others don't need to check header */ m->m_flags |= M_EAPOL; ac = WME_AC_VO; goto done; } /* * Non-qos traffic goes to BE. */ if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { ac = WME_AC_BE; goto done; } /* * If node has a vlan tag then all traffic * to it must have a matching tag. */ v_wme_ac = 0; if (ni->ni_vlan != 0) { if ((m->m_flags & M_VLANTAG) == 0) { IEEE80211_NODE_STAT(ni, tx_novlantag); return 1; } if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != EVL_VLANOFTAG(ni->ni_vlan)) { IEEE80211_NODE_STAT(ni, tx_vlanmismatch); return 1; } /* map vlan priority to AC */ v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan)); } /* XXX m_copydata may be too slow for fast path */ #ifdef INET if (eh->ether_type == htons(ETHERTYPE_IP)) { uint8_t tos; /* * IP frame, map the DSCP bits from the TOS field. */ /* NB: ip header may not be in first mbuf */ m_copydata(m, sizeof(struct ether_header) + offsetof(struct ip, ip_tos), sizeof(tos), &tos); tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ d_wme_ac = TID_TO_WME_AC(tos); } else { #endif /* INET */ #ifdef INET6 if (eh->ether_type == htons(ETHERTYPE_IPV6)) { uint32_t flow; uint8_t tos; /* * IPv6 frame, map the DSCP bits from the traffic class field. */ m_copydata(m, sizeof(struct ether_header) + offsetof(struct ip6_hdr, ip6_flow), sizeof(flow), (caddr_t) &flow); tos = (uint8_t)(ntohl(flow) >> 20); tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ d_wme_ac = TID_TO_WME_AC(tos); } else { #endif /* INET6 */ d_wme_ac = WME_AC_BE; #ifdef INET6 } #endif #ifdef INET } #endif /* * Use highest priority AC. */ if (v_wme_ac > d_wme_ac) ac = v_wme_ac; else ac = d_wme_ac; /* * Apply ACM policy. */ if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) { static const int acmap[4] = { WME_AC_BK, /* WME_AC_BE */ WME_AC_BK, /* WME_AC_BK */ WME_AC_BE, /* WME_AC_VI */ WME_AC_VI, /* WME_AC_VO */ }; struct ieee80211com *ic = ni->ni_ic; while (ac != WME_AC_BK && ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) ac = acmap[ac]; } done: M_WME_SETAC(m, ac); return 0; } /* * Insure there is sufficient contiguous space to encapsulate the * 802.11 data frame. If room isn't already there, arrange for it. * Drivers and cipher modules assume we have done the necessary work * and fail rudely if they don't find the space they need. */ struct mbuf * ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize, struct ieee80211_key *key, struct mbuf *m) { #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) int needed_space = vap->iv_ic->ic_headroom + hdrsize; if (key != NULL) { /* XXX belongs in crypto code? */ needed_space += key->wk_cipher->ic_header; /* XXX frags */ /* * When crypto is being done in the host we must insure * the data are writable for the cipher routines; clone * a writable mbuf chain. * XXX handle SWMIC specially */ if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) { m = m_unshare(m, M_NOWAIT); if (m == NULL) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, "%s: cannot get writable mbuf\n", __func__); vap->iv_stats.is_tx_nobuf++; /* XXX new stat */ return NULL; } } } /* * We know we are called just before stripping an Ethernet * header and prepending an LLC header. This means we know * there will be * sizeof(struct ether_header) - sizeof(struct llc) * bytes recovered to which we need additional space for the * 802.11 header and any crypto header. */ /* XXX check trailing space and copy instead? */ if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); if (n == NULL) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, "%s: cannot expand storage\n", __func__); vap->iv_stats.is_tx_nobuf++; m_freem(m); return NULL; } KASSERT(needed_space <= MHLEN, ("not enough room, need %u got %d\n", needed_space, MHLEN)); /* * Setup new mbuf to have leading space to prepend the * 802.11 header and any crypto header bits that are * required (the latter are added when the driver calls * back to ieee80211_crypto_encap to do crypto encapsulation). */ /* NB: must be first 'cuz it clobbers m_data */ m_move_pkthdr(n, m); n->m_len = 0; /* NB: m_gethdr does not set */ n->m_data += needed_space; /* * Pull up Ethernet header to create the expected layout. * We could use m_pullup but that's overkill (i.e. we don't * need the actual data) and it cannot fail so do it inline * for speed. */ /* NB: struct ether_header is known to be contiguous */ n->m_len += sizeof(struct ether_header); m->m_len -= sizeof(struct ether_header); m->m_data += sizeof(struct ether_header); /* * Replace the head of the chain. */ n->m_next = m; m = n; } return m; #undef TO_BE_RECLAIMED } /* * Return the transmit key to use in sending a unicast frame. * If a unicast key is set we use that. When no unicast key is set * we fall back to the default transmit key. */ static __inline struct ieee80211_key * ieee80211_crypto_getucastkey(struct ieee80211vap *vap, struct ieee80211_node *ni) { if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) { if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) return NULL; return &vap->iv_nw_keys[vap->iv_def_txkey]; } else { return &ni->ni_ucastkey; } } /* * Return the transmit key to use in sending a multicast frame. * Multicast traffic always uses the group key which is installed as * the default tx key. */ static __inline struct ieee80211_key * ieee80211_crypto_getmcastkey(struct ieee80211vap *vap, struct ieee80211_node *ni) { if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) return NULL; return &vap->iv_nw_keys[vap->iv_def_txkey]; } /* * Encapsulate an outbound data frame. The mbuf chain is updated. * If an error is encountered NULL is returned. The caller is required * to provide a node reference and pullup the ethernet header in the * first mbuf. * * NB: Packet is assumed to be processed by ieee80211_classify which * marked EAPOL frames w/ M_EAPOL. */ struct mbuf * ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni, struct mbuf *m) { #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh)) #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc) struct ieee80211com *ic = ni->ni_ic; #ifdef IEEE80211_SUPPORT_MESH struct ieee80211_mesh_state *ms = vap->iv_mesh; struct ieee80211_meshcntl_ae10 *mc; struct ieee80211_mesh_route *rt = NULL; int dir = -1; #endif struct ether_header eh; struct ieee80211_frame *wh; struct ieee80211_key *key; struct llc *llc; int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast; ieee80211_seq seqno; int meshhdrsize, meshae; uint8_t *qos; int is_amsdu = 0; IEEE80211_TX_LOCK_ASSERT(ic); is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST)); /* * Copy existing Ethernet header to a safe place. The * rest of the code assumes it's ok to strip it when * reorganizing state for the final encapsulation. */ KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); ETHER_HEADER_COPY(&eh, mtod(m, caddr_t)); /* * Insure space for additional headers. First identify * transmit key to use in calculating any buffer adjustments * required. This is also used below to do privacy * encapsulation work. Then calculate the 802.11 header * size and any padding required by the driver. * * Note key may be NULL if we fall back to the default * transmit key and that is not set. In that case the * buffer may not be expanded as needed by the cipher * routines, but they will/should discard it. */ if (vap->iv_flags & IEEE80211_F_PRIVACY) { if (vap->iv_opmode == IEEE80211_M_STA || !IEEE80211_IS_MULTICAST(eh.ether_dhost) || (vap->iv_opmode == IEEE80211_M_WDS && (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) key = ieee80211_crypto_getucastkey(vap, ni); else key = ieee80211_crypto_getmcastkey(vap, ni); if (key == NULL && (m->m_flags & M_EAPOL) == 0) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, eh.ether_dhost, "no default transmit key (%s) deftxkey %u", __func__, vap->iv_def_txkey); vap->iv_stats.is_tx_nodefkey++; goto bad; } } else key = NULL; /* * XXX Some ap's don't handle QoS-encapsulated EAPOL * frames so suppress use. This may be an issue if other * ap's require all data frames to be QoS-encapsulated * once negotiated in which case we'll need to make this * configurable. * * Don't send multicast QoS frames. * Technically multicast frames can be QoS if all stations in the * BSS are also QoS. * * NB: mesh data frames are QoS, including multicast frames. */ addqos = (((is_mcast == 0) && (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) || (vap->iv_opmode == IEEE80211_M_MBSS)) && (m->m_flags & M_EAPOL) == 0; if (addqos) hdrsize = sizeof(struct ieee80211_qosframe); else hdrsize = sizeof(struct ieee80211_frame); #ifdef IEEE80211_SUPPORT_MESH if (vap->iv_opmode == IEEE80211_M_MBSS) { /* * Mesh data frames are encapsulated according to the * rules of Section 11B.8.5 (p.139 of D3.0 spec). * o Group Addressed data (aka multicast) originating * at the local sta are sent w/ 3-address format and * address extension mode 00 * o Individually Addressed data (aka unicast) originating * at the local sta are sent w/ 4-address format and * address extension mode 00 * o Group Addressed data forwarded from a non-mesh sta are * sent w/ 3-address format and address extension mode 01 * o Individually Address data from another sta are sent * w/ 4-address format and address extension mode 10 */ is4addr = 0; /* NB: don't use, disable */ if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) { rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost); KASSERT(rt != NULL, ("route is NULL")); dir = IEEE80211_FC1_DIR_DSTODS; hdrsize += IEEE80211_ADDR_LEN; if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) { if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate, vap->iv_myaddr)) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_MESH, eh.ether_dhost, "%s", "trying to send to ourself"); goto bad; } meshae = IEEE80211_MESH_AE_10; meshhdrsize = sizeof(struct ieee80211_meshcntl_ae10); } else { meshae = IEEE80211_MESH_AE_00; meshhdrsize = sizeof(struct ieee80211_meshcntl); } } else { dir = IEEE80211_FC1_DIR_FROMDS; if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) { /* proxy group */ meshae = IEEE80211_MESH_AE_01; meshhdrsize = sizeof(struct ieee80211_meshcntl_ae01); } else { /* group */ meshae = IEEE80211_MESH_AE_00; meshhdrsize = sizeof(struct ieee80211_meshcntl); } } } else { #endif /* * 4-address frames need to be generated for: * o packets sent through a WDS vap (IEEE80211_M_WDS) * o packets sent through a vap marked for relaying * (e.g. a station operating with dynamic WDS) */ is4addr = vap->iv_opmode == IEEE80211_M_WDS || ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) && !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)); if (is4addr) hdrsize += IEEE80211_ADDR_LEN; meshhdrsize = meshae = 0; #ifdef IEEE80211_SUPPORT_MESH } #endif /* * Honor driver DATAPAD requirement. */ if (ic->ic_flags & IEEE80211_F_DATAPAD) hdrspace = roundup(hdrsize, sizeof(uint32_t)); else hdrspace = hdrsize; if (__predict_true((m->m_flags & M_FF) == 0)) { /* * Normal frame. */ m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m); if (m == NULL) { /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ goto bad; } /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */ m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); llc = mtod(m, struct llc *); llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; llc->llc_control = LLC_UI; llc->llc_snap.org_code[0] = 0; llc->llc_snap.org_code[1] = 0; llc->llc_snap.org_code[2] = 0; llc->llc_snap.ether_type = eh.ether_type; } else { #ifdef IEEE80211_SUPPORT_SUPERG /* * Aggregated frame. Check if it's for AMSDU or FF. * * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented * anywhere for some reason. But, since 11n requires * AMSDU RX, we can just assume "11n" == "AMSDU". */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__); if (ieee80211_amsdu_tx_ok(ni)) { m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key); is_amsdu = 1; } else { m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key); } if (m == NULL) #endif goto bad; } datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT); if (m == NULL) { vap->iv_stats.is_tx_nobuf++; goto bad; } wh = mtod(m, struct ieee80211_frame *); wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; *(uint16_t *)wh->i_dur = 0; qos = NULL; /* NB: quiet compiler */ if (is4addr) { wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); } else switch (vap->iv_opmode) { case IEEE80211_M_STA: wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); break; case IEEE80211_M_IBSS: case IEEE80211_M_AHDEMO: wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); /* * NB: always use the bssid from iv_bss as the * neighbor's may be stale after an ibss merge */ IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid); break; case IEEE80211_M_HOSTAP: wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); break; #ifdef IEEE80211_SUPPORT_MESH case IEEE80211_M_MBSS: /* NB: offset by hdrspace to deal with DATAPAD */ mc = (struct ieee80211_meshcntl_ae10 *) (mtod(m, uint8_t *) + hdrspace); wh->i_fc[1] = dir; switch (meshae) { case IEEE80211_MESH_AE_00: /* no proxy */ mc->mc_flags = 0; if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */ IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); qos =((struct ieee80211_qosframe_addr4 *) wh)->i_qos; } else if (dir == IEEE80211_FC1_DIR_FROMDS) { /* mcast */ IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); qos = ((struct ieee80211_qosframe *) wh)->i_qos; } break; case IEEE80211_MESH_AE_01: /* mcast, proxy */ wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr); mc->mc_flags = 1; IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4, eh.ether_shost); qos = ((struct ieee80211_qosframe *) wh)->i_qos; break; case IEEE80211_MESH_AE_10: /* ucast, proxy */ KASSERT(rt != NULL, ("route is NULL")); IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate); IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr); mc->mc_flags = IEEE80211_MESH_AE_10; IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost); IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost); qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; break; default: KASSERT(0, ("meshae %d", meshae)); break; } mc->mc_ttl = ms->ms_ttl; ms->ms_seq++; le32enc(mc->mc_seq, ms->ms_seq); break; #endif case IEEE80211_M_WDS: /* NB: is4addr should always be true */ default: goto bad; } if (m->m_flags & M_MORE_DATA) wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; if (addqos) { int ac, tid; if (is4addr) { qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; /* NB: mesh case handled earlier */ } else if (vap->iv_opmode != IEEE80211_M_MBSS) qos = ((struct ieee80211_qosframe *) wh)->i_qos; ac = M_WME_GETAC(m); /* map from access class/queue to 11e header priorty value */ tid = WME_AC_TO_TID(ac); qos[0] = tid & IEEE80211_QOS_TID; if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; #ifdef IEEE80211_SUPPORT_MESH if (vap->iv_opmode == IEEE80211_M_MBSS) qos[1] = IEEE80211_QOS_MC; else #endif qos[1] = 0; wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; /* * If this is an A-MSDU then ensure we set the * relevant field. */ if (is_amsdu) qos[0] |= IEEE80211_QOS_AMSDU; /* * XXX TODO TX lock is needed for atomic updates of sequence * numbers. If the driver does it, then don't do it here; * and we don't need the TX lock held. */ if ((m->m_flags & M_AMPDU_MPDU) == 0) { /* * 802.11-2012 9.3.2.10 - * * If this is a multicast frame then we need * to ensure that the sequence number comes from * a separate seqno space and not the TID space. * * Otherwise multicast frames may actually cause * holes in the TX blockack window space and * upset various things. */ if (IEEE80211_IS_MULTICAST(wh->i_addr1)) seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; else seqno = ni->ni_txseqs[tid]++; /* * NB: don't assign a sequence # to potential * aggregates; we expect this happens at the * point the frame comes off any aggregation q * as otherwise we may introduce holes in the * BA sequence space and/or make window accouting * more difficult. * * XXX may want to control this with a driver * capability; this may also change when we pull * aggregation up into net80211 */ seqno = ni->ni_txseqs[tid]++; *(uint16_t *)wh->i_seq = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); M_SEQNO_SET(m, seqno); } } else { /* * XXX TODO TX lock is needed for atomic updates of sequence * numbers. If the driver does it, then don't do it here; * and we don't need the TX lock held. */ seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; *(uint16_t *)wh->i_seq = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); M_SEQNO_SET(m, seqno); /* * XXX TODO: we shouldn't allow EAPOL, etc that would * be forced to be non-QoS traffic to be A-MSDU encapsulated. */ if (is_amsdu) printf("%s: XXX ERROR: is_amsdu set; not QoS!\n", __func__); } /* * Check if xmit fragmentation is required. * * If the hardware does fragmentation offload, then don't bother * doing it here. */ if (IEEE80211_CONF_FRAG_OFFLOAD(ic)) txfrag = 0; else txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold && !IEEE80211_IS_MULTICAST(wh->i_addr1) && (vap->iv_caps & IEEE80211_C_TXFRAG) && (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0); if (key != NULL) { /* * IEEE 802.1X: send EAPOL frames always in the clear. * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. */ if ((m->m_flags & M_EAPOL) == 0 || ((vap->iv_flags & IEEE80211_F_WPA) && (vap->iv_opmode == IEEE80211_M_STA ? !IEEE80211_KEY_UNDEFINED(key) : !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) { wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, eh.ether_dhost, "%s", "enmic failed, discard frame"); vap->iv_stats.is_crypto_enmicfail++; goto bad; } } } if (txfrag && !ieee80211_fragment(vap, m, hdrsize, key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold)) goto bad; m->m_flags |= M_ENCAP; /* mark encapsulated */ IEEE80211_NODE_STAT(ni, tx_data); if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { IEEE80211_NODE_STAT(ni, tx_mcast); m->m_flags |= M_MCAST; } else IEEE80211_NODE_STAT(ni, tx_ucast); IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); return m; bad: if (m != NULL) m_freem(m); return NULL; #undef WH4 #undef MC01 } void ieee80211_free_mbuf(struct mbuf *m) { struct mbuf *next; if (m == NULL) return; do { next = m->m_nextpkt; m->m_nextpkt = NULL; m_freem(m); } while ((m = next) != NULL); } /* * Fragment the frame according to the specified mtu. * The size of the 802.11 header (w/o padding) is provided * so we don't need to recalculate it. We create a new * mbuf for each fragment and chain it through m_nextpkt; * we might be able to optimize this by reusing the original * packet's mbufs but that is significantly more complicated. */ static int ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0, u_int hdrsize, u_int ciphdrsize, u_int mtu) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_frame *wh, *whf; struct mbuf *m, *prev; u_int totalhdrsize, fragno, fragsize, off, remainder, payload; u_int hdrspace; KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); KASSERT(m0->m_pkthdr.len > mtu, ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); /* * Honor driver DATAPAD requirement. */ if (ic->ic_flags & IEEE80211_F_DATAPAD) hdrspace = roundup(hdrsize, sizeof(uint32_t)); else hdrspace = hdrsize; wh = mtod(m0, struct ieee80211_frame *); /* NB: mark the first frag; it will be propagated below */ wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; totalhdrsize = hdrspace + ciphdrsize; fragno = 1; off = mtu - ciphdrsize; remainder = m0->m_pkthdr.len - off; prev = m0; do { fragsize = MIN(totalhdrsize + remainder, mtu); m = m_get2(fragsize, M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) goto bad; /* leave room to prepend any cipher header */ m_align(m, fragsize - ciphdrsize); /* * Form the header in the fragment. Note that since * we mark the first fragment with the MORE_FRAG bit * it automatically is propagated to each fragment; we * need only clear it on the last fragment (done below). * NB: frag 1+ dont have Mesh Control field present. */ whf = mtod(m, struct ieee80211_frame *); memcpy(whf, wh, hdrsize); #ifdef IEEE80211_SUPPORT_MESH if (vap->iv_opmode == IEEE80211_M_MBSS) { if (IEEE80211_IS_DSTODS(wh)) ((struct ieee80211_qosframe_addr4 *) whf)->i_qos[1] &= ~IEEE80211_QOS_MC; else ((struct ieee80211_qosframe *) whf)->i_qos[1] &= ~IEEE80211_QOS_MC; } #endif *(uint16_t *)&whf->i_seq[0] |= htole16( (fragno & IEEE80211_SEQ_FRAG_MASK) << IEEE80211_SEQ_FRAG_SHIFT); fragno++; payload = fragsize - totalhdrsize; /* NB: destination is known to be contiguous */ m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace); m->m_len = hdrspace + payload; m->m_pkthdr.len = hdrspace + payload; m->m_flags |= M_FRAG; /* chain up the fragment */ prev->m_nextpkt = m; prev = m; /* deduct fragment just formed */ remainder -= payload; off += payload; } while (remainder != 0); /* set the last fragment */ m->m_flags |= M_LASTFRAG; whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; /* strip first mbuf now that everything has been copied */ m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); m0->m_flags |= M_FIRSTFRAG | M_FRAG; vap->iv_stats.is_tx_fragframes++; vap->iv_stats.is_tx_frags += fragno-1; return 1; bad: /* reclaim fragments but leave original frame for caller to free */ ieee80211_free_mbuf(m0->m_nextpkt); m0->m_nextpkt = NULL; return 0; } /* * Add a supported rates element id to a frame. */ uint8_t * ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) { int nrates; *frm++ = IEEE80211_ELEMID_RATES; nrates = rs->rs_nrates; if (nrates > IEEE80211_RATE_SIZE) nrates = IEEE80211_RATE_SIZE; *frm++ = nrates; memcpy(frm, rs->rs_rates, nrates); return frm + nrates; } /* * Add an extended supported rates element id to a frame. */ uint8_t * ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) { /* * Add an extended supported rates element if operating in 11g mode. */ if (rs->rs_nrates > IEEE80211_RATE_SIZE) { int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; *frm++ = IEEE80211_ELEMID_XRATES; *frm++ = nrates; memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); frm += nrates; } return frm; } /* * Add an ssid element to a frame. */ uint8_t * ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) { *frm++ = IEEE80211_ELEMID_SSID; *frm++ = len; memcpy(frm, ssid, len); return frm + len; } /* * Add an erp element to a frame. */ static uint8_t * ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic) { uint8_t erp; *frm++ = IEEE80211_ELEMID_ERP; *frm++ = 1; erp = 0; if (ic->ic_nonerpsta != 0) erp |= IEEE80211_ERP_NON_ERP_PRESENT; if (ic->ic_flags & IEEE80211_F_USEPROT) erp |= IEEE80211_ERP_USE_PROTECTION; if (ic->ic_flags & IEEE80211_F_USEBARKER) erp |= IEEE80211_ERP_LONG_PREAMBLE; *frm++ = erp; return frm; } /* * Add a CFParams element to a frame. */ static uint8_t * ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic) { #define ADDSHORT(frm, v) do { \ le16enc(frm, v); \ frm += 2; \ } while (0) *frm++ = IEEE80211_ELEMID_CFPARMS; *frm++ = 6; *frm++ = 0; /* CFP count */ *frm++ = 2; /* CFP period */ ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */ ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */ return frm; #undef ADDSHORT } static __inline uint8_t * add_appie(uint8_t *frm, const struct ieee80211_appie *ie) { memcpy(frm, ie->ie_data, ie->ie_len); return frm + ie->ie_len; } static __inline uint8_t * add_ie(uint8_t *frm, const uint8_t *ie) { memcpy(frm, ie, 2 + ie[1]); return frm + 2 + ie[1]; } #define WME_OUI_BYTES 0x00, 0x50, 0xf2 /* * Add a WME information element to a frame. */ uint8_t * ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme) { static const struct ieee80211_wme_info info = { .wme_id = IEEE80211_ELEMID_VENDOR, .wme_len = sizeof(struct ieee80211_wme_info) - 2, .wme_oui = { WME_OUI_BYTES }, .wme_type = WME_OUI_TYPE, .wme_subtype = WME_INFO_OUI_SUBTYPE, .wme_version = WME_VERSION, .wme_info = 0, }; memcpy(frm, &info, sizeof(info)); return frm + sizeof(info); } /* * Add a WME parameters element to a frame. */ static uint8_t * ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme) { #define SM(_v, _f) (((_v) << _f##_S) & _f) #define ADDSHORT(frm, v) do { \ le16enc(frm, v); \ frm += 2; \ } while (0) /* NB: this works 'cuz a param has an info at the front */ static const struct ieee80211_wme_info param = { .wme_id = IEEE80211_ELEMID_VENDOR, .wme_len = sizeof(struct ieee80211_wme_param) - 2, .wme_oui = { WME_OUI_BYTES }, .wme_type = WME_OUI_TYPE, .wme_subtype = WME_PARAM_OUI_SUBTYPE, .wme_version = WME_VERSION, }; int i; memcpy(frm, ¶m, sizeof(param)); frm += __offsetof(struct ieee80211_wme_info, wme_info); *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ *frm++ = 0; /* reserved field */ for (i = 0; i < WME_NUM_AC; i++) { const struct wmeParams *ac = &wme->wme_bssChanParams.cap_wmeParams[i]; *frm++ = SM(i, WME_PARAM_ACI) | SM(ac->wmep_acm, WME_PARAM_ACM) | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) ; *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) ; ADDSHORT(frm, ac->wmep_txopLimit); } return frm; #undef SM #undef ADDSHORT } #undef WME_OUI_BYTES /* * Add an 11h Power Constraint element to a frame. */ static uint8_t * ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap) { const struct ieee80211_channel *c = vap->iv_bss->ni_chan; /* XXX per-vap tx power limit? */ int8_t limit = vap->iv_ic->ic_txpowlimit / 2; frm[0] = IEEE80211_ELEMID_PWRCNSTR; frm[1] = 1; frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0; return frm + 3; } /* * Add an 11h Power Capability element to a frame. */ static uint8_t * ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c) { frm[0] = IEEE80211_ELEMID_PWRCAP; frm[1] = 2; frm[2] = c->ic_minpower; frm[3] = c->ic_maxpower; return frm + 4; } /* * Add an 11h Supported Channels element to a frame. */ static uint8_t * ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic) { static const int ielen = 26; frm[0] = IEEE80211_ELEMID_SUPPCHAN; frm[1] = ielen; /* XXX not correct */ memcpy(frm+2, ic->ic_chan_avail, ielen); return frm + 2 + ielen; } /* * Add an 11h Quiet time element to a frame. */ static uint8_t * ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update) { struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm; quiet->quiet_ie = IEEE80211_ELEMID_QUIET; quiet->len = 6; /* * Only update every beacon interval - otherwise probe responses * would update the quiet count value. */ if (update) { if (vap->iv_quiet_count_value == 1) vap->iv_quiet_count_value = vap->iv_quiet_count; else if (vap->iv_quiet_count_value > 1) vap->iv_quiet_count_value--; } if (vap->iv_quiet_count_value == 0) { /* value 0 is reserved as per 802.11h standerd */ vap->iv_quiet_count_value = 1; } quiet->tbttcount = vap->iv_quiet_count_value; quiet->period = vap->iv_quiet_period; quiet->duration = htole16(vap->iv_quiet_duration); quiet->offset = htole16(vap->iv_quiet_offset); return frm + sizeof(*quiet); } /* * Add an 11h Channel Switch Announcement element to a frame. * Note that we use the per-vap CSA count to adjust the global * counter so we can use this routine to form probe response * frames and get the current count. */ static uint8_t * ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm; csa->csa_ie = IEEE80211_ELEMID_CSA; csa->csa_len = 3; csa->csa_mode = 1; /* XXX force quiet on channel */ csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan); csa->csa_count = ic->ic_csa_count - vap->iv_csa_count; return frm + sizeof(*csa); } /* * Add an 11h country information element to a frame. */ static uint8_t * ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic) { if (ic->ic_countryie == NULL || ic->ic_countryie_chan != ic->ic_bsschan) { /* * Handle lazy construction of ie. This is done on * first use and after a channel change that requires * re-calculation. */ if (ic->ic_countryie != NULL) IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE); ic->ic_countryie = ieee80211_alloc_countryie(ic); if (ic->ic_countryie == NULL) return frm; ic->ic_countryie_chan = ic->ic_bsschan; } return add_appie(frm, ic->ic_countryie); } uint8_t * ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap) { if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) return (add_ie(frm, vap->iv_wpa_ie)); else { /* XXX else complain? */ return (frm); } } uint8_t * ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap) { if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL) return (add_ie(frm, vap->iv_rsn_ie)); else { /* XXX else complain? */ return (frm); } } uint8_t * ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni) { if (ni->ni_flags & IEEE80211_NODE_QOS) { *frm++ = IEEE80211_ELEMID_QOS; *frm++ = 1; *frm++ = 0; } return (frm); } /* * Send a probe request frame with the specified ssid * and any optional information element data. */ int ieee80211_send_probereq(struct ieee80211_node *ni, const uint8_t sa[IEEE80211_ADDR_LEN], const uint8_t da[IEEE80211_ADDR_LEN], const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t *ssid, size_t ssidlen) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ieee80211_node *bss; const struct ieee80211_txparam *tp; struct ieee80211_bpf_params params; const struct ieee80211_rateset *rs; struct mbuf *m; uint8_t *frm; int ret; bss = ieee80211_ref_node(vap->iv_bss); if (vap->iv_state == IEEE80211_S_CAC) { IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, "block %s frame in CAC state", "probe request"); vap->iv_stats.is_tx_badstate++; ieee80211_free_node(bss); return EIO; /* XXX */ } /* * Hold a reference on the node so it doesn't go away until after * the xmit is complete all the way in the driver. On error we * will remove our reference. */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); ieee80211_ref_node(ni); /* * prreq frame format * [tlv] ssid * [tlv] supported rates * [tlv] RSN (optional) * [tlv] extended supported rates * [tlv] HT cap (optional) * [tlv] VHT cap (optional) * [tlv] WPA (optional) * [tlv] user-specified ie's */ m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), 2 + IEEE80211_NWID_LEN + 2 + IEEE80211_RATE_SIZE + sizeof(struct ieee80211_ie_htcap) + sizeof(struct ieee80211_ie_vhtcap) + sizeof(struct ieee80211_ie_htinfo) /* XXX not needed? */ + sizeof(struct ieee80211_ie_wpa) + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) + sizeof(struct ieee80211_ie_wpa) + (vap->iv_appie_probereq != NULL ? vap->iv_appie_probereq->ie_len : 0) ); if (m == NULL) { vap->iv_stats.is_tx_nobuf++; ieee80211_free_node(ni); ieee80211_free_node(bss); return ENOMEM; } frm = ieee80211_add_ssid(frm, ssid, ssidlen); rs = ieee80211_get_suprates(ic, ic->ic_curchan); frm = ieee80211_add_rates(frm, rs); frm = ieee80211_add_rsn(frm, vap); frm = ieee80211_add_xrates(frm, rs); /* * Note: we can't use bss; we don't have one yet. * * So, we should announce our capabilities * in this channel mode (2g/5g), not the * channel details itself. */ if ((vap->iv_opmode == IEEE80211_M_IBSS) && (vap->iv_flags_ht & IEEE80211_FHT_HT)) { struct ieee80211_channel *c; /* * Get the HT channel that we should try upgrading to. * If we can do 40MHz then this'll upgrade it appropriately. */ c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan, vap->iv_flags_ht); frm = ieee80211_add_htcap_ch(frm, vap, c); } /* * XXX TODO: need to figure out what/how to update the * VHT channel. */ #if 0 (vap->iv_flags_vht & IEEE80211_FVHT_VHT) { struct ieee80211_channel *c; c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan, vap->iv_flags_ht); c = ieee80211_vht_adjust_channel(ic, c, vap->iv_flags_vht); frm = ieee80211_add_vhtcap_ch(frm, vap, c); } #endif frm = ieee80211_add_wpa(frm, vap); if (vap->iv_appie_probereq != NULL) frm = add_appie(frm, vap->iv_appie_probereq); m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame), ("leading space %zd", M_LEADINGSPACE(m))); M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); if (m == NULL) { /* NB: cannot happen */ ieee80211_free_node(ni); ieee80211_free_node(bss); return ENOMEM; } IEEE80211_TX_LOCK(ic); ieee80211_send_setup(ni, m, IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, IEEE80211_NONQOS_TID, sa, da, bssid); /* XXX power management? */ m->m_flags |= M_ENCAP; /* mark encapsulated */ M_WME_SETAC(m, WME_AC_BE); IEEE80211_NODE_STAT(ni, tx_probereq); IEEE80211_NODE_STAT(ni, tx_mgmt); IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n", ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid), sa, ":", da, ":", ssidlen, ssid); memset(¶ms, 0, sizeof(params)); params.ibp_pri = M_WME_GETAC(m); tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; params.ibp_rate0 = tp->mgmtrate; if (IEEE80211_IS_MULTICAST(da)) { params.ibp_flags |= IEEE80211_BPF_NOACK; params.ibp_try0 = 1; } else params.ibp_try0 = tp->maxretry; params.ibp_power = ni->ni_txpower; ret = ieee80211_raw_output(vap, ni, m, ¶ms); IEEE80211_TX_UNLOCK(ic); ieee80211_free_node(bss); return (ret); } /* * Calculate capability information for mgt frames. */ uint16_t ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan) { struct ieee80211com *ic = vap->iv_ic; uint16_t capinfo; KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode")); if (vap->iv_opmode == IEEE80211_M_HOSTAP) capinfo = IEEE80211_CAPINFO_ESS; else if (vap->iv_opmode == IEEE80211_M_IBSS) capinfo = IEEE80211_CAPINFO_IBSS; else capinfo = 0; if (vap->iv_flags & IEEE80211_F_PRIVACY) capinfo |= IEEE80211_CAPINFO_PRIVACY; if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && IEEE80211_IS_CHAN_2GHZ(chan)) capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; if (ic->ic_flags & IEEE80211_F_SHSLOT) capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH)) capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; return capinfo; } /* * Send a management frame. The node is for the destination (or ic_bss * when in station mode). Nodes other than ic_bss have their reference * count bumped to reflect our use for an indeterminant time. */ int ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg) { #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT) #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ieee80211_node *bss = vap->iv_bss; struct ieee80211_bpf_params params; struct mbuf *m; uint8_t *frm; uint16_t capinfo; int has_challenge, is_shared_key, ret, status; KASSERT(ni != NULL, ("null node")); /* * Hold a reference on the node so it doesn't go away until after * the xmit is complete all the way in the driver. On error we * will remove our reference. */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); ieee80211_ref_node(ni); memset(¶ms, 0, sizeof(params)); switch (type) { case IEEE80211_FC0_SUBTYPE_AUTH: status = arg >> 16; arg &= 0xffff; has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || arg == IEEE80211_AUTH_SHARED_RESPONSE) && ni->ni_challenge != NULL); /* * Deduce whether we're doing open authentication or * shared key authentication. We do the latter if * we're in the middle of a shared key authentication * handshake or if we're initiating an authentication * request and configured to use shared key. */ is_shared_key = has_challenge || arg >= IEEE80211_AUTH_SHARED_RESPONSE || (arg == IEEE80211_AUTH_SHARED_REQUEST && bss->ni_authmode == IEEE80211_AUTH_SHARED); m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), 3 * sizeof(uint16_t) + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0) ); if (m == NULL) senderr(ENOMEM, is_tx_nobuf); ((uint16_t *)frm)[0] = (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) : htole16(IEEE80211_AUTH_ALG_OPEN); ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ ((uint16_t *)frm)[2] = htole16(status);/* status */ if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { ((uint16_t *)frm)[3] = htole16((IEEE80211_CHALLENGE_LEN << 8) | IEEE80211_ELEMID_CHALLENGE); memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, IEEE80211_CHALLENGE_LEN); m->m_pkthdr.len = m->m_len = 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, "request encrypt frame (%s)", __func__); /* mark frame for encryption */ params.ibp_flags |= IEEE80211_BPF_CRYPTO; } } else m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); /* XXX not right for shared key */ if (status == IEEE80211_STATUS_SUCCESS) IEEE80211_NODE_STAT(ni, tx_auth); else IEEE80211_NODE_STAT(ni, tx_auth_fail); if (vap->iv_opmode == IEEE80211_M_STA) ieee80211_add_callback(m, ieee80211_tx_mgt_cb, (void *) vap->iv_state); break; case IEEE80211_FC0_SUBTYPE_DEAUTH: IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, "send station deauthenticate (reason: %d (%s))", arg, ieee80211_reason_to_string(arg)); m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), sizeof(uint16_t)); if (m == NULL) senderr(ENOMEM, is_tx_nobuf); *(uint16_t *)frm = htole16(arg); /* reason */ m->m_pkthdr.len = m->m_len = sizeof(uint16_t); IEEE80211_NODE_STAT(ni, tx_deauth); IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); ieee80211_node_unauthorize(ni); /* port closed */ break; case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: /* * asreq frame format * [2] capability information * [2] listen interval * [6*] current AP address (reassoc only) * [tlv] ssid * [tlv] supported rates * [tlv] extended supported rates * [4] power capability (optional) * [28] supported channels (optional) * [tlv] HT capabilities * [tlv] VHT capabilities * [tlv] WME (optional) * [tlv] Vendor OUI HT capabilities (optional) * [tlv] Atheros capabilities (if negotiated) * [tlv] AppIE's (optional) */ m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), sizeof(uint16_t) + sizeof(uint16_t) + IEEE80211_ADDR_LEN + 2 + IEEE80211_NWID_LEN + 2 + IEEE80211_RATE_SIZE + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) + 4 + 2 + 26 + sizeof(struct ieee80211_wme_info) + sizeof(struct ieee80211_ie_htcap) + sizeof(struct ieee80211_ie_vhtcap) + 4 + sizeof(struct ieee80211_ie_htcap) #ifdef IEEE80211_SUPPORT_SUPERG + sizeof(struct ieee80211_ath_ie) #endif + (vap->iv_appie_wpa != NULL ? vap->iv_appie_wpa->ie_len : 0) + (vap->iv_appie_assocreq != NULL ? vap->iv_appie_assocreq->ie_len : 0) ); if (m == NULL) senderr(ENOMEM, is_tx_nobuf); KASSERT(vap->iv_opmode == IEEE80211_M_STA, ("wrong mode %u", vap->iv_opmode)); capinfo = IEEE80211_CAPINFO_ESS; if (vap->iv_flags & IEEE80211_F_PRIVACY) capinfo |= IEEE80211_CAPINFO_PRIVACY; /* * NB: Some 11a AP's reject the request when * short premable is set. */ if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && (ic->ic_caps & IEEE80211_C_SHSLOT)) capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) && (vap->iv_flags & IEEE80211_F_DOTH)) capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; *(uint16_t *)frm = htole16(capinfo); frm += 2; KASSERT(bss->ni_intval != 0, ("beacon interval is zero!")); *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, bss->ni_intval)); frm += 2; if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { IEEE80211_ADDR_COPY(frm, bss->ni_bssid); frm += IEEE80211_ADDR_LEN; } frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); frm = ieee80211_add_rates(frm, &ni->ni_rates); frm = ieee80211_add_rsn(frm, vap); frm = ieee80211_add_xrates(frm, &ni->ni_rates); if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) { frm = ieee80211_add_powercapability(frm, ic->ic_curchan); frm = ieee80211_add_supportedchannels(frm, ic); } /* * Check the channel - we may be using an 11n NIC with an * 11n capable station, but we're configured to be an 11b * channel. */ if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_ies.htcap_ie != NULL && ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) { frm = ieee80211_add_htcap(frm, ni); } if ((vap->iv_flags_vht & IEEE80211_FVHT_VHT) && IEEE80211_IS_CHAN_VHT(ni->ni_chan) && ni->ni_ies.vhtcap_ie != NULL && ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) { frm = ieee80211_add_vhtcap(frm, ni); } frm = ieee80211_add_wpa(frm, vap); if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) frm = ieee80211_add_wme_info(frm, &ic->ic_wme); /* * Same deal - only send HT info if we're on an 11n * capable channel. */ if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_ies.htcap_ie != NULL && ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) { frm = ieee80211_add_htcap_vendor(frm, ni); } #ifdef IEEE80211_SUPPORT_SUPERG if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) { frm = ieee80211_add_ath(frm, IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), ((vap->iv_flags & IEEE80211_F_WPA) == 0 && ni->ni_authmode != IEEE80211_AUTH_8021X) ? vap->iv_def_txkey : IEEE80211_KEYIX_NONE); } #endif /* IEEE80211_SUPPORT_SUPERG */ if (vap->iv_appie_assocreq != NULL) frm = add_appie(frm, vap->iv_appie_assocreq); m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); ieee80211_add_callback(m, ieee80211_tx_mgt_cb, (void *) vap->iv_state); break; case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: /* * asresp frame format * [2] capability information * [2] status * [2] association ID * [tlv] supported rates * [tlv] extended supported rates * [tlv] HT capabilities (standard, if STA enabled) * [tlv] HT information (standard, if STA enabled) * [tlv] VHT capabilities (standard, if STA enabled) * [tlv] VHT information (standard, if STA enabled) * [tlv] WME (if configured and STA enabled) * [tlv] HT capabilities (vendor OUI, if STA enabled) * [tlv] HT information (vendor OUI, if STA enabled) * [tlv] Atheros capabilities (if STA enabled) * [tlv] AppIE's (optional) */ m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), sizeof(uint16_t) + sizeof(uint16_t) + sizeof(uint16_t) + 2 + IEEE80211_RATE_SIZE + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) + sizeof(struct ieee80211_ie_htcap) + 4 + sizeof(struct ieee80211_ie_htinfo) + 4 + sizeof(struct ieee80211_ie_vhtcap) + sizeof(struct ieee80211_ie_vht_operation) + sizeof(struct ieee80211_wme_param) #ifdef IEEE80211_SUPPORT_SUPERG + sizeof(struct ieee80211_ath_ie) #endif + (vap->iv_appie_assocresp != NULL ? vap->iv_appie_assocresp->ie_len : 0) ); if (m == NULL) senderr(ENOMEM, is_tx_nobuf); capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); *(uint16_t *)frm = htole16(capinfo); frm += 2; *(uint16_t *)frm = htole16(arg); /* status */ frm += 2; if (arg == IEEE80211_STATUS_SUCCESS) { *(uint16_t *)frm = htole16(ni->ni_associd); IEEE80211_NODE_STAT(ni, tx_assoc); } else IEEE80211_NODE_STAT(ni, tx_assoc_fail); frm += 2; frm = ieee80211_add_rates(frm, &ni->ni_rates); frm = ieee80211_add_xrates(frm, &ni->ni_rates); /* NB: respond according to what we received */ if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) { frm = ieee80211_add_htcap(frm, ni); frm = ieee80211_add_htinfo(frm, ni); } if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) frm = ieee80211_add_wme_param(frm, &ic->ic_wme); if ((ni->ni_flags & HTFLAGS) == HTFLAGS) { frm = ieee80211_add_htcap_vendor(frm, ni); frm = ieee80211_add_htinfo_vendor(frm, ni); } if (ni->ni_flags & IEEE80211_NODE_VHT) { frm = ieee80211_add_vhtcap(frm, ni); frm = ieee80211_add_vhtinfo(frm, ni); } #ifdef IEEE80211_SUPPORT_SUPERG if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) frm = ieee80211_add_ath(frm, IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), ((vap->iv_flags & IEEE80211_F_WPA) == 0 && ni->ni_authmode != IEEE80211_AUTH_8021X) ? vap->iv_def_txkey : IEEE80211_KEYIX_NONE); #endif /* IEEE80211_SUPPORT_SUPERG */ if (vap->iv_appie_assocresp != NULL) frm = add_appie(frm, vap->iv_appie_assocresp); m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); break; case IEEE80211_FC0_SUBTYPE_DISASSOC: IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, "send station disassociate (reason: %d (%s))", arg, ieee80211_reason_to_string(arg)); m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), sizeof(uint16_t)); if (m == NULL) senderr(ENOMEM, is_tx_nobuf); *(uint16_t *)frm = htole16(arg); /* reason */ m->m_pkthdr.len = m->m_len = sizeof(uint16_t); IEEE80211_NODE_STAT(ni, tx_disassoc); IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); break; default: IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, "invalid mgmt frame type %u", type); senderr(EINVAL, is_tx_unknownmgt); /* NOTREACHED */ } /* NB: force non-ProbeResp frames to the highest queue */ params.ibp_pri = WME_AC_VO; params.ibp_rate0 = bss->ni_txparms->mgmtrate; /* NB: we know all frames are unicast */ params.ibp_try0 = bss->ni_txparms->maxretry; params.ibp_power = bss->ni_txpower; return ieee80211_mgmt_output(ni, m, type, ¶ms); bad: ieee80211_free_node(ni); return ret; #undef senderr #undef HTFLAGS } /* * Return an mbuf with a probe response frame in it. * Space is left to prepend and 802.11 header at the * front but it's left to the caller to fill in. */ struct mbuf * ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy) { struct ieee80211vap *vap = bss->ni_vap; struct ieee80211com *ic = bss->ni_ic; const struct ieee80211_rateset *rs; struct mbuf *m; uint16_t capinfo; uint8_t *frm; /* * probe response frame format * [8] time stamp * [2] beacon interval * [2] cabability information * [tlv] ssid * [tlv] supported rates * [tlv] parameter set (FH/DS) * [tlv] parameter set (IBSS) * [tlv] country (optional) * [3] power control (optional) * [5] channel switch announcement (CSA) (optional) * [tlv] extended rate phy (ERP) * [tlv] extended supported rates * [tlv] RSN (optional) * [tlv] HT capabilities * [tlv] HT information * [tlv] VHT capabilities * [tlv] VHT information * [tlv] WPA (optional) * [tlv] WME (optional) * [tlv] Vendor OUI HT capabilities (optional) * [tlv] Vendor OUI HT information (optional) * [tlv] Atheros capabilities * [tlv] AppIE's (optional) * [tlv] Mesh ID (MBSS) * [tlv] Mesh Conf (MBSS) */ m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), 8 + sizeof(uint16_t) + sizeof(uint16_t) + 2 + IEEE80211_NWID_LEN + 2 + IEEE80211_RATE_SIZE + 7 /* max(7,3) */ + IEEE80211_COUNTRY_MAX_SIZE + 3 + sizeof(struct ieee80211_csa_ie) + sizeof(struct ieee80211_quiet_ie) + 3 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) + sizeof(struct ieee80211_ie_wpa) + sizeof(struct ieee80211_ie_htcap) + sizeof(struct ieee80211_ie_htinfo) + sizeof(struct ieee80211_ie_wpa) + sizeof(struct ieee80211_wme_param) + 4 + sizeof(struct ieee80211_ie_htcap) + 4 + sizeof(struct ieee80211_ie_htinfo) + sizeof(struct ieee80211_ie_vhtcap) + sizeof(struct ieee80211_ie_vht_operation) #ifdef IEEE80211_SUPPORT_SUPERG + sizeof(struct ieee80211_ath_ie) #endif #ifdef IEEE80211_SUPPORT_MESH + 2 + IEEE80211_MESHID_LEN + sizeof(struct ieee80211_meshconf_ie) #endif + (vap->iv_appie_proberesp != NULL ? vap->iv_appie_proberesp->ie_len : 0) ); if (m == NULL) { vap->iv_stats.is_tx_nobuf++; return NULL; } memset(frm, 0, 8); /* timestamp should be filled later */ frm += 8; *(uint16_t *)frm = htole16(bss->ni_intval); frm += 2; capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); *(uint16_t *)frm = htole16(capinfo); frm += 2; frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen); rs = ieee80211_get_suprates(ic, bss->ni_chan); frm = ieee80211_add_rates(frm, rs); if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) { *frm++ = IEEE80211_ELEMID_FHPARMS; *frm++ = 5; *frm++ = bss->ni_fhdwell & 0x00ff; *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff; *frm++ = IEEE80211_FH_CHANSET( ieee80211_chan2ieee(ic, bss->ni_chan)); *frm++ = IEEE80211_FH_CHANPAT( ieee80211_chan2ieee(ic, bss->ni_chan)); *frm++ = bss->ni_fhindex; } else { *frm++ = IEEE80211_ELEMID_DSPARMS; *frm++ = 1; *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan); } if (vap->iv_opmode == IEEE80211_M_IBSS) { *frm++ = IEEE80211_ELEMID_IBSSPARMS; *frm++ = 2; *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ } if ((vap->iv_flags & IEEE80211_F_DOTH) || (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) frm = ieee80211_add_countryie(frm, ic); if (vap->iv_flags & IEEE80211_F_DOTH) { if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan)) frm = ieee80211_add_powerconstraint(frm, vap); if (ic->ic_flags & IEEE80211_F_CSAPENDING) frm = ieee80211_add_csa(frm, vap); } if (vap->iv_flags & IEEE80211_F_DOTH) { if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { if (vap->iv_quiet) frm = ieee80211_add_quiet(frm, vap, 0); } } if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan)) frm = ieee80211_add_erp(frm, ic); frm = ieee80211_add_xrates(frm, rs); frm = ieee80211_add_rsn(frm, vap); /* * NB: legacy 11b clients do not get certain ie's. * The caller identifies such clients by passing * a token in legacy to us. Could expand this to be * any legacy client for stuff like HT ie's. */ if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && legacy != IEEE80211_SEND_LEGACY_11B) { frm = ieee80211_add_htcap(frm, bss); frm = ieee80211_add_htinfo(frm, bss); } if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) && legacy != IEEE80211_SEND_LEGACY_11B) { frm = ieee80211_add_vhtcap(frm, bss); frm = ieee80211_add_vhtinfo(frm, bss); } frm = ieee80211_add_wpa(frm, vap); if (vap->iv_flags & IEEE80211_F_WME) frm = ieee80211_add_wme_param(frm, &ic->ic_wme); if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) && legacy != IEEE80211_SEND_LEGACY_11B) { frm = ieee80211_add_htcap_vendor(frm, bss); frm = ieee80211_add_htinfo_vendor(frm, bss); } #ifdef IEEE80211_SUPPORT_SUPERG if ((vap->iv_flags & IEEE80211_F_ATHEROS) && legacy != IEEE80211_SEND_LEGACY_11B) frm = ieee80211_add_athcaps(frm, bss); #endif if (vap->iv_appie_proberesp != NULL) frm = add_appie(frm, vap->iv_appie_proberesp); #ifdef IEEE80211_SUPPORT_MESH if (vap->iv_opmode == IEEE80211_M_MBSS) { frm = ieee80211_add_meshid(frm, vap); frm = ieee80211_add_meshconf(frm, vap); } #endif m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); return m; } /* * Send a probe response frame to the specified mac address. * This does not go through the normal mgt frame api so we * can specify the destination address and re-use the bss node * for the sta reference. */ int ieee80211_send_proberesp(struct ieee80211vap *vap, const uint8_t da[IEEE80211_ADDR_LEN], int legacy) { struct ieee80211_node *bss = vap->iv_bss; struct ieee80211com *ic = vap->iv_ic; struct mbuf *m; int ret; if (vap->iv_state == IEEE80211_S_CAC) { IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss, "block %s frame in CAC state", "probe response"); vap->iv_stats.is_tx_badstate++; return EIO; /* XXX */ } /* * Hold a reference on the node so it doesn't go away until after * the xmit is complete all the way in the driver. On error we * will remove our reference. */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr), ieee80211_node_refcnt(bss)+1); ieee80211_ref_node(bss); m = ieee80211_alloc_proberesp(bss, legacy); if (m == NULL) { ieee80211_free_node(bss); return ENOMEM; } M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); KASSERT(m != NULL, ("no room for header")); IEEE80211_TX_LOCK(ic); ieee80211_send_setup(bss, m, IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP, IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid); /* XXX power management? */ m->m_flags |= M_ENCAP; /* mark encapsulated */ M_WME_SETAC(m, WME_AC_BE); IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, "send probe resp on channel %u to %s%s\n", ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da), legacy ? " " : ""); IEEE80211_NODE_STAT(bss, tx_mgmt); ret = ieee80211_raw_output(vap, bss, m, NULL); IEEE80211_TX_UNLOCK(ic); return (ret); } /* * Allocate and build a RTS (Request To Send) control frame. */ struct mbuf * ieee80211_alloc_rts(struct ieee80211com *ic, const uint8_t ra[IEEE80211_ADDR_LEN], const uint8_t ta[IEEE80211_ADDR_LEN], uint16_t dur) { struct ieee80211_frame_rts *rts; struct mbuf *m; /* XXX honor ic_headroom */ m = m_gethdr(M_NOWAIT, MT_DATA); if (m != NULL) { rts = mtod(m, struct ieee80211_frame_rts *); rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; *(u_int16_t *)rts->i_dur = htole16(dur); IEEE80211_ADDR_COPY(rts->i_ra, ra); IEEE80211_ADDR_COPY(rts->i_ta, ta); m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); } return m; } /* * Allocate and build a CTS (Clear To Send) control frame. */ struct mbuf * ieee80211_alloc_cts(struct ieee80211com *ic, const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur) { struct ieee80211_frame_cts *cts; struct mbuf *m; /* XXX honor ic_headroom */ m = m_gethdr(M_NOWAIT, MT_DATA); if (m != NULL) { cts = mtod(m, struct ieee80211_frame_cts *); cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS; cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; *(u_int16_t *)cts->i_dur = htole16(dur); IEEE80211_ADDR_COPY(cts->i_ra, ra); m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); } return m; } static void ieee80211_tx_mgt_timeout(void *arg) { struct ieee80211vap *vap = arg; IEEE80211_LOCK(vap->iv_ic); if (vap->iv_state != IEEE80211_S_INIT && (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) { /* * NB: it's safe to specify a timeout as the reason here; * it'll only be used in the right state. */ ieee80211_new_state_locked(vap, IEEE80211_S_SCAN, IEEE80211_SCAN_FAIL_TIMEOUT); } IEEE80211_UNLOCK(vap->iv_ic); } /* * This is the callback set on net80211-sourced transmitted * authentication request frames. * * This does a couple of things: * * + If the frame transmitted was a success, it schedules a future * event which will transition the interface to scan. * If a state transition _then_ occurs before that event occurs, * said state transition will cancel this callout. * * + If the frame transmit was a failure, it immediately schedules * the transition back to scan. */ static void ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status) { struct ieee80211vap *vap = ni->ni_vap; enum ieee80211_state ostate = (enum ieee80211_state) arg; /* * Frame transmit completed; arrange timer callback. If * transmit was successfully we wait for response. Otherwise * we arrange an immediate callback instead of doing the * callback directly since we don't know what state the driver * is in (e.g. what locks it is holding). This work should * not be too time-critical and not happen too often so the * added overhead is acceptable. * * XXX what happens if !acked but response shows up before callback? */ if (vap->iv_state == ostate) { callout_reset(&vap->iv_mgtsend, status == 0 ? IEEE80211_TRANS_WAIT*hz : 0, ieee80211_tx_mgt_timeout, vap); } } static void ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; struct ieee80211com *ic = ni->ni_ic; struct ieee80211_rateset *rs = &ni->ni_rates; uint16_t capinfo; /* * beacon frame format * * TODO: update to 802.11-2012; a lot of stuff has changed; * vendor extensions should be at the end, etc. * * [8] time stamp * [2] beacon interval * [2] cabability information * [tlv] ssid * [tlv] supported rates * [3] parameter set (DS) * [8] CF parameter set (optional) * [tlv] parameter set (IBSS/TIM) * [tlv] country (optional) * [3] power control (optional) * [5] channel switch announcement (CSA) (optional) * XXX TODO: Quiet * XXX TODO: IBSS DFS * XXX TODO: TPC report * [tlv] extended rate phy (ERP) * [tlv] extended supported rates * [tlv] RSN parameters * XXX TODO: BSSLOAD * (XXX EDCA parameter set, QoS capability?) * XXX TODO: AP channel report * * [tlv] HT capabilities * [tlv] HT information * XXX TODO: 20/40 BSS coexistence * Mesh: * XXX TODO: Meshid * XXX TODO: mesh config * XXX TODO: mesh awake window * XXX TODO: beacon timing (mesh, etc) * XXX TODO: MCCAOP Advertisement Overview * XXX TODO: MCCAOP Advertisement * XXX TODO: Mesh channel switch parameters * VHT: * XXX TODO: VHT capabilities * XXX TODO: VHT operation * XXX TODO: VHT transmit power envelope * XXX TODO: channel switch wrapper element * XXX TODO: extended BSS load element * * XXX Vendor-specific OIDs (e.g. Atheros) * [tlv] WPA parameters * [tlv] WME parameters * [tlv] Vendor OUI HT capabilities (optional) * [tlv] Vendor OUI HT information (optional) * [tlv] Atheros capabilities (optional) * [tlv] TDMA parameters (optional) * [tlv] Mesh ID (MBSS) * [tlv] Mesh Conf (MBSS) * [tlv] application data (optional) */ memset(bo, 0, sizeof(*bo)); memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ frm += 8; *(uint16_t *)frm = htole16(ni->ni_intval); frm += 2; capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); bo->bo_caps = (uint16_t *)frm; *(uint16_t *)frm = htole16(capinfo); frm += 2; *frm++ = IEEE80211_ELEMID_SSID; if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) { *frm++ = ni->ni_esslen; memcpy(frm, ni->ni_essid, ni->ni_esslen); frm += ni->ni_esslen; } else *frm++ = 0; frm = ieee80211_add_rates(frm, rs); if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) { *frm++ = IEEE80211_ELEMID_DSPARMS; *frm++ = 1; *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); } if (ic->ic_flags & IEEE80211_F_PCF) { bo->bo_cfp = frm; frm = ieee80211_add_cfparms(frm, ic); } bo->bo_tim = frm; if (vap->iv_opmode == IEEE80211_M_IBSS) { *frm++ = IEEE80211_ELEMID_IBSSPARMS; *frm++ = 2; *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ bo->bo_tim_len = 0; } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || vap->iv_opmode == IEEE80211_M_MBSS) { /* TIM IE is the same for Mesh and Hostap */ struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; tie->tim_ie = IEEE80211_ELEMID_TIM; tie->tim_len = 4; /* length */ tie->tim_count = 0; /* DTIM count */ tie->tim_period = vap->iv_dtim_period; /* DTIM period */ tie->tim_bitctl = 0; /* bitmap control */ tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ frm += sizeof(struct ieee80211_tim_ie); bo->bo_tim_len = 1; } bo->bo_tim_trailer = frm; if ((vap->iv_flags & IEEE80211_F_DOTH) || (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) frm = ieee80211_add_countryie(frm, ic); if (vap->iv_flags & IEEE80211_F_DOTH) { if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) frm = ieee80211_add_powerconstraint(frm, vap); bo->bo_csa = frm; if (ic->ic_flags & IEEE80211_F_CSAPENDING) frm = ieee80211_add_csa(frm, vap); } else bo->bo_csa = frm; bo->bo_quiet = NULL; if (vap->iv_flags & IEEE80211_F_DOTH) { if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && (vap->iv_quiet == 1)) { /* * We only insert the quiet IE offset if * the quiet IE is enabled. Otherwise don't * put it here or we'll just overwrite * some other beacon contents. */ if (vap->iv_quiet) { bo->bo_quiet = frm; frm = ieee80211_add_quiet(frm,vap, 0); } } } if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) { bo->bo_erp = frm; frm = ieee80211_add_erp(frm, ic); } frm = ieee80211_add_xrates(frm, rs); frm = ieee80211_add_rsn(frm, vap); if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { frm = ieee80211_add_htcap(frm, ni); bo->bo_htinfo = frm; frm = ieee80211_add_htinfo(frm, ni); } if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) { frm = ieee80211_add_vhtcap(frm, ni); bo->bo_vhtinfo = frm; frm = ieee80211_add_vhtinfo(frm, ni); /* Transmit power envelope */ /* Channel switch wrapper element */ /* Extended bss load element */ } frm = ieee80211_add_wpa(frm, vap); if (vap->iv_flags & IEEE80211_F_WME) { bo->bo_wme = frm; frm = ieee80211_add_wme_param(frm, &ic->ic_wme); } if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) { frm = ieee80211_add_htcap_vendor(frm, ni); frm = ieee80211_add_htinfo_vendor(frm, ni); } #ifdef IEEE80211_SUPPORT_SUPERG if (vap->iv_flags & IEEE80211_F_ATHEROS) { bo->bo_ath = frm; frm = ieee80211_add_athcaps(frm, ni); } #endif #ifdef IEEE80211_SUPPORT_TDMA if (vap->iv_caps & IEEE80211_C_TDMA) { bo->bo_tdma = frm; frm = ieee80211_add_tdma(frm, vap); } #endif if (vap->iv_appie_beacon != NULL) { bo->bo_appie = frm; bo->bo_appie_len = vap->iv_appie_beacon->ie_len; frm = add_appie(frm, vap->iv_appie_beacon); } /* XXX TODO: move meshid/meshconf up to before vendor extensions? */ #ifdef IEEE80211_SUPPORT_MESH if (vap->iv_opmode == IEEE80211_M_MBSS) { frm = ieee80211_add_meshid(frm, vap); bo->bo_meshconf = frm; frm = ieee80211_add_meshconf(frm, vap); } #endif bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer; bo->bo_csa_trailer_len = frm - bo->bo_csa; m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); } /* * Allocate a beacon frame and fillin the appropriate bits. */ struct mbuf * ieee80211_beacon_alloc(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ifnet *ifp = vap->iv_ifp; struct ieee80211_frame *wh; struct mbuf *m; int pktlen; uint8_t *frm; /* * Update the "We're putting the quiet IE in the beacon" state. */ if (vap->iv_quiet == 1) vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE; else if (vap->iv_quiet == 0) vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE; /* * beacon frame format * * Note: This needs updating for 802.11-2012. * * [8] time stamp * [2] beacon interval * [2] cabability information * [tlv] ssid * [tlv] supported rates * [3] parameter set (DS) * [8] CF parameter set (optional) * [tlv] parameter set (IBSS/TIM) * [tlv] country (optional) * [3] power control (optional) * [5] channel switch announcement (CSA) (optional) * [tlv] extended rate phy (ERP) * [tlv] extended supported rates * [tlv] RSN parameters * [tlv] HT capabilities * [tlv] HT information * [tlv] VHT capabilities * [tlv] VHT operation * [tlv] Vendor OUI HT capabilities (optional) * [tlv] Vendor OUI HT information (optional) * XXX Vendor-specific OIDs (e.g. Atheros) * [tlv] WPA parameters * [tlv] WME parameters * [tlv] TDMA parameters (optional) * [tlv] Mesh ID (MBSS) * [tlv] Mesh Conf (MBSS) * [tlv] application data (optional) * NB: we allocate the max space required for the TIM bitmap. * XXX how big is this? */ pktlen = 8 /* time stamp */ + sizeof(uint16_t) /* beacon interval */ + sizeof(uint16_t) /* capabilities */ + 2 + ni->ni_esslen /* ssid */ + 2 + IEEE80211_RATE_SIZE /* supported rates */ + 2 + 1 /* DS parameters */ + 2 + 6 /* CF parameters */ + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */ + IEEE80211_COUNTRY_MAX_SIZE /* country */ + 2 + 1 /* power control */ + sizeof(struct ieee80211_csa_ie) /* CSA */ + sizeof(struct ieee80211_quiet_ie) /* Quiet */ + 2 + 1 /* ERP */ + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 2*sizeof(struct ieee80211_ie_wpa) : 0) /* XXX conditional? */ + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */ + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */ + sizeof(struct ieee80211_ie_vhtcap)/* VHT caps */ + sizeof(struct ieee80211_ie_vht_operation)/* VHT info */ + (vap->iv_caps & IEEE80211_C_WME ? /* WME */ sizeof(struct ieee80211_wme_param) : 0) #ifdef IEEE80211_SUPPORT_SUPERG + sizeof(struct ieee80211_ath_ie) /* ATH */ #endif #ifdef IEEE80211_SUPPORT_TDMA + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */ sizeof(struct ieee80211_tdma_param) : 0) #endif #ifdef IEEE80211_SUPPORT_MESH + 2 + ni->ni_meshidlen + sizeof(struct ieee80211_meshconf_ie) #endif + IEEE80211_MAX_APPIE ; m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen); if (m == NULL) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, "%s: cannot get buf; size %u\n", __func__, pktlen); vap->iv_stats.is_tx_nobuf++; return NULL; } ieee80211_beacon_construct(m, frm, ni); M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); KASSERT(m != NULL, ("no space for 802.11 header?")); wh = mtod(m, struct ieee80211_frame *); wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_BEACON; wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; *(uint16_t *)wh->i_dur = 0; IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); *(uint16_t *)wh->i_seq = 0; return m; } /* * Update the dynamic parts of a beacon frame based on the current state. */ int ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; struct ieee80211com *ic = ni->ni_ic; int len_changed = 0; uint16_t capinfo; struct ieee80211_frame *wh; ieee80211_seq seqno; IEEE80211_LOCK(ic); /* * Handle 11h channel change when we've reached the count. * We must recalculate the beacon frame contents to account * for the new channel. Note we do this only for the first * vap that reaches this point; subsequent vaps just update * their beacon state to reflect the recalculated channel. */ if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) && vap->iv_csa_count == ic->ic_csa_count) { vap->iv_csa_count = 0; /* * Effect channel change before reconstructing the beacon * frame contents as many places reference ni_chan. */ if (ic->ic_csa_newchan != NULL) ieee80211_csa_completeswitch(ic); /* * NB: ieee80211_beacon_construct clears all pending * updates in bo_flags so we don't need to explicitly * clear IEEE80211_BEACON_CSA. */ ieee80211_beacon_construct(m, mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); /* XXX do WME aggressive mode processing? */ IEEE80211_UNLOCK(ic); return 1; /* just assume length changed */ } /* * Handle the quiet time element being added and removed. * Again, for now we just cheat and reconstruct the whole * beacon - that way the gap is provided as appropriate. * * So, track whether we have already added the IE versus * whether we want to be adding the IE. */ if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) && (vap->iv_quiet == 0)) { /* * Quiet time beacon IE enabled, but it's disabled; * recalc */ vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE; ieee80211_beacon_construct(m, mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); /* XXX do WME aggressive mode processing? */ IEEE80211_UNLOCK(ic); return 1; /* just assume length changed */ } if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) && (vap->iv_quiet == 1)) { /* * Quiet time beacon IE disabled, but it's now enabled; * recalc */ vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE; ieee80211_beacon_construct(m, mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); /* XXX do WME aggressive mode processing? */ IEEE80211_UNLOCK(ic); return 1; /* just assume length changed */ } wh = mtod(m, struct ieee80211_frame *); /* * XXX TODO Strictly speaking this should be incremented with the TX * lock held so as to serialise access to the non-qos TID sequence * number space. * * If the driver identifies it does its own TX seqno management then * we can skip this (and still not do the TX seqno.) */ seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; *(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); M_SEQNO_SET(m, seqno); /* XXX faster to recalculate entirely or just changes? */ capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); *bo->bo_caps = htole16(capinfo); if (vap->iv_flags & IEEE80211_F_WME) { struct ieee80211_wme_state *wme = &ic->ic_wme; /* * Check for aggressive mode change. When there is * significant high priority traffic in the BSS * throttle back BE traffic by using conservative * parameters. Otherwise BE uses aggressive params * to optimize performance of legacy/non-QoS traffic. */ if (wme->wme_flags & WME_F_AGGRMODE) { if (wme->wme_hipri_traffic > wme->wme_hipri_switch_thresh) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, "%s: traffic %u, disable aggressive mode\n", __func__, wme->wme_hipri_traffic); wme->wme_flags &= ~WME_F_AGGRMODE; ieee80211_wme_updateparams_locked(vap); wme->wme_hipri_traffic = wme->wme_hipri_switch_hysteresis; } else wme->wme_hipri_traffic = 0; } else { if (wme->wme_hipri_traffic <= wme->wme_hipri_switch_thresh) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, "%s: traffic %u, enable aggressive mode\n", __func__, wme->wme_hipri_traffic); wme->wme_flags |= WME_F_AGGRMODE; ieee80211_wme_updateparams_locked(vap); wme->wme_hipri_traffic = 0; } else wme->wme_hipri_traffic = wme->wme_hipri_switch_hysteresis; } if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) { (void) ieee80211_add_wme_param(bo->bo_wme, wme); clrbit(bo->bo_flags, IEEE80211_BEACON_WME); } } if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) { ieee80211_ht_update_beacon(vap, bo); clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO); } #ifdef IEEE80211_SUPPORT_TDMA if (vap->iv_caps & IEEE80211_C_TDMA) { /* * NB: the beacon is potentially updated every TBTT. */ ieee80211_tdma_update_beacon(vap, bo); } #endif #ifdef IEEE80211_SUPPORT_MESH if (vap->iv_opmode == IEEE80211_M_MBSS) ieee80211_mesh_update_beacon(vap, bo); #endif if (vap->iv_opmode == IEEE80211_M_HOSTAP || vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/ struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) bo->bo_tim; if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) { u_int timlen, timoff, i; /* * ATIM/DTIM needs updating. If it fits in the * current space allocated then just copy in the * new bits. Otherwise we need to move any trailing * data to make room. Note that we know there is * contiguous space because ieee80211_beacon_allocate * insures there is space in the mbuf to write a * maximal-size virtual bitmap (based on iv_max_aid). */ /* * Calculate the bitmap size and offset, copy any * trailer out of the way, and then copy in the * new bitmap and update the information element. * Note that the tim bitmap must contain at least * one byte and any offset must be even. */ if (vap->iv_ps_pending != 0) { timoff = 128; /* impossibly large */ for (i = 0; i < vap->iv_tim_len; i++) if (vap->iv_tim_bitmap[i]) { timoff = i &~ 1; break; } KASSERT(timoff != 128, ("tim bitmap empty!")); for (i = vap->iv_tim_len-1; i >= timoff; i--) if (vap->iv_tim_bitmap[i]) break; timlen = 1 + (i - timoff); } else { timoff = 0; timlen = 1; } /* * TODO: validate this! */ if (timlen != bo->bo_tim_len) { /* copy up/down trailer */ int adjust = tie->tim_bitmap+timlen - bo->bo_tim_trailer; ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, bo->bo_tim_trailer_len); bo->bo_tim_trailer += adjust; bo->bo_erp += adjust; bo->bo_htinfo += adjust; bo->bo_vhtinfo += adjust; #ifdef IEEE80211_SUPPORT_SUPERG bo->bo_ath += adjust; #endif #ifdef IEEE80211_SUPPORT_TDMA bo->bo_tdma += adjust; #endif #ifdef IEEE80211_SUPPORT_MESH bo->bo_meshconf += adjust; #endif bo->bo_appie += adjust; bo->bo_wme += adjust; bo->bo_csa += adjust; bo->bo_quiet += adjust; bo->bo_tim_len = timlen; /* update information element */ tie->tim_len = 3 + timlen; tie->tim_bitctl = timoff; len_changed = 1; } memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff, bo->bo_tim_len); clrbit(bo->bo_flags, IEEE80211_BEACON_TIM); IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER, "%s: TIM updated, pending %u, off %u, len %u\n", __func__, vap->iv_ps_pending, timoff, timlen); } /* count down DTIM period */ if (tie->tim_count == 0) tie->tim_count = tie->tim_period - 1; else tie->tim_count--; /* update state for buffered multicast frames on DTIM */ if (mcast && tie->tim_count == 0) tie->tim_bitctl |= 1; else tie->tim_bitctl &= ~1; if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) { struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) bo->bo_csa; /* * Insert or update CSA ie. If we're just starting * to count down to the channel switch then we need * to insert the CSA ie. Otherwise we just need to * drop the count. The actual change happens above * when the vap's count reaches the target count. */ if (vap->iv_csa_count == 0) { memmove(&csa[1], csa, bo->bo_csa_trailer_len); bo->bo_erp += sizeof(*csa); bo->bo_htinfo += sizeof(*csa); bo->bo_vhtinfo += sizeof(*csa); bo->bo_wme += sizeof(*csa); #ifdef IEEE80211_SUPPORT_SUPERG bo->bo_ath += sizeof(*csa); #endif #ifdef IEEE80211_SUPPORT_TDMA bo->bo_tdma += sizeof(*csa); #endif #ifdef IEEE80211_SUPPORT_MESH bo->bo_meshconf += sizeof(*csa); #endif bo->bo_appie += sizeof(*csa); bo->bo_csa_trailer_len += sizeof(*csa); bo->bo_quiet += sizeof(*csa); bo->bo_tim_trailer_len += sizeof(*csa); m->m_len += sizeof(*csa); m->m_pkthdr.len += sizeof(*csa); ieee80211_add_csa(bo->bo_csa, vap); } else csa->csa_count--; vap->iv_csa_count++; /* NB: don't clear IEEE80211_BEACON_CSA */ } /* * Only add the quiet time IE if we've enabled it * as appropriate. */ if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { if (vap->iv_quiet && (vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) { ieee80211_add_quiet(bo->bo_quiet, vap, 1); } } if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) { /* * ERP element needs updating. */ (void) ieee80211_add_erp(bo->bo_erp, ic); clrbit(bo->bo_flags, IEEE80211_BEACON_ERP); } #ifdef IEEE80211_SUPPORT_SUPERG if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) { ieee80211_add_athcaps(bo->bo_ath, ni); clrbit(bo->bo_flags, IEEE80211_BEACON_ATH); } #endif } if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) { const struct ieee80211_appie *aie = vap->iv_appie_beacon; int aielen; uint8_t *frm; aielen = 0; if (aie != NULL) aielen += aie->ie_len; if (aielen != bo->bo_appie_len) { /* copy up/down trailer */ int adjust = aielen - bo->bo_appie_len; ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, bo->bo_tim_trailer_len); bo->bo_tim_trailer += adjust; bo->bo_appie += adjust; bo->bo_appie_len = aielen; len_changed = 1; } frm = bo->bo_appie; if (aie != NULL) frm = add_appie(frm, aie); clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE); } IEEE80211_UNLOCK(ic); return len_changed; } /* * Do Ethernet-LLC encapsulation for each payload in a fast frame * tunnel encapsulation. The frame is assumed to have an Ethernet * header at the front that must be stripped before prepending the * LLC followed by the Ethernet header passed in (with an Ethernet * type that specifies the payload size). */ struct mbuf * ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m, const struct ether_header *eh) { struct llc *llc; uint16_t payload; /* XXX optimize by combining m_adj+M_PREPEND */ m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); llc = mtod(m, struct llc *); llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; llc->llc_control = LLC_UI; llc->llc_snap.org_code[0] = 0; llc->llc_snap.org_code[1] = 0; llc->llc_snap.org_code[2] = 0; llc->llc_snap.ether_type = eh->ether_type; payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */ M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT); if (m == NULL) { /* XXX cannot happen */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: no space for ether_header\n", __func__); vap->iv_stats.is_tx_nobuf++; return NULL; } ETHER_HEADER_COPY(mtod(m, void *), eh); mtod(m, struct ether_header *)->ether_type = htons(payload); return m; } /* * Complete an mbuf transmission. * * For now, this simply processes a completed frame after the * driver has completed it's transmission and/or retransmission. * It assumes the frame is an 802.11 encapsulated frame. * * Later on it will grow to become the exit path for a given frame * from the driver and, depending upon how it's been encapsulated * and already transmitted, it may end up doing A-MPDU retransmission, * power save requeuing, etc. * * In order for the above to work, the driver entry point to this * must not hold any driver locks. Thus, the driver needs to delay * any actual mbuf completion until it can release said locks. * * This frees the mbuf and if the mbuf has a node reference, * the node reference will be freed. */ void ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status) { if (ni != NULL) { struct ifnet *ifp = ni->ni_vap->iv_ifp; if (status == 0) { if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len); if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); if (m->m_flags & M_MCAST) if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); } else if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); if (m->m_flags & M_TXCB) ieee80211_process_callback(ni, m, status); ieee80211_free_node(ni); } m_freem(m); }