/* * Copyright (c) 1997, 1998 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $Id: if_tl.c,v 1.25 1999/01/26 15:18:26 wpaul Exp $ */ /* * Texas Instruments ThunderLAN driver for FreeBSD 2.2.6 and 3.x. * Supports many Compaq PCI NICs based on the ThunderLAN ethernet controller, * the National Semiconductor DP83840A physical interface and the * Microchip Technology 24Cxx series serial EEPROM. * * Written using the following four documents: * * Texas Instruments ThunderLAN Programmer's Guide (www.ti.com) * National Semiconductor DP83840A data sheet (www.national.com) * Microchip Technology 24C02C data sheet (www.microchip.com) * Micro Linear ML6692 100BaseTX only PHY data sheet (www.microlinear.com) * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * Some notes about the ThunderLAN: * * The ThunderLAN controller is a single chip containing PCI controller * logic, approximately 3K of on-board SRAM, a LAN controller, and media * independent interface (MII) bus. The MII allows the ThunderLAN chip to * control up to 32 different physical interfaces (PHYs). The ThunderLAN * also has a built-in 10baseT PHY, allowing a single ThunderLAN controller * to act as a complete ethernet interface. * * Other PHYs may be attached to the ThunderLAN; the Compaq 10/100 cards * use a National Semiconductor DP83840A PHY that supports 10 or 100Mb/sec * in full or half duplex. Some of the Compaq Deskpro machines use a * Level 1 LXT970 PHY with the same capabilities. Certain Olicom adapters * use a Micro Linear ML6692 100BaseTX only PHY, which can be used in * concert with the ThunderLAN's internal PHY to provide full 10/100 * support. This is cheaper than using a standalone external PHY for both * 10/100 modes and letting the ThunderLAN's internal PHY go to waste. * A serial EEPROM is also attached to the ThunderLAN chip to provide * power-up default register settings and for storing the adapter's * station address. Although not supported by this driver, the ThunderLAN * chip can also be connected to token ring PHYs. * * The ThunderLAN has a set of registers which can be used to issue * commands, acknowledge interrupts, and to manipulate other internal * registers on its DIO bus. The primary registers can be accessed * using either programmed I/O (inb/outb) or via PCI memory mapping, * depending on how the card is configured during the PCI probing * phase. It is even possible to have both PIO and memory mapped * access turned on at the same time. * * Frame reception and transmission with the ThunderLAN chip is done * using frame 'lists.' A list structure looks more or less like this: * * struct tl_frag { * u_int32_t fragment_address; * u_int32_t fragment_size; * }; * struct tl_list { * u_int32_t forward_pointer; * u_int16_t cstat; * u_int16_t frame_size; * struct tl_frag fragments[10]; * }; * * The forward pointer in the list header can be either a 0 or the address * of another list, which allows several lists to be linked together. Each * list contains up to 10 fragment descriptors. This means the chip allows * ethernet frames to be broken up into up to 10 chunks for transfer to * and from the SRAM. Note that the forward pointer and fragment buffer * addresses are physical memory addresses, not virtual. Note also that * a single ethernet frame can not span lists: if the host wants to * transmit a frame and the frame data is split up over more than 10 * buffers, the frame has to collapsed before it can be transmitted. * * To receive frames, the driver sets up a number of lists and populates * the fragment descriptors, then it sends an RX GO command to the chip. * When a frame is received, the chip will DMA it into the memory regions * specified by the fragment descriptors and then trigger an RX 'end of * frame interrupt' when done. The driver may choose to use only one * fragment per list; this may result is slighltly less efficient use * of memory in exchange for improving performance. * * To transmit frames, the driver again sets up lists and fragment * descriptors, only this time the buffers contain frame data that * is to be DMA'ed into the chip instead of out of it. Once the chip * has transfered the data into its on-board SRAM, it will trigger a * TX 'end of frame' interrupt. It will also generate an 'end of channel' * interrupt when it reaches the end of the list. */ /* * Some notes about this driver: * * The ThunderLAN chip provides a couple of different ways to organize * reception, transmission and interrupt handling. The simplest approach * is to use one list each for transmission and reception. In this mode, * the ThunderLAN will generate two interrupts for every received frame * (one RX EOF and one RX EOC) and two for each transmitted frame (one * TX EOF and one TX EOC). This may make the driver simpler but it hurts * performance to have to handle so many interrupts. * * Initially I wanted to create a circular list of receive buffers so * that the ThunderLAN chip would think there was an infinitely long * receive channel and never deliver an RXEOC interrupt. However this * doesn't work correctly under heavy load: while the manual says the * chip will trigger an RXEOF interrupt each time a frame is copied into * memory, you can't count on the chip waiting around for you to acknowledge * the interrupt before it starts trying to DMA the next frame. The result * is that the chip might traverse the entire circular list and then wrap * around before you have a chance to do anything about it. Consequently, * the receive list is terminated (with a 0 in the forward pointer in the * last element). Each time an RXEOF interrupt arrives, the used list * is shifted to the end of the list. This gives the appearance of an * infinitely large RX chain so long as the driver doesn't fall behind * the chip and allow all of the lists to be filled up. * * If all the lists are filled, the adapter will deliver an RX 'end of * channel' interrupt when it hits the 0 forward pointer at the end of * the chain. The RXEOC handler then cleans out the RX chain and resets * the list head pointer in the ch_parm register and restarts the receiver. * * For frame transmission, it is possible to program the ThunderLAN's * transmit interrupt threshold so that the chip can acknowledge multiple * lists with only a single TX EOF interrupt. This allows the driver to * queue several frames in one shot, and only have to handle a total * two interrupts (one TX EOF and one TX EOC) no matter how many frames * are transmitted. Frame transmission is done directly out of the * mbufs passed to the tl_start() routine via the interface send queue. * The driver simply sets up the fragment descriptors in the transmit * lists to point to the mbuf data regions and sends a TX GO command. * * Note that since the RX and TX lists themselves are always used * only by the driver, the are malloc()ed once at driver initialization * time and never free()ed. * * Also, in order to remain as platform independent as possible, this * driver uses memory mapped register access to manipulate the card * as opposed to programmed I/O. This avoids the use of the inb/outb * (and related) instructions which are specific to the i386 platform. * * Using these techniques, this driver achieves very high performance * by minimizing the amount of interrupts generated during large * transfers and by completely avoiding buffer copies. Frame transfer * to and from the ThunderLAN chip is performed entirely by the chip * itself thereby reducing the load on the host CPU. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include /* for vtophys */ #include /* for vtophys */ #include /* for DELAY */ #include #include /* * Default to using PIO register access mode to pacify certain * laptop docking stations with built-in ThunderLAN chips that * don't seem to handle memory mapped mode properly. */ #define TL_USEIOSPACE /* #define TL_BACKGROUND_AUTONEG */ #include #if !defined(lint) static const char rcsid[] = "$Id: if_tl.c,v 1.25 1999/01/26 15:18:26 wpaul Exp $"; #endif #ifdef TL_DEBUG #define EV_TXEOC 2 #define EV_TXEOF 3 #define EV_RXEOC 4 #define EV_RXEOF 5 #define EV_START_TX 6 #define EV_START_Q 7 #define EV_SETMODE 8 #define EV_AUTONEG_XMIT 9 #define EV_AUTONEG_FIN 10 #define EV_START_TX_REAL 11 #define EV_WATCHDOG 12 #define EV_INIT 13 static void evset(sc, e) struct tl_softc *sc; int e; { int i; for (i = 19; i > 0; i--) sc->tl_event[i] = sc->tl_event[i - 1]; sc->tl_event[0] = e; return; } static void evshow(sc) struct tl_softc *sc; { int i; printf("tl%d: events: ", sc->tl_unit); for (i = 0; i < 20; i++) printf(" %d", sc->tl_event[i]); printf("\n"); return; } #endif /* * Various supported device vendors/types and their names. */ static struct tl_type tl_devs[] = { { TI_VENDORID, TI_DEVICEID_THUNDERLAN, "Texas Instruments ThunderLAN" }, { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10, "Compaq Netelligent 10" }, { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100, "Compaq Netelligent 10/100" }, { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_PROLIANT, "Compaq Netelligent 10/100 Proliant" }, { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_DUAL, "Compaq Netelligent 10/100 Dual Port" }, { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED, "Compaq NetFlex-3/P Integrated" }, { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P, "Compaq NetFlex-3/P" }, { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_BNC, "Compaq NetFlex 3/P w/ BNC" }, { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_EMBEDDED, "Compaq Netelligent 10/100 TX Embedded UTP" }, { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_T2_UTP_COAX, "Compaq Netelligent 10 T/2 PCI UTP/Coax" }, { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_TX_UTP, "Compaq Netelligent 10/100 TX UTP" }, { OLICOM_VENDORID, OLICOM_DEVICEID_OC2183, "Olicom OC-2183/2185" }, { OLICOM_VENDORID, OLICOM_DEVICEID_OC2325, "Olicom OC-2325" }, { OLICOM_VENDORID, OLICOM_DEVICEID_OC2326, "Olicom OC-2326 10/100 TX UTP" }, { 0, 0, NULL } }; /* * Various supported PHY vendors/types and their names. Note that * this driver will work with pretty much any MII-compliant PHY, * so failure to positively identify the chip is not a fatal error. */ static struct tl_type tl_phys[] = { { TI_PHY_VENDORID, TI_PHY_10BT, "" }, { TI_PHY_VENDORID, TI_PHY_100VGPMI, "" }, { NS_PHY_VENDORID, NS_PHY_83840A, ""}, { LEVEL1_PHY_VENDORID, LEVEL1_PHY_LXT970, "" }, { INTEL_PHY_VENDORID, INTEL_PHY_82555, "" }, { SEEQ_PHY_VENDORID, SEEQ_PHY_80220, "" }, { 0, 0, "" } }; static unsigned long tl_count; static const char *tl_probe __P((pcici_t, pcidi_t)); static void tl_attach __P((pcici_t, int)); static int tl_attach_phy __P((struct tl_softc *)); static int tl_intvec_rxeoc __P((void *, u_int32_t)); static int tl_intvec_txeoc __P((void *, u_int32_t)); static int tl_intvec_txeof __P((void *, u_int32_t)); static int tl_intvec_rxeof __P((void *, u_int32_t)); static int tl_intvec_adchk __P((void *, u_int32_t)); static int tl_intvec_netsts __P((void *, u_int32_t)); static int tl_newbuf __P((struct tl_softc *, struct tl_chain_onefrag *)); static void tl_stats_update __P((void *)); static int tl_encap __P((struct tl_softc *, struct tl_chain *, struct mbuf *)); static void tl_intr __P((void *)); static void tl_start __P((struct ifnet *)); static int tl_ioctl __P((struct ifnet *, u_long, caddr_t)); static void tl_init __P((void *)); static void tl_stop __P((struct tl_softc *)); static void tl_watchdog __P((struct ifnet *)); static void tl_shutdown __P((int, void *)); static int tl_ifmedia_upd __P((struct ifnet *)); static void tl_ifmedia_sts __P((struct ifnet *, struct ifmediareq *)); static u_int8_t tl_eeprom_putbyte __P((struct tl_softc *, int)); static u_int8_t tl_eeprom_getbyte __P((struct tl_softc *, int, u_int8_t *)); static int tl_read_eeprom __P((struct tl_softc *, caddr_t, int, int)); static void tl_mii_sync __P((struct tl_softc *)); static void tl_mii_send __P((struct tl_softc *, u_int32_t, int)); static int tl_mii_readreg __P((struct tl_softc *, struct tl_mii_frame *)); static int tl_mii_writereg __P((struct tl_softc *, struct tl_mii_frame *)); static u_int16_t tl_phy_readreg __P((struct tl_softc *, int)); static void tl_phy_writereg __P((struct tl_softc *, int, int)); static void tl_autoneg __P((struct tl_softc *, int, int)); static void tl_setmode __P((struct tl_softc *, int)); static int tl_calchash __P((caddr_t)); static void tl_setmulti __P((struct tl_softc *)); static void tl_setfilt __P((struct tl_softc *, caddr_t, int)); static void tl_softreset __P((struct tl_softc *, int)); static void tl_hardreset __P((struct tl_softc *)); static int tl_list_rx_init __P((struct tl_softc *)); static int tl_list_tx_init __P((struct tl_softc *)); static u_int8_t tl_dio_read8 __P((struct tl_softc *, int)); static u_int16_t tl_dio_read16 __P((struct tl_softc *, int)); static u_int32_t tl_dio_read32 __P((struct tl_softc *, int)); static void tl_dio_write8 __P((struct tl_softc *, int, int)); static void tl_dio_write16 __P((struct tl_softc *, int, int)); static void tl_dio_write32 __P((struct tl_softc *, int, int)); static void tl_dio_setbit __P((struct tl_softc *, int, int)); static void tl_dio_clrbit __P((struct tl_softc *, int, int)); static void tl_dio_setbit16 __P((struct tl_softc *, int, int)); static void tl_dio_clrbit16 __P((struct tl_softc *, int, int)); static u_int8_t tl_dio_read8(sc, reg) struct tl_softc *sc; int reg; { CSR_WRITE_2(sc, TL_DIO_ADDR, reg); return(CSR_READ_1(sc, TL_DIO_DATA + (reg & 3))); } static u_int16_t tl_dio_read16(sc, reg) struct tl_softc *sc; int reg; { CSR_WRITE_2(sc, TL_DIO_ADDR, reg); return(CSR_READ_2(sc, TL_DIO_DATA + (reg & 3))); } static u_int32_t tl_dio_read32(sc, reg) struct tl_softc *sc; int reg; { CSR_WRITE_2(sc, TL_DIO_ADDR, reg); return(CSR_READ_4(sc, TL_DIO_DATA + (reg & 3))); } static void tl_dio_write8(sc, reg, val) struct tl_softc *sc; int reg; int val; { CSR_WRITE_2(sc, TL_DIO_ADDR, reg); CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), val); return; } static void tl_dio_write16(sc, reg, val) struct tl_softc *sc; int reg; int val; { CSR_WRITE_2(sc, TL_DIO_ADDR, reg); CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), val); return; } static void tl_dio_write32(sc, reg, val) struct tl_softc *sc; int reg; int val; { CSR_WRITE_2(sc, TL_DIO_ADDR, reg); CSR_WRITE_4(sc, TL_DIO_DATA + (reg & 3), val); return; } static void tl_dio_setbit(sc, reg, bit) struct tl_softc *sc; int reg; int bit; { u_int8_t f; CSR_WRITE_2(sc, TL_DIO_ADDR, reg); f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3)); f |= bit; CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f); return; } static void tl_dio_clrbit(sc, reg, bit) struct tl_softc *sc; int reg; int bit; { u_int8_t f; CSR_WRITE_2(sc, TL_DIO_ADDR, reg); f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3)); f &= ~bit; CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f); return; } static void tl_dio_setbit16(sc, reg, bit) struct tl_softc *sc; int reg; int bit; { u_int16_t f; CSR_WRITE_2(sc, TL_DIO_ADDR, reg); f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3)); f |= bit; CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f); return; } static void tl_dio_clrbit16(sc, reg, bit) struct tl_softc *sc; int reg; int bit; { u_int16_t f; CSR_WRITE_2(sc, TL_DIO_ADDR, reg); f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3)); f &= ~bit; CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f); return; } /* * Send an instruction or address to the EEPROM, check for ACK. */ static u_int8_t tl_eeprom_putbyte(sc, byte) struct tl_softc *sc; int byte; { register int i, ack = 0; /* * Make sure we're in TX mode. */ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN); /* * Feed in each bit and stobe the clock. */ for (i = 0x80; i; i >>= 1) { if (byte & i) { tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA); } else { tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA); } DELAY(1); tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK); DELAY(1); tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK); } /* * Turn off TX mode. */ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN); /* * Check for ack. */ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK); ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA; tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK); return(ack); } /* * Read a byte of data stored in the EEPROM at address 'addr.' */ static u_int8_t tl_eeprom_getbyte(sc, addr, dest) struct tl_softc *sc; int addr; u_int8_t *dest; { register int i; u_int8_t byte = 0; tl_dio_write8(sc, TL_NETSIO, 0); EEPROM_START; /* * Send write control code to EEPROM. */ if (tl_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) { printf("tl%d: failed to send write command, status: %x\n", sc->tl_unit, tl_dio_read8(sc, TL_NETSIO)); return(1); } /* * Send address of byte we want to read. */ if (tl_eeprom_putbyte(sc, addr)) { printf("tl%d: failed to send address, status: %x\n", sc->tl_unit, tl_dio_read8(sc, TL_NETSIO)); return(1); } EEPROM_STOP; EEPROM_START; /* * Send read control code to EEPROM. */ if (tl_eeprom_putbyte(sc, EEPROM_CTL_READ)) { printf("tl%d: failed to send write command, status: %x\n", sc->tl_unit, tl_dio_read8(sc, TL_NETSIO)); return(1); } /* * Start reading bits from EEPROM. */ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN); for (i = 0x80; i; i >>= 1) { tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK); DELAY(1); if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA) byte |= i; tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK); DELAY(1); } EEPROM_STOP; /* * No ACK generated for read, so just return byte. */ *dest = byte; return(0); } /* * Read a sequence of bytes from the EEPROM. */ static int tl_read_eeprom(sc, dest, off, cnt) struct tl_softc *sc; caddr_t dest; int off; int cnt; { int err = 0, i; u_int8_t byte = 0; for (i = 0; i < cnt; i++) { err = tl_eeprom_getbyte(sc, off + i, &byte); if (err) break; *(dest + i) = byte; } return(err ? 1 : 0); } static void tl_mii_sync(sc) struct tl_softc *sc; { register int i; tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN); for (i = 0; i < 32; i++) { tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK); tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK); } return; } static void tl_mii_send(sc, bits, cnt) struct tl_softc *sc; u_int32_t bits; int cnt; { int i; for (i = (0x1 << (cnt - 1)); i; i >>= 1) { tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK); if (bits & i) { tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MDATA); } else { tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MDATA); } tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK); } } static int tl_mii_readreg(sc, frame) struct tl_softc *sc; struct tl_mii_frame *frame; { int i, ack, s; int minten = 0; s = splimp(); tl_mii_sync(sc); /* * Set up frame for RX. */ frame->mii_stdelim = TL_MII_STARTDELIM; frame->mii_opcode = TL_MII_READOP; frame->mii_turnaround = 0; frame->mii_data = 0; /* * Turn off MII interrupt by forcing MINTEN low. */ minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN; if (minten) { tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN); } /* * Turn on data xmit. */ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN); /* * Send command/address info. */ tl_mii_send(sc, frame->mii_stdelim, 2); tl_mii_send(sc, frame->mii_opcode, 2); tl_mii_send(sc, frame->mii_phyaddr, 5); tl_mii_send(sc, frame->mii_regaddr, 5); /* * Turn off xmit. */ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN); /* Idle bit */ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK); tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK); /* Check for ack */ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK); ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA; /* Complete the cycle */ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK); /* * Now try reading data bits. If the ack failed, we still * need to clock through 16 cycles to keep the PHYs in sync. */ if (ack) { for(i = 0; i < 16; i++) { tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK); tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK); } goto fail; } for (i = 0x8000; i; i >>= 1) { tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK); if (!ack) { if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA) frame->mii_data |= i; } tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK); } fail: tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK); tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK); /* Reenable interrupts */ if (minten) { tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN); } splx(s); if (ack) return(1); return(0); } static int tl_mii_writereg(sc, frame) struct tl_softc *sc; struct tl_mii_frame *frame; { int s; int minten; tl_mii_sync(sc); s = splimp(); /* * Set up frame for TX. */ frame->mii_stdelim = TL_MII_STARTDELIM; frame->mii_opcode = TL_MII_WRITEOP; frame->mii_turnaround = TL_MII_TURNAROUND; /* * Turn off MII interrupt by forcing MINTEN low. */ minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN; if (minten) { tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN); } /* * Turn on data output. */ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN); tl_mii_send(sc, frame->mii_stdelim, 2); tl_mii_send(sc, frame->mii_opcode, 2); tl_mii_send(sc, frame->mii_phyaddr, 5); tl_mii_send(sc, frame->mii_regaddr, 5); tl_mii_send(sc, frame->mii_turnaround, 2); tl_mii_send(sc, frame->mii_data, 16); tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK); tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK); /* * Turn off xmit. */ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN); /* Reenable interrupts */ if (minten) tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN); splx(s); return(0); } static u_int16_t tl_phy_readreg(sc, reg) struct tl_softc *sc; int reg; { struct tl_mii_frame frame; bzero((char *)&frame, sizeof(frame)); frame.mii_phyaddr = sc->tl_phy_addr; frame.mii_regaddr = reg; tl_mii_readreg(sc, &frame); /* Reenable MII interrupts, just in case. */ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN); return(frame.mii_data); } static void tl_phy_writereg(sc, reg, data) struct tl_softc *sc; int reg; int data; { struct tl_mii_frame frame; bzero((char *)&frame, sizeof(frame)); frame.mii_phyaddr = sc->tl_phy_addr; frame.mii_regaddr = reg; frame.mii_data = data; tl_mii_writereg(sc, &frame); /* Reenable MII interrupts, just in case. */ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN); return; } /* * Initiate autonegotiation with a link partner. * * Note that the Texas Instruments ThunderLAN programmer's guide * fails to mention one very important point about autonegotiation. * Autonegotiation is done largely by the PHY, independent of the * ThunderLAN chip itself: the PHY sets the flags in the BMCR * register to indicate what modes were selected and if link status * is good. In fact, the PHY does pretty much all of the work itself, * except for one small detail. * * The PHY may negotiate a full-duplex of half-duplex link, and set * the PHY_BMCR_DUPLEX bit accordingly, but the ThunderLAN's 'NetCommand' * register _also_ has a half-duplex/full-duplex bit, and you MUST ALSO * SET THIS BIT MANUALLY TO CORRESPOND TO THE MODE SELECTED FOR THE PHY! * In other words, both the ThunderLAN chip and the PHY have to be * programmed for full-duplex mode in order for full-duplex to actually * work. So in order for autonegotiation to really work right, we have * to wait for the link to come up, check the BMCR register, then set * the ThunderLAN for full or half-duplex as needed. * * I struggled for two days to figure this out, so I'm making a point * of drawing attention to this fact. I think it's very strange that * the ThunderLAN doesn't automagically track the duplex state of the * PHY, but there you have it. * * Also when, using a National Semiconductor DP83840A PHY, we have to * allow a full three seconds for autonegotiation to complete. So what * we do is flip the autonegotiation restart bit, then set a timeout * to wake us up in three seconds to check the link state. * * Note that there are some versions of the Olicom 2326 that use a * Micro Linear ML6692 100BaseTX PHY. This particular PHY is designed * to provide 100BaseTX support only, but can be used with a controller * that supports an internal 10Mbps PHY to provide a complete * 10/100Mbps solution. However, the ML6692 does not have vendor and * device ID registers, and hence always shows up with a vendor/device * ID of 0. * * We detect this configuration by checking the phy vendor ID in the * softc structure. If it's a zero, and we're negotiating a high-speed * mode, then we turn off the internal PHY. If it's a zero and we've * negotiated a high-speed mode, we turn on the internal PHY. Note * that to make things even more fun, we have to make extra sure that * the loopback bit in the internal PHY's control register is turned * off. */ static void tl_autoneg(sc, flag, verbose) struct tl_softc *sc; int flag; int verbose; { u_int16_t phy_sts = 0, media = 0, advert, ability; struct ifnet *ifp; struct ifmedia *ifm; ifm = &sc->ifmedia; ifp = &sc->arpcom.ac_if; /* * First, see if autoneg is supported. If not, there's * no point in continuing. */ phy_sts = tl_phy_readreg(sc, PHY_BMSR); if (!(phy_sts & PHY_BMSR_CANAUTONEG)) { if (verbose) printf("tl%d: autonegotiation not supported\n", sc->tl_unit); return; } switch (flag) { case TL_FLAG_FORCEDELAY: /* * XXX Never use this option anywhere but in the probe * routine: making the kernel stop dead in its tracks * for three whole seconds after we've gone multi-user * is really bad manners. */ tl_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET); DELAY(500); phy_sts = tl_phy_readreg(sc, PHY_BMCR); phy_sts |= PHY_BMCR_AUTONEGENBL|PHY_BMCR_AUTONEGRSTR; tl_phy_writereg(sc, PHY_BMCR, phy_sts); DELAY(5000000); break; case TL_FLAG_SCHEDDELAY: #ifdef TL_DEBUG evset(sc, EV_AUTONEG_XMIT); #endif /* * Wait for the transmitter to go idle before starting * an autoneg session, otherwise tl_start() may clobber * our timeout, and we don't want to allow transmission * during an autoneg session since that can screw it up. */ if (!sc->tl_txeoc) { sc->tl_want_auto = 1; return; } tl_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET); DELAY(500); phy_sts = tl_phy_readreg(sc, PHY_BMCR); phy_sts |= PHY_BMCR_AUTONEGENBL|PHY_BMCR_AUTONEGRSTR; tl_phy_writereg(sc, PHY_BMCR, phy_sts); ifp->if_timer = 5; sc->tl_autoneg = 1; sc->tl_want_auto = 0; return; case TL_FLAG_DELAYTIMEO: #ifdef TL_DEBUG evset(sc, EV_AUTONEG_FIN); #endif ifp->if_timer = 0; sc->tl_autoneg = 0; break; default: printf("tl%d: invalid autoneg flag: %d\n", sc->tl_unit, flag); return; } /* * Read the BMSR register twice: the LINKSTAT bit is a * latching bit. */ tl_phy_readreg(sc, PHY_BMSR); phy_sts = tl_phy_readreg(sc, PHY_BMSR); if (phy_sts & PHY_BMSR_AUTONEGCOMP) { if (verbose) printf("tl%d: autoneg complete, ", sc->tl_unit); phy_sts = tl_phy_readreg(sc, PHY_BMSR); } else { if (verbose) printf("tl%d: autoneg not complete, ", sc->tl_unit); } /* Link is good. Report modes and set duplex mode. */ if (phy_sts & PHY_BMSR_LINKSTAT) { if (verbose) printf("link status good "); advert = tl_phy_readreg(sc, TL_PHY_ANAR); ability = tl_phy_readreg(sc, TL_PHY_LPAR); media = tl_phy_readreg(sc, PHY_BMCR); /* * Be sure to turn off the ISOLATE and * LOOPBACK bits in the control register, * otherwise we may not be able to communicate. */ media &= ~(PHY_BMCR_LOOPBK|PHY_BMCR_ISOLATE); /* Set the DUPLEX bit in the NetCmd register accordingly. */ if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) { ifm->ifm_media = IFM_ETHER|IFM_100_T4; media |= PHY_BMCR_SPEEDSEL; media &= ~PHY_BMCR_DUPLEX; if (verbose) printf("(100baseT4)\n"); } else if (advert & PHY_ANAR_100BTXFULL && ability & PHY_ANAR_100BTXFULL) { ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX; media |= PHY_BMCR_SPEEDSEL; media |= PHY_BMCR_DUPLEX; if (verbose) printf("(full-duplex, 100Mbps)\n"); } else if (advert & PHY_ANAR_100BTXHALF && ability & PHY_ANAR_100BTXHALF) { ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX; media |= PHY_BMCR_SPEEDSEL; media &= ~PHY_BMCR_DUPLEX; if (verbose) printf("(half-duplex, 100Mbps)\n"); } else if (advert & PHY_ANAR_10BTFULL && ability & PHY_ANAR_10BTFULL) { ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX; media &= ~PHY_BMCR_SPEEDSEL; media |= PHY_BMCR_DUPLEX; if (verbose) printf("(full-duplex, 10Mbps)\n"); } else { ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX; media &= ~PHY_BMCR_SPEEDSEL; media &= ~PHY_BMCR_DUPLEX; if (verbose) printf("(half-duplex, 10Mbps)\n"); } if (media & PHY_BMCR_DUPLEX) tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX); else tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX); media &= ~PHY_BMCR_AUTONEGENBL; tl_phy_writereg(sc, PHY_BMCR, media); } else { if (verbose) printf("no carrier\n"); } tl_init(sc); if (sc->tl_tx_pend) { sc->tl_autoneg = 0; sc->tl_tx_pend = 0; tl_start(ifp); } return; } /* * Set speed and duplex mode. Also program autoneg advertisements * accordingly. */ static void tl_setmode(sc, media) struct tl_softc *sc; int media; { u_int16_t bmcr; bmcr = tl_phy_readreg(sc, PHY_BMCR); bmcr &= ~(PHY_BMCR_SPEEDSEL|PHY_BMCR_DUPLEX|PHY_BMCR_AUTONEGENBL| PHY_BMCR_LOOPBK|PHY_BMCR_ISOLATE); if (IFM_SUBTYPE(media) == IFM_LOOP) bmcr |= PHY_BMCR_LOOPBK; if (IFM_SUBTYPE(media) == IFM_AUTO) bmcr |= PHY_BMCR_AUTONEGENBL; /* * The ThunderLAN's internal PHY has an AUI transceiver * that can be selected. This is usually attached to a * 10base2/BNC port. In order to activate this port, we * have to set the AUISEL bit in the internal PHY's * special control register. */ if (IFM_SUBTYPE(media) == IFM_10_5) { u_int16_t addr, ctl; addr = sc->tl_phy_addr; sc->tl_phy_addr = TL_PHYADDR_MAX; ctl = tl_phy_readreg(sc, TL_PHY_CTL); ctl |= PHY_CTL_AUISEL; tl_phy_writereg(sc, TL_PHY_CTL, ctl); tl_phy_writereg(sc, PHY_BMCR, bmcr); sc->tl_phy_addr = addr; bmcr |= PHY_BMCR_ISOLATE; } else { u_int16_t addr, ctl; addr = sc->tl_phy_addr; sc->tl_phy_addr = TL_PHYADDR_MAX; ctl = tl_phy_readreg(sc, TL_PHY_CTL); ctl &= ~PHY_CTL_AUISEL; tl_phy_writereg(sc, TL_PHY_CTL, ctl); tl_phy_writereg(sc, PHY_BMCR, PHY_BMCR_ISOLATE); sc->tl_phy_addr = addr; bmcr &= ~PHY_BMCR_ISOLATE; } if (IFM_SUBTYPE(media) == IFM_100_TX) { bmcr |= PHY_BMCR_SPEEDSEL; if ((media & IFM_GMASK) == IFM_FDX) { bmcr |= PHY_BMCR_DUPLEX; tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX); } else { bmcr &= ~PHY_BMCR_DUPLEX; tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX); } } if (IFM_SUBTYPE(media) == IFM_10_T) { bmcr &= ~PHY_BMCR_SPEEDSEL; if ((media & IFM_GMASK) == IFM_FDX) { bmcr |= PHY_BMCR_DUPLEX; tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX); } else { bmcr &= ~PHY_BMCR_DUPLEX; tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX); } } tl_phy_writereg(sc, PHY_BMCR, bmcr); tl_init(sc); return; } /* * Calculate the hash of a MAC address for programming the multicast hash * table. This hash is simply the address split into 6-bit chunks * XOR'd, e.g. * byte: 000000|00 1111|1111 22|222222|333333|33 4444|4444 55|555555 * bit: 765432|10 7654|3210 76|543210|765432|10 7654|3210 76|543210 * Bytes 0-2 and 3-5 are symmetrical, so are folded together. Then * the folded 24-bit value is split into 6-bit portions and XOR'd. */ static int tl_calchash(addr) caddr_t addr; { int t; t = (addr[0] ^ addr[3]) << 16 | (addr[1] ^ addr[4]) << 8 | (addr[2] ^ addr[5]); return ((t >> 18) ^ (t >> 12) ^ (t >> 6) ^ t) & 0x3f; } /* * The ThunderLAN has a perfect MAC address filter in addition to * the multicast hash filter. The perfect filter can be programmed * with up to four MAC addresses. The first one is always used to * hold the station address, which leaves us free to use the other * three for multicast addresses. */ static void tl_setfilt(sc, addr, slot) struct tl_softc *sc; caddr_t addr; int slot; { int i; u_int16_t regaddr; regaddr = TL_AREG0_B5 + (slot * ETHER_ADDR_LEN); for (i = 0; i < ETHER_ADDR_LEN; i++) tl_dio_write8(sc, regaddr + i, *(addr + i)); return; } /* * XXX In FreeBSD 3.0, multicast addresses are managed using a doubly * linked list. This is fine, except addresses are added from the head * end of the list. We want to arrange for 224.0.0.1 (the "all hosts") * group to always be in the perfect filter, but as more groups are added, * the 224.0.0.1 entry (which is always added first) gets pushed down * the list and ends up at the tail. So after 3 or 4 multicast groups * are added, the all-hosts entry gets pushed out of the perfect filter * and into the hash table. * * Because the multicast list is a doubly-linked list as opposed to a * circular queue, we don't have the ability to just grab the tail of * the list and traverse it backwards. Instead, we have to traverse * the list once to find the tail, then traverse it again backwards to * update the multicast filter. */ static void tl_setmulti(sc) struct tl_softc *sc; { struct ifnet *ifp; u_int32_t hashes[2] = { 0, 0 }; int h, i; struct ifmultiaddr *ifma; u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 }; ifp = &sc->arpcom.ac_if; /* First, zot all the existing filters. */ for (i = 1; i < 4; i++) tl_setfilt(sc, (caddr_t)&dummy, i); tl_dio_write32(sc, TL_HASH1, 0); tl_dio_write32(sc, TL_HASH2, 0); /* Now program new ones. */ if (ifp->if_flags & IFF_ALLMULTI) { hashes[0] = 0xFFFFFFFF; hashes[1] = 0xFFFFFFFF; } else { i = 1; /* First find the tail of the list. */ for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL; ifma = ifma->ifma_link.le_next) { if (ifma->ifma_link.le_next == NULL) break; } /* Now traverse the list backwards. */ for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs; ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; /* * Program the first three multicast groups * into the perfect filter. For all others, * use the hash table. */ if (i < 4) { tl_setfilt(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i); i++; continue; } h = tl_calchash( LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); if (h < 32) hashes[0] |= (1 << h); else hashes[1] |= (1 << (h - 32)); } } tl_dio_write32(sc, TL_HASH1, hashes[0]); tl_dio_write32(sc, TL_HASH2, hashes[1]); return; } /* * This routine is recommended by the ThunderLAN manual to insure that * the internal PHY is powered up correctly. It also recommends a one * second pause at the end to 'wait for the clocks to start' but in my * experience this isn't necessary. */ static void tl_hardreset(sc) struct tl_softc *sc; { int i; u_int16_t old_addr, flags; old_addr = sc->tl_phy_addr; for (i = 0; i < TL_PHYADDR_MAX + 1; i++) { sc->tl_phy_addr = i; tl_mii_sync(sc); } flags = PHY_BMCR_LOOPBK|PHY_BMCR_ISOLATE|PHY_BMCR_PWRDOWN; for (i = 0; i < TL_PHYADDR_MAX + 1; i++) { sc->tl_phy_addr = i; tl_phy_writereg(sc, PHY_BMCR, flags); } sc->tl_phy_addr = TL_PHYADDR_MAX; tl_phy_writereg(sc, PHY_BMCR, PHY_BMCR_ISOLATE); DELAY(50000); tl_phy_writereg(sc, PHY_BMCR, PHY_BMCR_LOOPBK|PHY_BMCR_ISOLATE); tl_mii_sync(sc); while(tl_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_RESET); sc->tl_phy_addr = old_addr; return; } static void tl_softreset(sc, internal) struct tl_softc *sc; int internal; { u_int32_t cmd, dummy, i; /* Assert the adapter reset bit. */ CMD_SET(sc, TL_CMD_ADRST); /* Turn off interrupts */ CMD_SET(sc, TL_CMD_INTSOFF); /* First, clear the stats registers. */ for (i = 0; i < 5; i++) dummy = tl_dio_read32(sc, TL_TXGOODFRAMES); /* Clear Areg and Hash registers */ for (i = 0; i < 8; i++) tl_dio_write32(sc, TL_AREG0_B5, 0x00000000); /* * Set up Netconfig register. Enable one channel and * one fragment mode. */ tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_ONECHAN|TL_CFG_ONEFRAG); if (internal) { tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN); } else { tl_dio_clrbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN); } /* Set PCI burst size */ tl_dio_write8(sc, TL_BSIZEREG, 0x33); /* * Load adapter irq pacing timer and tx threshold. * We make the transmit threshold 1 initially but we may * change that later. */ cmd = CSR_READ_4(sc, TL_HOSTCMD); cmd |= TL_CMD_NES; cmd &= ~(TL_CMD_RT|TL_CMD_EOC|TL_CMD_ACK_MASK|TL_CMD_CHSEL_MASK); CMD_PUT(sc, cmd | (TL_CMD_LDTHR | TX_THR)); CMD_PUT(sc, cmd | (TL_CMD_LDTMR | 0x00000003)); /* Unreset the MII */ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_NMRST); /* Clear status register */ tl_dio_setbit16(sc, TL_NETSTS, TL_STS_MIRQ); tl_dio_setbit16(sc, TL_NETSTS, TL_STS_HBEAT); tl_dio_setbit16(sc, TL_NETSTS, TL_STS_TXSTOP); tl_dio_setbit16(sc, TL_NETSTS, TL_STS_RXSTOP); /* Enable network status interrupts for everything. */ tl_dio_setbit(sc, TL_NETMASK, TL_MASK_MASK7|TL_MASK_MASK6| TL_MASK_MASK5|TL_MASK_MASK4); /* Take the adapter out of reset */ tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NRESET|TL_CMD_NWRAP); /* Wait for things to settle down a little. */ DELAY(500); return; } /* * Probe for a ThunderLAN chip. Check the PCI vendor and device IDs * against our list and return its name if we find a match. */ static const char * tl_probe(config_id, device_id) pcici_t config_id; pcidi_t device_id; { struct tl_type *t; t = tl_devs; while(t->tl_name != NULL) { if ((device_id & 0xFFFF) == t->tl_vid && ((device_id >> 16) & 0xFFFF) == t->tl_did) return(t->tl_name); t++; } return(NULL); } /* * Do the interface setup and attach for a PHY on a particular * ThunderLAN chip. Also also set up interrupt vectors. */ static int tl_attach_phy(sc) struct tl_softc *sc; { int phy_ctl; struct tl_type *p = tl_phys; int media = IFM_ETHER|IFM_100_TX|IFM_FDX; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; sc->tl_phy_did = tl_phy_readreg(sc, TL_PHY_DEVID); sc->tl_phy_vid = tl_phy_readreg(sc, TL_PHY_VENID); sc->tl_phy_sts = tl_phy_readreg(sc, TL_PHY_GENSTS); phy_ctl = tl_phy_readreg(sc, TL_PHY_GENCTL); /* * PHY revision numbers tend to vary a bit. Our algorithm here * is to check everything but the 8 least significant bits. */ while(p->tl_vid) { if (sc->tl_phy_vid == p->tl_vid && (sc->tl_phy_did | 0x000F) == p->tl_did) { sc->tl_pinfo = p; break; } p++; } if (sc->tl_pinfo == NULL) { sc->tl_pinfo = &tl_phys[PHY_UNKNOWN]; } if (sc->tl_phy_sts & PHY_BMSR_100BT4 || sc->tl_phy_sts & PHY_BMSR_100BTXFULL || sc->tl_phy_sts & PHY_BMSR_100BTXHALF) ifp->if_baudrate = 100000000; else ifp->if_baudrate = 10000000; if (bootverbose) { printf("tl%d: phy at mii address %d\n", sc->tl_unit, sc->tl_phy_addr); printf("tl%d: %s ", sc->tl_unit, sc->tl_pinfo->tl_name); } if (sc->tl_phy_sts & PHY_BMSR_100BT4 || sc->tl_phy_sts & PHY_BMSR_100BTXHALF || sc->tl_phy_sts & PHY_BMSR_100BTXHALF) if (bootverbose) printf("10/100Mbps "); else { media &= ~IFM_100_TX; media |= IFM_10_T; if (bootverbose) printf("10Mbps "); } if (sc->tl_phy_sts & PHY_BMSR_100BTXFULL || sc->tl_phy_sts & PHY_BMSR_10BTFULL) if (bootverbose) printf("full duplex "); else { if (bootverbose) printf("half duplex "); media &= ~IFM_FDX; } if (sc->tl_phy_sts & PHY_BMSR_CANAUTONEG) { media = IFM_ETHER|IFM_AUTO; if (bootverbose) printf("autonegotiating\n"); } else if (bootverbose) printf("\n"); /* If this isn't a known PHY, print the PHY indentifier info. */ if (sc->tl_pinfo->tl_vid == 0 && bootverbose) printf("tl%d: vendor id: %04x product id: %04x\n", sc->tl_unit, sc->tl_phy_vid, sc->tl_phy_did); /* Set up ifmedia data and callbacks. */ ifmedia_init(&sc->ifmedia, 0, tl_ifmedia_upd, tl_ifmedia_sts); /* * All ThunderLANs support at least 10baseT half duplex. * They also support AUI selection if used in 10Mb/s modes. */ ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL); /* Some ThunderLAN PHYs support autonegotiation. */ if (sc->tl_phy_sts & PHY_BMSR_CANAUTONEG) ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL); /* Some support 10baseT full duplex. */ if (sc->tl_phy_sts & PHY_BMSR_10BTFULL) ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL); /* Some support 100BaseTX half duplex. */ if (sc->tl_phy_sts & PHY_BMSR_100BTXHALF) ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL); if (sc->tl_phy_sts & PHY_BMSR_100BTXHALF) ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX|IFM_HDX, 0, NULL); /* Some support 100BaseTX full duplex. */ if (sc->tl_phy_sts & PHY_BMSR_100BTXFULL) ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL); /* Some also support 100BaseT4. */ if (sc->tl_phy_sts & PHY_BMSR_100BT4) ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_T4, 0, NULL); /* Set default media. */ ifmedia_set(&sc->ifmedia, media); /* * Kick off an autonegotiation session if this PHY supports it. * This is necessary to make sure the chip's duplex mode matches * the PHY's duplex mode. It may not: once enabled, the PHY may * autonegotiate full-duplex mode with its link partner, but the * ThunderLAN chip defaults to half-duplex and stays there unless * told otherwise. */ if (sc->tl_phy_sts & PHY_BMSR_CANAUTONEG) { tl_init(sc); #ifdef TL_BACKGROUND_AUTONEG tl_autoneg(sc, TL_FLAG_SCHEDDELAY, 1); #else tl_autoneg(sc, TL_FLAG_FORCEDELAY, 1); #endif } return(0); } static void tl_attach(config_id, unit) pcici_t config_id; int unit; { int s, i, phys = 0; #ifndef TL_USEIOSPACE vm_offset_t pbase, vbase; #endif u_int32_t command; u_int16_t did, vid; struct tl_type *t; struct ifnet *ifp; struct tl_softc *sc; unsigned int round; caddr_t roundptr; s = splimp(); vid = pci_cfgread(config_id, PCIR_VENDOR, 2); did = pci_cfgread(config_id, PCIR_DEVICE, 2); t = tl_devs; while(t->tl_name != NULL) { if (vid == t->tl_vid && did == t->tl_did) break; t++; } if (t->tl_name == NULL) { printf("tl%d: unknown device!?\n", unit); goto fail; } /* First, allocate memory for the softc struct. */ sc = malloc(sizeof(struct tl_softc), M_DEVBUF, M_NOWAIT); if (sc == NULL) { printf("tl%d: no memory for softc struct!\n", unit); goto fail; } bzero(sc, sizeof(struct tl_softc)); /* * Map control/status registers. */ command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG); command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN); pci_conf_write(config_id, PCI_COMMAND_STATUS_REG, command); command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG); #ifdef TL_USEIOSPACE if (!(command & PCIM_CMD_PORTEN)) { printf("tl%d: failed to enable I/O ports!\n", unit); free(sc, M_DEVBUF); goto fail; } sc->iobase = pci_conf_read(config_id, TL_PCI_LOIO) & 0xFFFFFFFC; #else if (!(command & PCIM_CMD_MEMEN)) { printf("tl%d: failed to enable memory mapping!\n", unit); goto fail; } if (!pci_map_mem(config_id, TL_PCI_LOMEM, &vbase, &pbase)) { printf ("tl%d: couldn't map memory\n", unit); goto fail; } sc->csr = (volatile caddr_t)vbase; #endif #ifdef notdef /* * The ThunderLAN manual suggests jacking the PCI latency * timer all the way up to its maximum value. I'm not sure * if this is really necessary, but what the manual wants, * the manual gets. */ command = pci_conf_read(config_id, TL_PCI_LATENCY_TIMER); command |= 0x0000FF00; pci_conf_write(config_id, TL_PCI_LATENCY_TIMER, command); #endif /* Allocate interrupt */ if (!pci_map_int(config_id, tl_intr, sc, &net_imask)) { printf("tl%d: couldn't map interrupt\n", unit); goto fail; } /* * Now allocate memory for the TX and RX lists. Note that * we actually allocate 8 bytes more than we really need: * this is because we need to adjust the final address to * be aligned on a quadword (64-bit) boundary in order to * make the chip happy. If the list structures aren't properly * aligned, DMA fails and the chip generates an adapter check * interrupt and has to be reset. If you set up the softc struct * just right you can sort of obtain proper alignment 'by chance.' * But I don't want to depend on this, so instead the alignment * is forced here. */ sc->tl_ldata_ptr = malloc(sizeof(struct tl_list_data) + 8, M_DEVBUF, M_NOWAIT); if (sc->tl_ldata_ptr == NULL) { free(sc, M_DEVBUF); printf("tl%d: no memory for list buffers!\n", unit); goto fail; } /* * Convoluted but satisfies my ANSI sensibilities. GCC lets * you do casts on the LHS of an assignment, but ANSI doesn't * allow that. */ sc->tl_ldata = (struct tl_list_data *)sc->tl_ldata_ptr; round = (unsigned int)sc->tl_ldata_ptr & 0xF; roundptr = sc->tl_ldata_ptr; for (i = 0; i < 8; i++) { if (round % 8) { round++; roundptr++; } else break; } sc->tl_ldata = (struct tl_list_data *)roundptr; bzero(sc->tl_ldata, sizeof(struct tl_list_data)); sc->tl_unit = unit; sc->tl_dinfo = t; if (t->tl_vid == COMPAQ_VENDORID || t->tl_vid == TI_VENDORID) sc->tl_eeaddr = TL_EEPROM_EADDR; if (t->tl_vid == OLICOM_VENDORID) sc->tl_eeaddr = TL_EEPROM_EADDR_OC; /* Reset the adapter. */ tl_softreset(sc, 1); tl_hardreset(sc); tl_softreset(sc, 1); /* * Get station address from the EEPROM. */ if (tl_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr, sc->tl_eeaddr, ETHER_ADDR_LEN)) { printf("tl%d: failed to read station address\n", unit); goto fail; } /* * XXX Olicom, in its desire to be different from the * rest of the world, has done strange things with the * encoding of the station address in the EEPROM. First * of all, they store the address at offset 0xF8 rather * than at 0x83 like the ThunderLAN manual suggests. * Second, they store the address in three 16-bit words in * network byte order, as opposed to storing it sequentially * like all the other ThunderLAN cards. In order to get * the station address in a form that matches what the Olicom * diagnostic utility specifies, we have to byte-swap each * word. To make things even more confusing, neither 00:00:28 * nor 00:00:24 appear in the IEEE OUI database. */ if (sc->tl_dinfo->tl_vid == OLICOM_VENDORID) { for (i = 0; i < ETHER_ADDR_LEN; i += 2) { u_int16_t *p; p = (u_int16_t *)&sc->arpcom.ac_enaddr[i]; *p = ntohs(*p); } } /* * A ThunderLAN chip was detected. Inform the world. */ printf("tl%d: Ethernet address: %6D\n", unit, sc->arpcom.ac_enaddr, ":"); ifp = &sc->arpcom.ac_if; ifp->if_softc = sc; ifp->if_unit = sc->tl_unit; ifp->if_name = "tl"; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = tl_ioctl; ifp->if_output = ether_output; ifp->if_start = tl_start; ifp->if_watchdog = tl_watchdog; ifp->if_init = tl_init; ifp->if_mtu = ETHERMTU; ifp->if_snd.ifq_maxlen = TL_TX_LIST_CNT - 1; callout_handle_init(&sc->tl_stat_ch); /* Reset the adapter again. */ tl_softreset(sc, 1); tl_hardreset(sc); tl_softreset(sc, 1); /* * Now attach the ThunderLAN's PHYs. There will always * be at least one PHY; if the PHY address is 0x1F, then * it's the internal one. */ for (i = TL_PHYADDR_MIN; i < TL_PHYADDR_MAX + 1; i++) { sc->tl_phy_addr = i; if (bootverbose) printf("tl%d: looking for phy at addr %x\n", unit, i); tl_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET); DELAY(500); while(tl_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_RESET); sc->tl_phy_sts = tl_phy_readreg(sc, PHY_BMSR); if (bootverbose) printf("tl%d: status: %x\n", unit, sc->tl_phy_sts); if (!sc->tl_phy_sts) continue; if (tl_attach_phy(sc)) { printf("tl%d: failed to attach a phy %d\n", unit, i); goto fail; } phys++; if (phys && i != TL_PHYADDR_MAX) break; } if (!phys) { printf("tl%d: no physical interfaces attached!\n", unit); goto fail; } tl_intvec_adchk((void *)sc, 0); tl_stop(sc); /* * Attempt to clear any stray interrupts * that may be lurking. */ tl_intr((void *)sc); /* * Call MI attach routines. */ if_attach(ifp); ether_ifattach(ifp); #if NBPFILTER > 0 bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header)); #endif at_shutdown(tl_shutdown, sc, SHUTDOWN_POST_SYNC); fail: splx(s); return; } /* * Initialize the transmit lists. */ static int tl_list_tx_init(sc) struct tl_softc *sc; { struct tl_chain_data *cd; struct tl_list_data *ld; int i; cd = &sc->tl_cdata; ld = sc->tl_ldata; for (i = 0; i < TL_TX_LIST_CNT; i++) { cd->tl_tx_chain[i].tl_ptr = &ld->tl_tx_list[i]; if (i == (TL_TX_LIST_CNT - 1)) cd->tl_tx_chain[i].tl_next = NULL; else cd->tl_tx_chain[i].tl_next = &cd->tl_tx_chain[i + 1]; } cd->tl_tx_free = &cd->tl_tx_chain[0]; cd->tl_tx_tail = cd->tl_tx_head = NULL; sc->tl_txeoc = 1; return(0); } /* * Initialize the RX lists and allocate mbufs for them. */ static int tl_list_rx_init(sc) struct tl_softc *sc; { struct tl_chain_data *cd; struct tl_list_data *ld; int i; cd = &sc->tl_cdata; ld = sc->tl_ldata; for (i = 0; i < TL_RX_LIST_CNT; i++) { cd->tl_rx_chain[i].tl_ptr = (struct tl_list_onefrag *)&ld->tl_rx_list[i]; if (tl_newbuf(sc, &cd->tl_rx_chain[i]) == ENOBUFS) return(ENOBUFS); if (i == (TL_RX_LIST_CNT - 1)) { cd->tl_rx_chain[i].tl_next = NULL; ld->tl_rx_list[i].tlist_fptr = 0; } else { cd->tl_rx_chain[i].tl_next = &cd->tl_rx_chain[i + 1]; ld->tl_rx_list[i].tlist_fptr = vtophys(&ld->tl_rx_list[i + 1]); } } cd->tl_rx_head = &cd->tl_rx_chain[0]; cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1]; return(0); } static int tl_newbuf(sc, c) struct tl_softc *sc; struct tl_chain_onefrag *c; { struct mbuf *m_new = NULL; MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { printf("tl%d: no memory for rx list -- packet dropped!", sc->tl_unit); return(ENOBUFS); } MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { printf("tl%d: no memory for rx list -- packet dropped!", sc->tl_unit); m_freem(m_new); return(ENOBUFS); } c->tl_mbuf = m_new; c->tl_next = NULL; c->tl_ptr->tlist_frsize = MCLBYTES; c->tl_ptr->tlist_cstat = TL_CSTAT_READY; c->tl_ptr->tlist_fptr = 0; c->tl_ptr->tl_frag.tlist_dadr = vtophys(mtod(m_new, caddr_t)); c->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES; return(0); } /* * Interrupt handler for RX 'end of frame' condition (EOF). This * tells us that a full ethernet frame has been captured and we need * to handle it. * * Reception is done using 'lists' which consist of a header and a * series of 10 data count/data address pairs that point to buffers. * Initially you're supposed to create a list, populate it with pointers * to buffers, then load the physical address of the list into the * ch_parm register. The adapter is then supposed to DMA the received * frame into the buffers for you. * * To make things as fast as possible, we have the chip DMA directly * into mbufs. This saves us from having to do a buffer copy: we can * just hand the mbufs directly to ether_input(). Once the frame has * been sent on its way, the 'list' structure is assigned a new buffer * and moved to the end of the RX chain. As long we we stay ahead of * the chip, it will always think it has an endless receive channel. * * If we happen to fall behind and the chip manages to fill up all of * the buffers, it will generate an end of channel interrupt and wait * for us to empty the chain and restart the receiver. */ static int tl_intvec_rxeof(xsc, type) void *xsc; u_int32_t type; { struct tl_softc *sc; int r = 0, total_len = 0; struct ether_header *eh; struct mbuf *m; struct ifnet *ifp; struct tl_chain_onefrag *cur_rx; sc = xsc; ifp = &sc->arpcom.ac_if; #ifdef TL_DEBUG evset(sc, EV_RXEOF); #endif while(sc->tl_cdata.tl_rx_head->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP){ r++; cur_rx = sc->tl_cdata.tl_rx_head; sc->tl_cdata.tl_rx_head = cur_rx->tl_next; m = cur_rx->tl_mbuf; total_len = cur_rx->tl_ptr->tlist_frsize; if (tl_newbuf(sc, cur_rx) == ENOBUFS) { ifp->if_ierrors++; cur_rx->tl_ptr->tlist_frsize = MCLBYTES; cur_rx->tl_ptr->tlist_cstat = TL_CSTAT_READY; cur_rx->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES; continue; } sc->tl_cdata.tl_rx_tail->tl_ptr->tlist_fptr = vtophys(cur_rx->tl_ptr); sc->tl_cdata.tl_rx_tail->tl_next = cur_rx; sc->tl_cdata.tl_rx_tail = cur_rx; eh = mtod(m, struct ether_header *); m->m_pkthdr.rcvif = ifp; /* * Note: when the ThunderLAN chip is in 'capture all * frames' mode, it will receive its own transmissions. * We drop don't need to process our own transmissions, * so we drop them here and continue. */ /*if (ifp->if_flags & IFF_PROMISC && */ if (!bcmp(eh->ether_shost, sc->arpcom.ac_enaddr, ETHER_ADDR_LEN)) { m_freem(m); continue; } #if NBPFILTER > 0 /* * Handle BPF listeners. Let the BPF user see the packet, but * don't pass it up to the ether_input() layer unless it's * a broadcast packet, multicast packet, matches our ethernet * address or the interface is in promiscuous mode. If we don't * want the packet, just forget it. We leave the mbuf in place * since it can be used again later. */ if (ifp->if_bpf) { m->m_pkthdr.len = m->m_len = total_len; bpf_mtap(ifp, m); if (ifp->if_flags & IFF_PROMISC && (bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr, ETHER_ADDR_LEN) && (eh->ether_dhost[0] & 1) == 0)) { m_freem(m); continue; } } #endif /* Remove header from mbuf and pass it on. */ m->m_pkthdr.len = m->m_len = total_len - sizeof(struct ether_header); m->m_data += sizeof(struct ether_header); ether_input(ifp, eh, m); } return(r); } /* * The RX-EOC condition hits when the ch_parm address hasn't been * initialized or the adapter reached a list with a forward pointer * of 0 (which indicates the end of the chain). In our case, this means * the card has hit the end of the receive buffer chain and we need to * empty out the buffers and shift the pointer back to the beginning again. */ static int tl_intvec_rxeoc(xsc, type) void *xsc; u_int32_t type; { struct tl_softc *sc; int r; sc = xsc; #ifdef TL_DEBUG evset(sc, EV_RXEOC); #endif /* Flush out the receive queue and ack RXEOF interrupts. */ r = tl_intvec_rxeof(xsc, type); CMD_PUT(sc, TL_CMD_ACK | r | (type & ~(0x00100000))); r = 1; CSR_WRITE_4(sc, TL_CH_PARM, vtophys(sc->tl_cdata.tl_rx_head->tl_ptr)); r |= (TL_CMD_GO|TL_CMD_RT); return(r); } static int tl_intvec_txeof(xsc, type) void *xsc; u_int32_t type; { struct tl_softc *sc; int r = 0; struct tl_chain *cur_tx; sc = xsc; #ifdef TL_DEBUG evset(sc, EV_TXEOF); #endif /* * Go through our tx list and free mbufs for those * frames that have been sent. */ while (sc->tl_cdata.tl_tx_head != NULL) { cur_tx = sc->tl_cdata.tl_tx_head; if (!(cur_tx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP)) break; sc->tl_cdata.tl_tx_head = cur_tx->tl_next; r++; m_freem(cur_tx->tl_mbuf); cur_tx->tl_mbuf = NULL; cur_tx->tl_next = sc->tl_cdata.tl_tx_free; sc->tl_cdata.tl_tx_free = cur_tx; if (!cur_tx->tl_ptr->tlist_fptr) break; } return(r); } /* * The transmit end of channel interrupt. The adapter triggers this * interrupt to tell us it hit the end of the current transmit list. * * A note about this: it's possible for a condition to arise where * tl_start() may try to send frames between TXEOF and TXEOC interrupts. * You have to avoid this since the chip expects things to go in a * particular order: transmit, acknowledge TXEOF, acknowledge TXEOC. * When the TXEOF handler is called, it will free all of the transmitted * frames and reset the tx_head pointer to NULL. However, a TXEOC * interrupt should be received and acknowledged before any more frames * are queued for transmission. If tl_statrt() is called after TXEOF * resets the tx_head pointer but _before_ the TXEOC interrupt arrives, * it could attempt to issue a transmit command prematurely. * * To guard against this, tl_start() will only issue transmit commands * if the tl_txeoc flag is set, and only the TXEOC interrupt handler * can set this flag once tl_start() has cleared it. */ static int tl_intvec_txeoc(xsc, type) void *xsc; u_int32_t type; { struct tl_softc *sc; struct ifnet *ifp; u_int32_t cmd; sc = xsc; ifp = &sc->arpcom.ac_if; /* Clear the timeout timer. */ ifp->if_timer = 0; #ifdef TL_DEBUG evset(sc, EV_TXEOC); #endif if (sc->tl_cdata.tl_tx_head == NULL) { ifp->if_flags &= ~IFF_OACTIVE; sc->tl_cdata.tl_tx_tail = NULL; sc->tl_txeoc = 1; /* * If we just drained the TX queue and * there's an autoneg request waiting, set * it in motion. This will block the transmitter * until the autoneg session completes which will * no doubt piss off any processes waiting to * transmit, but that's the way the ball bounces. */ if (sc->tl_want_auto) tl_autoneg(sc, TL_FLAG_SCHEDDELAY, 1); } else { sc->tl_txeoc = 0; /* First we have to ack the EOC interrupt. */ CMD_PUT(sc, TL_CMD_ACK | 0x00000001 | type); /* Then load the address of the next TX list. */ CSR_WRITE_4(sc, TL_CH_PARM, vtophys(sc->tl_cdata.tl_tx_head->tl_ptr)); /* Restart TX channel. */ cmd = CSR_READ_4(sc, TL_HOSTCMD); cmd &= ~TL_CMD_RT; cmd |= TL_CMD_GO|TL_CMD_INTSON; CMD_PUT(sc, cmd); return(0); } return(1); } static int tl_intvec_adchk(xsc, type) void *xsc; u_int32_t type; { struct tl_softc *sc; u_int16_t bmcr, ctl; sc = xsc; if (type) printf("tl%d: adapter check: %x\n", sc->tl_unit, (unsigned int)CSR_READ_4(sc, TL_CH_PARM)); #ifdef TL_DEBUG evshow(sc); #endif /* * Before resetting the adapter, try reading the PHY * settings so we can put them back later. This is * necessary to keep the chip operating at the same * speed and duplex settings after the reset completes. */ bmcr = tl_phy_readreg(sc, PHY_BMCR); ctl = tl_phy_readreg(sc, TL_PHY_CTL); tl_softreset(sc, 1); tl_phy_writereg(sc, PHY_BMCR, bmcr); tl_phy_writereg(sc, TL_PHY_CTL, ctl); if (bmcr & PHY_BMCR_DUPLEX) { tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX); } else { tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX); } tl_stop(sc); tl_init(sc); CMD_SET(sc, TL_CMD_INTSON); return(0); } static int tl_intvec_netsts(xsc, type) void *xsc; u_int32_t type; { struct tl_softc *sc; u_int16_t netsts; sc = xsc; netsts = tl_dio_read16(sc, TL_NETSTS); tl_dio_write16(sc, TL_NETSTS, netsts); printf("tl%d: network status: %x\n", sc->tl_unit, netsts); return(1); } static void tl_intr(xsc) void *xsc; { struct tl_softc *sc; struct ifnet *ifp; int r = 0; u_int32_t type = 0; u_int16_t ints = 0; u_int8_t ivec = 0; sc = xsc; /* Disable interrupts */ ints = CSR_READ_2(sc, TL_HOST_INT); CSR_WRITE_2(sc, TL_HOST_INT, ints); type = (ints << 16) & 0xFFFF0000; ivec = (ints & TL_VEC_MASK) >> 5; ints = (ints & TL_INT_MASK) >> 2; ifp = &sc->arpcom.ac_if; switch(ints) { case (TL_INTR_INVALID): #ifdef DIAGNOSTIC printf("tl%d: got an invalid interrupt!\n", sc->tl_unit); #endif /* Re-enable interrupts but don't ack this one. */ CMD_PUT(sc, type); r = 0; break; case (TL_INTR_TXEOF): r = tl_intvec_txeof((void *)sc, type); break; case (TL_INTR_TXEOC): r = tl_intvec_txeoc((void *)sc, type); break; case (TL_INTR_STATOFLOW): tl_stats_update(sc); r = 1; break; case (TL_INTR_RXEOF): r = tl_intvec_rxeof((void *)sc, type); break; case (TL_INTR_DUMMY): printf("tl%d: got a dummy interrupt\n", sc->tl_unit); r = 1; break; case (TL_INTR_ADCHK): if (ivec) r = tl_intvec_adchk((void *)sc, type); else r = tl_intvec_netsts((void *)sc, type); break; case (TL_INTR_RXEOC): r = tl_intvec_rxeoc((void *)sc, type); break; default: printf("tl%d: bogus interrupt type\n", ifp->if_unit); break; } /* Re-enable interrupts */ if (r) { CMD_PUT(sc, TL_CMD_ACK | r | type); } if (ifp->if_snd.ifq_head != NULL) tl_start(ifp); return; } static void tl_stats_update(xsc) void *xsc; { struct tl_softc *sc; struct ifnet *ifp; struct tl_stats tl_stats; u_int32_t *p; bzero((char *)&tl_stats, sizeof(struct tl_stats)); sc = xsc; ifp = &sc->arpcom.ac_if; p = (u_int32_t *)&tl_stats; CSR_WRITE_2(sc, TL_DIO_ADDR, TL_TXGOODFRAMES|TL_DIO_ADDR_INC); *p++ = CSR_READ_4(sc, TL_DIO_DATA); *p++ = CSR_READ_4(sc, TL_DIO_DATA); *p++ = CSR_READ_4(sc, TL_DIO_DATA); *p++ = CSR_READ_4(sc, TL_DIO_DATA); *p++ = CSR_READ_4(sc, TL_DIO_DATA); ifp->if_opackets += tl_tx_goodframes(tl_stats); ifp->if_collisions += tl_stats.tl_tx_single_collision + tl_stats.tl_tx_multi_collision; ifp->if_ipackets += tl_rx_goodframes(tl_stats); ifp->if_ierrors += tl_stats.tl_crc_errors + tl_stats.tl_code_errors + tl_rx_overrun(tl_stats); ifp->if_oerrors += tl_tx_underrun(tl_stats); sc->tl_stat_ch = timeout(tl_stats_update, sc, hz); return; } /* * Encapsulate an mbuf chain in a list by coupling the mbuf data * pointers to the fragment pointers. */ static int tl_encap(sc, c, m_head) struct tl_softc *sc; struct tl_chain *c; struct mbuf *m_head; { int frag = 0; struct tl_frag *f = NULL; int total_len; struct mbuf *m; /* * Start packing the mbufs in this chain into * the fragment pointers. Stop when we run out * of fragments or hit the end of the mbuf chain. */ m = m_head; total_len = 0; for (m = m_head, frag = 0; m != NULL; m = m->m_next) { if (m->m_len != 0) { if (frag == TL_MAXFRAGS) break; total_len+= m->m_len; c->tl_ptr->tl_frag[frag].tlist_dadr = vtophys(mtod(m, vm_offset_t)); c->tl_ptr->tl_frag[frag].tlist_dcnt = m->m_len; frag++; } } /* * Handle special cases. * Special case #1: we used up all 10 fragments, but * we have more mbufs left in the chain. Copy the * data into an mbuf cluster. Note that we don't * bother clearing the values in the other fragment * pointers/counters; it wouldn't gain us anything, * and would waste cycles. */ if (m != NULL) { struct mbuf *m_new = NULL; MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { printf("tl%d: no memory for tx list", sc->tl_unit); return(1); } if (m_head->m_pkthdr.len > MHLEN) { MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { m_freem(m_new); printf("tl%d: no memory for tx list", sc->tl_unit); return(1); } } m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(m_new, caddr_t)); m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len; m_freem(m_head); m_head = m_new; f = &c->tl_ptr->tl_frag[0]; f->tlist_dadr = vtophys(mtod(m_new, caddr_t)); f->tlist_dcnt = total_len = m_new->m_len; frag = 1; } /* * Special case #2: the frame is smaller than the minimum * frame size. We have to pad it to make the chip happy. */ if (total_len < TL_MIN_FRAMELEN) { if (frag == TL_MAXFRAGS) printf("tl%d: all frags filled but " "frame still to small!\n", sc->tl_unit); f = &c->tl_ptr->tl_frag[frag]; f->tlist_dcnt = TL_MIN_FRAMELEN - total_len; f->tlist_dadr = vtophys(&sc->tl_ldata->tl_pad); total_len += f->tlist_dcnt; frag++; } c->tl_mbuf = m_head; c->tl_ptr->tl_frag[frag - 1].tlist_dcnt |= TL_LAST_FRAG; c->tl_ptr->tlist_frsize = total_len; c->tl_ptr->tlist_cstat = TL_CSTAT_READY; c->tl_ptr->tlist_fptr = 0; return(0); } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit lists. We also save a * copy of the pointers since the transmit list fragment pointers are * physical addresses. */ static void tl_start(ifp) struct ifnet *ifp; { struct tl_softc *sc; struct mbuf *m_head = NULL; u_int32_t cmd; struct tl_chain *prev = NULL, *cur_tx = NULL, *start_tx; sc = ifp->if_softc; if (sc->tl_autoneg) { sc->tl_tx_pend = 1; return; } /* * Check for an available queue slot. If there are none, * punt. */ if (sc->tl_cdata.tl_tx_free == NULL) { ifp->if_flags |= IFF_OACTIVE; return; } start_tx = sc->tl_cdata.tl_tx_free; while(sc->tl_cdata.tl_tx_free != NULL) { IF_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; /* Pick a chain member off the free list. */ cur_tx = sc->tl_cdata.tl_tx_free; sc->tl_cdata.tl_tx_free = cur_tx->tl_next; cur_tx->tl_next = NULL; /* Pack the data into the list. */ tl_encap(sc, cur_tx, m_head); /* Chain it together */ if (prev != NULL) { prev->tl_next = cur_tx; prev->tl_ptr->tlist_fptr = vtophys(cur_tx->tl_ptr); } prev = cur_tx; /* * If there's a BPF listener, bounce a copy of this frame * to him. */ #if NBPFILTER > 0 if (ifp->if_bpf) bpf_mtap(ifp, cur_tx->tl_mbuf); #endif } /* * If there are no packets queued, bail. */ if (cur_tx == NULL) return; /* * That's all we can stands, we can't stands no more. * If there are no other transfers pending, then issue the * TX GO command to the adapter to start things moving. * Otherwise, just leave the data in the queue and let * the EOF/EOC interrupt handler send. */ if (sc->tl_cdata.tl_tx_head == NULL) { sc->tl_cdata.tl_tx_head = start_tx; sc->tl_cdata.tl_tx_tail = cur_tx; #ifdef TL_DEBUG evset(sc, EV_START_TX); #endif if (sc->tl_txeoc) { #ifdef TL_DEBUG evset(sc, EV_START_TX_REAL); #endif sc->tl_txeoc = 0; CSR_WRITE_4(sc, TL_CH_PARM, vtophys(start_tx->tl_ptr)); cmd = CSR_READ_4(sc, TL_HOSTCMD); cmd &= ~TL_CMD_RT; cmd |= TL_CMD_GO|TL_CMD_INTSON; CMD_PUT(sc, cmd); } } else { #ifdef TL_DEBUG evset(sc, EV_START_Q); #endif sc->tl_cdata.tl_tx_tail->tl_next = start_tx; sc->tl_cdata.tl_tx_tail = cur_tx; } /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; return; } static void tl_init(xsc) void *xsc; { struct tl_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; int s; u_int16_t phy_sts; if (sc->tl_autoneg) return; s = splimp(); ifp = &sc->arpcom.ac_if; #ifdef TL_DEBUG evset(sc, EV_INIT); #endif /* * Cancel pending I/O. */ tl_stop(sc); /* * Set 'capture all frames' bit for promiscuous mode. */ if (ifp->if_flags & IFF_PROMISC) tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF); else tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF); /* * Set capture broadcast bit to capture broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_NOBRX); else tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NOBRX); /* Init our MAC address */ tl_setfilt(sc, (caddr_t)&sc->arpcom.ac_enaddr, 0); /* Init multicast filter, if needed. */ tl_setmulti(sc); /* Init circular RX list. */ if (tl_list_rx_init(sc) == ENOBUFS) { printf("tl%d: initialization failed: no " "memory for rx buffers\n", sc->tl_unit); tl_stop(sc); return; } /* Init TX pointers. */ tl_list_tx_init(sc); /* * Enable PHY interrupts. */ phy_sts = tl_phy_readreg(sc, TL_PHY_CTL); phy_sts |= PHY_CTL_INTEN; tl_phy_writereg(sc, TL_PHY_CTL, phy_sts); /* Enable MII interrupts. */ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN); /* Enable PCI interrupts. */ CMD_SET(sc, TL_CMD_INTSON); /* Load the address of the rx list */ CMD_SET(sc, TL_CMD_RT); CSR_WRITE_4(sc, TL_CH_PARM, vtophys(&sc->tl_ldata->tl_rx_list[0])); /* * XXX This is a kludge to handle adapters with the Micro Linear * ML6692 100BaseTX PHY, which only supports 100Mbps modes and * relies on the controller's internal 10Mbps PHY to provide * 10Mbps modes. The ML6692 always shows up with a vendor/device ID * of 0 (it doesn't actually have vendor/device ID registers) * so we use that property to detect it. In theory there ought to * be a better way to 'spot the looney' but I can't find one. */ if (!sc->tl_phy_vid) { u_int8_t addr = 0; u_int16_t bmcr; bmcr = tl_phy_readreg(sc, PHY_BMCR); addr = sc->tl_phy_addr; sc->tl_phy_addr = TL_PHYADDR_MAX; tl_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET); if (bmcr & PHY_BMCR_SPEEDSEL) tl_phy_writereg(sc, PHY_BMCR, PHY_BMCR_ISOLATE); else tl_phy_writereg(sc, PHY_BMCR, bmcr); sc->tl_phy_addr = addr; } /* Send the RX go command */ CMD_SET(sc, TL_CMD_GO|TL_CMD_RT); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; (void)splx(s); /* Start the stats update counter */ sc->tl_stat_ch = timeout(tl_stats_update, sc, hz); return; } /* * Set media options. */ static int tl_ifmedia_upd(ifp) struct ifnet *ifp; { struct tl_softc *sc; struct ifmedia *ifm; sc = ifp->if_softc; ifm = &sc->ifmedia; if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) return(EINVAL); if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) tl_autoneg(sc, TL_FLAG_SCHEDDELAY, 1); else tl_setmode(sc, ifm->ifm_media); return(0); } /* * Report current media status. */ static void tl_ifmedia_sts(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { u_int16_t phy_ctl; u_int16_t phy_sts; struct tl_softc *sc; sc = ifp->if_softc; ifmr->ifm_active = IFM_ETHER; phy_ctl = tl_phy_readreg(sc, PHY_BMCR); phy_sts = tl_phy_readreg(sc, TL_PHY_CTL); if (phy_sts & PHY_CTL_AUISEL) ifmr->ifm_active = IFM_ETHER|IFM_10_5; if (phy_ctl & PHY_BMCR_LOOPBK) ifmr->ifm_active = IFM_ETHER|IFM_LOOP; if (phy_ctl & PHY_BMCR_SPEEDSEL) ifmr->ifm_active = IFM_ETHER|IFM_100_TX; else ifmr->ifm_active = IFM_ETHER|IFM_10_T; if (phy_ctl & PHY_BMCR_DUPLEX) { ifmr->ifm_active |= IFM_FDX; ifmr->ifm_active &= ~IFM_HDX; } else { ifmr->ifm_active &= ~IFM_FDX; ifmr->ifm_active |= IFM_HDX; } return; } static int tl_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { struct tl_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; int s, error = 0; s = splimp(); switch(command) { case SIOCSIFADDR: case SIOCGIFADDR: case SIOCSIFMTU: error = ether_ioctl(ifp, command, data); break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { tl_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) { tl_stop(sc); } } error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: tl_setmulti(sc); error = 0; break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); break; default: error = EINVAL; break; } (void)splx(s); return(error); } static void tl_watchdog(ifp) struct ifnet *ifp; { struct tl_softc *sc; u_int16_t bmsr; sc = ifp->if_softc; #ifdef TL_DEBUG evset(sc, EV_WATCHDOG); #endif if (sc->tl_autoneg) { tl_autoneg(sc, TL_FLAG_DELAYTIMEO, 1); return; } /* Check that we're still connected. */ tl_phy_readreg(sc, PHY_BMSR); bmsr = tl_phy_readreg(sc, PHY_BMSR); if (!(bmsr & PHY_BMSR_LINKSTAT)) { printf("tl%d: no carrier\n", sc->tl_unit); tl_autoneg(sc, TL_FLAG_SCHEDDELAY, 1); } else printf("tl%d: device timeout\n", sc->tl_unit); ifp->if_oerrors++; tl_init(sc); return; } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void tl_stop(sc) struct tl_softc *sc; { register int i; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; /* Stop the stats updater. */ untimeout(tl_stats_update, sc, sc->tl_stat_ch); /* Stop the transmitter */ CMD_CLR(sc, TL_CMD_RT); CMD_SET(sc, TL_CMD_STOP); CSR_WRITE_4(sc, TL_CH_PARM, 0); /* Stop the receiver */ CMD_SET(sc, TL_CMD_RT); CMD_SET(sc, TL_CMD_STOP); CSR_WRITE_4(sc, TL_CH_PARM, 0); /* * Disable host interrupts. */ CMD_SET(sc, TL_CMD_INTSOFF); /* * Disable MII interrupts. */ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN); /* * Clear list pointer. */ CSR_WRITE_4(sc, TL_CH_PARM, 0); /* * Free the RX lists. */ for (i = 0; i < TL_RX_LIST_CNT; i++) { if (sc->tl_cdata.tl_rx_chain[i].tl_mbuf != NULL) { m_freem(sc->tl_cdata.tl_rx_chain[i].tl_mbuf); sc->tl_cdata.tl_rx_chain[i].tl_mbuf = NULL; } } bzero((char *)&sc->tl_ldata->tl_rx_list, sizeof(sc->tl_ldata->tl_rx_list)); /* * Free the TX list buffers. */ for (i = 0; i < TL_TX_LIST_CNT; i++) { if (sc->tl_cdata.tl_tx_chain[i].tl_mbuf != NULL) { m_freem(sc->tl_cdata.tl_tx_chain[i].tl_mbuf); sc->tl_cdata.tl_tx_chain[i].tl_mbuf = NULL; } } bzero((char *)&sc->tl_ldata->tl_tx_list, sizeof(sc->tl_ldata->tl_tx_list)); ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); return; } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static void tl_shutdown(howto, xsc) int howto; void *xsc; { struct tl_softc *sc; sc = xsc; tl_stop(sc); return; } static struct pci_device tl_device = { "tl", tl_probe, tl_attach, &tl_count, NULL }; DATA_SET(pcidevice_set, tl_device);