/*-
* Copyright (c) 2014 Ruslan Bukin
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Samsung Chromebook Keyboard
*/
#include
__FBSDID("$FreeBSD$");
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "gpio_if.h"
#include
#include
#include
#include
#define CKB_LOCK() mtx_lock(&Giant)
#define CKB_UNLOCK() mtx_unlock(&Giant)
#ifdef INVARIANTS
/*
* Assert that the lock is held in all contexts
* where the code can be executed.
*/
#define CKB_LOCK_ASSERT() mtx_assert(&Giant, MA_OWNED)
/*
* Assert that the lock is held in the contexts
* where it really has to be so.
*/
#define CKB_CTX_LOCK_ASSERT() \
do { \
if (!kdb_active && panicstr == NULL) \
mtx_assert(&Giant, MA_OWNED); \
} while (0)
#else
#define CKB_LOCK_ASSERT() (void)0
#define CKB_CTX_LOCK_ASSERT() (void)0
#endif
/*
* Define a stub keyboard driver in case one hasn't been
* compiled into the kernel
*/
#include
#include
#include
#define CKB_NFKEY 12
#define CKB_FLAG_COMPOSE 0x1
#define CKB_FLAG_POLLING 0x2
#define KBD_DRIVER_NAME "ckbd"
struct ckb_softc {
keyboard_t sc_kbd;
keymap_t sc_keymap;
accentmap_t sc_accmap;
fkeytab_t sc_fkeymap[CKB_NFKEY];
struct resource* sc_mem_res;
struct resource* sc_irq_res;
void* sc_intr_hl;
int sc_mode; /* input mode (K_XLATE,K_RAW,K_CODE) */
int sc_state; /* shift/lock key state */
int sc_accents; /* accent key index (> 0) */
int sc_flags; /* flags */
struct callout sc_repeat_callout;
int sc_repeat_key;
int sc_repeating;
int flag;
int rows;
int cols;
int gpio;
device_t dev;
device_t gpio_dev;
struct thread *sc_poll_thread;
uint16_t *keymap;
uint8_t *scan_local;
uint8_t *scan;
};
/* prototypes */
static int ckb_set_typematic(keyboard_t *, int);
static uint32_t ckb_read_char(keyboard_t *, int);
static void ckb_clear_state(keyboard_t *);
static int ckb_ioctl(keyboard_t *, u_long, caddr_t);
static int ckb_enable(keyboard_t *);
static int ckb_disable(keyboard_t *);
static void
ckb_repeat(void *arg)
{
struct ckb_softc *sc;
sc = arg;
if (KBD_IS_ACTIVE(&sc->sc_kbd) && KBD_IS_BUSY(&sc->sc_kbd)) {
if (sc->sc_repeat_key != -1) {
sc->sc_repeating = 1;
sc->sc_kbd.kb_callback.kc_func(&sc->sc_kbd,
KBDIO_KEYINPUT, sc->sc_kbd.kb_callback.kc_arg);
}
}
}
/* detect a keyboard, not used */
static int
ckb__probe(int unit, void *arg, int flags)
{
return (ENXIO);
}
/* reset and initialize the device, not used */
static int
ckb_init(int unit, keyboard_t **kbdp, void *arg, int flags)
{
return (ENXIO);
}
/* test the interface to the device, not used */
static int
ckb_test_if(keyboard_t *kbd)
{
return (0);
}
/* finish using this keyboard, not used */
static int
ckb_term(keyboard_t *kbd)
{
return (ENXIO);
}
/* keyboard interrupt routine, not used */
static int
ckb_intr(keyboard_t *kbd, void *arg)
{
return (0);
}
/* lock the access to the keyboard, not used */
static int
ckb_lock(keyboard_t *kbd, int lock)
{
return (1);
}
/* clear the internal state of the keyboard */
static void
ckb_clear_state(keyboard_t *kbd)
{
struct ckb_softc *sc;
sc = kbd->kb_data;
CKB_CTX_LOCK_ASSERT();
sc->sc_flags &= ~(CKB_FLAG_COMPOSE | CKB_FLAG_POLLING);
sc->sc_state &= LOCK_MASK; /* preserve locking key state */
sc->sc_accents = 0;
}
/* save the internal state, not used */
static int
ckb_get_state(keyboard_t *kbd, void *buf, size_t len)
{
return (len == 0) ? 1 : -1;
}
/* set the internal state, not used */
static int
ckb_set_state(keyboard_t *kbd, void *buf, size_t len)
{
return (EINVAL);
}
/* check if data is waiting */
static int
ckb_check(keyboard_t *kbd)
{
struct ckb_softc *sc;
int i;
sc = kbd->kb_data;
CKB_CTX_LOCK_ASSERT();
if (!KBD_IS_ACTIVE(kbd))
return (0);
if (sc->sc_flags & CKB_FLAG_POLLING) {
return (1);
};
for (i = 0; i < sc->cols; i++)
if (sc->scan_local[i] != sc->scan[i]) {
return (1);
};
if (sc->sc_repeating)
return (1);
return (0);
}
/* check if char is waiting */
static int
ckb_check_char_locked(keyboard_t *kbd)
{
CKB_CTX_LOCK_ASSERT();
if (!KBD_IS_ACTIVE(kbd))
return (0);
return (ckb_check(kbd));
}
static int
ckb_check_char(keyboard_t *kbd)
{
int result;
CKB_LOCK();
result = ckb_check_char_locked(kbd);
CKB_UNLOCK();
return (result);
}
/* read one byte from the keyboard if it's allowed */
/* Currently unused. */
static int
ckb_read(keyboard_t *kbd, int wait)
{
CKB_CTX_LOCK_ASSERT();
if (!KBD_IS_ACTIVE(kbd))
return (-1);
printf("Implement ME: %s\n", __func__);
return (0);
}
static uint16_t
keymap_read(struct ckb_softc *sc, int col, int row)
{
KASSERT(sc->keymap != NULL, "keymap_read: no keymap");
if (col >= 0 && col < sc->cols &&
row >= 0 && row < sc->rows) {
return sc->keymap[row * sc->cols + col];
}
return (0);
}
static int
keymap_write(struct ckb_softc *sc, int col, int row, uint16_t key)
{
KASSERT(sc->keymap != NULL, "keymap_write: no keymap");
if (col >= 0 && col < sc->cols &&
row >= 0 && row < sc->rows) {
sc->keymap[row * sc->cols + col] = key;
return (0);
}
return (-1);
}
/* read char from the keyboard */
static uint32_t
ckb_read_char_locked(keyboard_t *kbd, int wait)
{
struct ckb_softc *sc;
int i,j;
uint16_t key;
int oldbit;
int newbit;
int status;
sc = kbd->kb_data;
CKB_CTX_LOCK_ASSERT();
if (!KBD_IS_ACTIVE(kbd))
return (NOKEY);
if (sc->sc_repeating) {
sc->sc_repeating = 0;
callout_reset(&sc->sc_repeat_callout, hz / 10,
ckb_repeat, sc);
return (sc->sc_repeat_key);
};
if (sc->sc_flags & CKB_FLAG_POLLING) {
for (;;) {
GPIO_PIN_GET(sc->gpio_dev, sc->gpio, &status);
if (status == 0) {
if (ec_command(EC_CMD_MKBP_STATE, sc->scan,
sc->cols,
sc->scan, sc->cols)) {
return (NOKEY);
}
break;
}
if (!wait) {
return (NOKEY);
}
DELAY(1000);
}
};
for (i = 0; i < sc->cols; i++) {
for (j = 0; j < sc->rows; j++) {
oldbit = (sc->scan_local[i] & (1 << j));
newbit = (sc->scan[i] & (1 << j));
if (oldbit == newbit)
continue;
key = keymap_read(sc, i, j);
if (key == 0) {
continue;
};
if (newbit > 0) {
/* key pressed */
sc->scan_local[i] |= (1 << j);
/* setup repeating */
sc->sc_repeat_key = key;
callout_reset(&sc->sc_repeat_callout,
hz / 2, ckb_repeat, sc);
} else {
/* key released */
sc->scan_local[i] &= ~(1 << j);
/* release flag */
key |= 0x80;
/* unsetup repeating */
sc->sc_repeat_key = -1;
callout_stop(&sc->sc_repeat_callout);
}
return (key);
}
}
return (NOKEY);
}
/* Currently wait is always false. */
static uint32_t
ckb_read_char(keyboard_t *kbd, int wait)
{
uint32_t keycode;
CKB_LOCK();
keycode = ckb_read_char_locked(kbd, wait);
CKB_UNLOCK();
return (keycode);
}
/* some useful control functions */
static int
ckb_ioctl_locked(keyboard_t *kbd, u_long cmd, caddr_t arg)
{
struct ckb_softc *sc;
int i;
sc = kbd->kb_data;
CKB_LOCK_ASSERT();
switch (cmd) {
case KDGKBMODE: /* get keyboard mode */
*(int *)arg = sc->sc_mode;
break;
case KDSKBMODE: /* set keyboard mode */
switch (*(int *)arg) {
case K_XLATE:
if (sc->sc_mode != K_XLATE) {
/* make lock key state and LED state match */
sc->sc_state &= ~LOCK_MASK;
sc->sc_state |= KBD_LED_VAL(kbd);
}
/* FALLTHROUGH */
case K_RAW:
case K_CODE:
if (sc->sc_mode != *(int *)arg) {
if ((sc->sc_flags & CKB_FLAG_POLLING) == 0)
ckb_clear_state(kbd);
sc->sc_mode = *(int *)arg;
}
break;
default:
return (EINVAL);
}
break;
case KDGETLED: /* get keyboard LED */
*(int *)arg = KBD_LED_VAL(kbd);
break;
case KDSETLED: /* set keyboard LED */
/* NOTE: lock key state in "sc_state" won't be changed */
if (*(int *)arg & ~LOCK_MASK)
return (EINVAL);
i = *(int *)arg;
/* replace CAPS LED with ALTGR LED for ALTGR keyboards */
if (sc->sc_mode == K_XLATE &&
kbd->kb_keymap->n_keys > ALTGR_OFFSET) {
if (i & ALKED)
i |= CLKED;
else
i &= ~CLKED;
}
if (KBD_HAS_DEVICE(kbd)) {
/* Configure LED */
}
KBD_LED_VAL(kbd) = *(int *)arg;
break;
case KDGKBSTATE: /* get lock key state */
*(int *)arg = sc->sc_state & LOCK_MASK;
break;
case KDSKBSTATE: /* set lock key state */
if (*(int *)arg & ~LOCK_MASK) {
return (EINVAL);
}
sc->sc_state &= ~LOCK_MASK;
sc->sc_state |= *(int *)arg;
/* set LEDs and quit */
return (ckb_ioctl(kbd, KDSETLED, arg));
case KDSETREPEAT: /* set keyboard repeat rate (new
* interface) */
if (!KBD_HAS_DEVICE(kbd)) {
return (0);
}
if (((int *)arg)[1] < 0) {
return (EINVAL);
}
if (((int *)arg)[0] < 0) {
return (EINVAL);
}
if (((int *)arg)[0] < 200) /* fastest possible value */
kbd->kb_delay1 = 200;
else
kbd->kb_delay1 = ((int *)arg)[0];
kbd->kb_delay2 = ((int *)arg)[1];
return (0);
case KDSETRAD: /* set keyboard repeat rate (old
* interface) */
return (ckb_set_typematic(kbd, *(int *)arg));
case PIO_KEYMAP: /* set keyboard translation table */
case OPIO_KEYMAP: /* set keyboard translation table
* (compat) */
case PIO_KEYMAPENT: /* set keyboard translation table
* entry */
case PIO_DEADKEYMAP: /* set accent key translation table */
sc->sc_accents = 0;
/* FALLTHROUGH */
default:
return (genkbd_commonioctl(kbd, cmd, arg));
}
return (0);
}
static int
ckb_ioctl(keyboard_t *kbd, u_long cmd, caddr_t arg)
{
int result;
/*
* XXX KDGKBSTATE, KDSKBSTATE and KDSETLED can be called from any
* context where printf(9) can be called, which among other things
* includes interrupt filters and threads with any kinds of locks
* already held. For this reason it would be dangerous to acquire
* the Giant here unconditionally. On the other hand we have to
* have it to handle the ioctl.
* So we make our best effort to auto-detect whether we can grab
* the Giant or not. Blame syscons(4) for this.
*/
switch (cmd) {
case KDGKBSTATE:
case KDSKBSTATE:
case KDSETLED:
if (!mtx_owned(&Giant) && !SCHEDULER_STOPPED())
return (EDEADLK); /* best I could come up with */
/* FALLTHROUGH */
default:
CKB_LOCK();
result = ckb_ioctl_locked(kbd, cmd, arg);
CKB_UNLOCK();
return (result);
}
}
/*
* Enable the access to the device; until this function is called,
* the client cannot read from the keyboard.
*/
static int
ckb_enable(keyboard_t *kbd)
{
CKB_LOCK();
KBD_ACTIVATE(kbd);
CKB_UNLOCK();
return (0);
}
/* disallow the access to the device */
static int
ckb_disable(keyboard_t *kbd)
{
CKB_LOCK();
KBD_DEACTIVATE(kbd);
CKB_UNLOCK();
return (0);
}
/* local functions */
static int
ckb_set_typematic(keyboard_t *kbd, int code)
{
static const int delays[] = {250, 500, 750, 1000};
static const int rates[] = {34, 38, 42, 46, 50, 55, 59, 63,
68, 76, 84, 92, 100, 110, 118, 126,
136, 152, 168, 184, 200, 220, 236, 252,
272, 304, 336, 368, 400, 440, 472, 504};
if (code & ~0x7f) {
return (EINVAL);
}
kbd->kb_delay1 = delays[(code >> 5) & 3];
kbd->kb_delay2 = rates[code & 0x1f];
return (0);
}
static int
ckb_poll(keyboard_t *kbd, int on)
{
struct ckb_softc *sc;
sc = kbd->kb_data;
CKB_LOCK();
if (on) {
sc->sc_flags |= CKB_FLAG_POLLING;
sc->sc_poll_thread = curthread;
} else {
sc->sc_flags &= ~CKB_FLAG_POLLING;
}
CKB_UNLOCK();
return (0);
}
/* local functions */
static int dummy_kbd_configure(int flags);
keyboard_switch_t ckbdsw = {
.probe = &ckb__probe,
.init = &ckb_init,
.term = &ckb_term,
.intr = &ckb_intr,
.test_if = &ckb_test_if,
.enable = &ckb_enable,
.disable = &ckb_disable,
.read = &ckb_read,
.check = &ckb_check,
.read_char = &ckb_read_char,
.check_char = &ckb_check_char,
.ioctl = &ckb_ioctl,
.lock = &ckb_lock,
.clear_state = &ckb_clear_state,
.get_state = &ckb_get_state,
.set_state = &ckb_set_state,
.get_fkeystr = &genkbd_get_fkeystr,
.poll = &ckb_poll,
.diag = &genkbd_diag,
};
static int
dummy_kbd_configure(int flags)
{
return (0);
}
KEYBOARD_DRIVER(ckbd, ckbdsw, dummy_kbd_configure);
/*
* Parses 'keymap' into sc->keymap.
* Requires sc->cols and sc->rows to be set.
*/
static int
parse_keymap(struct ckb_softc *sc, pcell_t *keymap, size_t len)
{
int i;
sc->keymap = malloc(sc->cols * sc->rows * sizeof(sc->keymap[0]),
M_DEVBUF, M_NOWAIT | M_ZERO);
if (sc->keymap == NULL) {
return (ENOMEM);
}
for (i = 0; i < len; i++) {
/*
* Return value is ignored, we just write whatever fits into
* specified number of rows and columns and silently ignore
* everything else.
* Keymap entries follow this format: 0xRRCCKKKK
* RR - row number, CC - column number, KKKK - key code
*/
keymap_write(sc, (keymap[i] >> 16) & 0xff,
(keymap[i] >> 24) & 0xff,
keymap[i] & 0xffff);
}
return (0);
}
/* Allocates a new array for keymap and returns it in 'keymap'. */
static int
read_keymap(phandle_t node, const char *prop, pcell_t **keymap, size_t *len)
{
if ((*len = OF_getproplen(node, prop)) <= 0) {
return (ENXIO);
}
if ((*keymap = malloc(*len, M_DEVBUF, M_NOWAIT)) == NULL) {
return (ENOMEM);
}
if (OF_getencprop(node, prop, *keymap, *len) != *len) {
return (ENXIO);
}
return (0);
}
static int
parse_dts(struct ckb_softc *sc)
{
phandle_t node;
pcell_t dts_value;
pcell_t *keymap;
int len, ret;
const char *keymap_prop = NULL;
if ((node = ofw_bus_get_node(sc->dev)) == -1)
return (ENXIO);
if ((len = OF_getproplen(node, "google,key-rows")) <= 0)
return (ENXIO);
OF_getprop(node, "google,key-rows", &dts_value, len);
sc->rows = fdt32_to_cpu(dts_value);
if ((len = OF_getproplen(node, "google,key-columns")) <= 0)
return (ENXIO);
OF_getprop(node, "google,key-columns", &dts_value, len);
sc->cols = fdt32_to_cpu(dts_value);
if ((len = OF_getproplen(node, "freebsd,intr-gpio")) <= 0)
return (ENXIO);
OF_getprop(node, "freebsd,intr-gpio", &dts_value, len);
sc->gpio = fdt32_to_cpu(dts_value);
if (OF_hasprop(node, "freebsd,keymap")) {
keymap_prop = "freebsd,keymap";
device_printf(sc->dev, "using FreeBSD-specific keymap from FDT\n");
} else if (OF_hasprop(node, "linux,keymap")) {
keymap_prop = "linux,keymap";
device_printf(sc->dev, "using Linux keymap from FDT\n");
} else {
device_printf(sc->dev, "using built-in keymap\n");
}
if (keymap_prop != NULL) {
if ((ret = read_keymap(node, keymap_prop, &keymap, &len))) {
device_printf(sc->dev,
"failed to read keymap from FDT: %d\n", ret);
return (ret);
}
ret = parse_keymap(sc, keymap, len);
free(keymap, M_DEVBUF);
if (ret) {
return (ret);
}
} else {
if ((ret = parse_keymap(sc, default_keymap, KEYMAP_LEN))) {
return (ret);
}
}
if ((sc->rows == 0) || (sc->cols == 0) || (sc->gpio == 0))
return (ENXIO);
return (0);
}
void
ckb_ec_intr(void *arg)
{
struct ckb_softc *sc;
sc = arg;
if (sc->sc_flags & CKB_FLAG_POLLING)
return;
ec_command(EC_CMD_MKBP_STATE, sc->scan, sc->cols,
sc->scan, sc->cols);
(sc->sc_kbd.kb_callback.kc_func) (&sc->sc_kbd, KBDIO_KEYINPUT,
sc->sc_kbd.kb_callback.kc_arg);
};
static int
chrome_kb_attach(device_t dev)
{
struct ckb_softc *sc;
keyboard_t *kbd;
int error;
int rid;
int i;
sc = device_get_softc(dev);
sc->dev = dev;
sc->keymap = NULL;
if ((error = parse_dts(sc)) != 0)
return error;
sc->gpio_dev = devclass_get_device(devclass_find("gpio"), 0);
if (sc->gpio_dev == NULL) {
device_printf(sc->dev, "Can't find gpio device.\n");
return (ENXIO);
}
#if 0
device_printf(sc->dev, "Keyboard matrix [%dx%d]\n",
sc->cols, sc->rows);
#endif
pad_setup_intr(sc->gpio, ckb_ec_intr, sc);
kbd = &sc->sc_kbd;
rid = 0;
sc->scan_local = malloc(sc->cols, M_DEVBUF, M_NOWAIT);
sc->scan = malloc(sc->cols, M_DEVBUF, M_NOWAIT);
for (i = 0; i < sc->cols; i++) {
sc->scan_local[i] = 0;
sc->scan[i] = 0;
};
kbd_init_struct(kbd, KBD_DRIVER_NAME, KB_OTHER,
device_get_unit(dev), 0, 0, 0);
kbd->kb_data = (void *)sc;
sc->sc_keymap = key_map;
sc->sc_accmap = accent_map;
for (i = 0; i < CKB_NFKEY; i++) {
sc->sc_fkeymap[i] = fkey_tab[i];
}
kbd_set_maps(kbd, &sc->sc_keymap, &sc->sc_accmap,
sc->sc_fkeymap, CKB_NFKEY);
KBD_FOUND_DEVICE(kbd);
ckb_clear_state(kbd);
KBD_PROBE_DONE(kbd);
callout_init(&sc->sc_repeat_callout, 0);
KBD_INIT_DONE(kbd);
if (kbd_register(kbd) < 0) {
return (ENXIO);
};
KBD_CONFIG_DONE(kbd);
return (0);
}
static int
chrome_kb_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (ofw_bus_is_compatible(dev, "google,cros-ec-keyb") ||
ofw_bus_is_compatible(dev, "google,mkbp-keyb")) {
device_set_desc(dev, "Chrome EC Keyboard");
return (BUS_PROBE_DEFAULT);
}
return (ENXIO);
}
static int
chrome_kb_detach(device_t dev)
{
struct ckb_softc *sc;
sc = device_get_softc(dev);
if (sc->keymap != NULL) {
free(sc->keymap, M_DEVBUF);
}
return 0;
}
static device_method_t chrome_kb_methods[] = {
DEVMETHOD(device_probe, chrome_kb_probe),
DEVMETHOD(device_attach, chrome_kb_attach),
DEVMETHOD(device_detach, chrome_kb_detach),
{ 0, 0 }
};
static driver_t chrome_kb_driver = {
"chrome_kb",
chrome_kb_methods,
sizeof(struct ckb_softc),
};
static devclass_t chrome_kb_devclass;
DRIVER_MODULE(chrome_kb, simplebus, chrome_kb_driver,
chrome_kb_devclass, 0, 0);