/*- * Copyright (c) 1998 Brian Somers * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $Id: mp.c,v 1.1.2.12 1998/04/24 19:15:45 brian Exp $ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "command.h" #include "mbuf.h" #include "log.h" #include "defs.h" #include "timer.h" #include "fsm.h" #include "iplist.h" #include "throughput.h" #include "slcompress.h" #include "ipcp.h" #include "auth.h" #include "lcp.h" #include "lqr.h" #include "hdlc.h" #include "async.h" #include "ccp.h" #include "link.h" #include "descriptor.h" #include "physical.h" #include "chat.h" #include "lcpproto.h" #include "filter.h" #include "mp.h" #include "chap.h" #include "datalink.h" #include "bundle.h" #include "ip.h" #include "prompt.h" #include "id.h" #include "arp.h" void peerid_Init(struct peerid *peer) { peer->enddisc.class = 0; *peer->enddisc.address = '\0'; peer->enddisc.len = 0; *peer->authname = '\0'; } int peerid_Equal(const struct peerid *p1, const struct peerid *p2) { return !strcmp(p1->authname, p2->authname) && p1->enddisc.class == p2->enddisc.class && p1->enddisc.len == p2->enddisc.len && !memcmp(p1->enddisc.address, p2->enddisc.address, p1->enddisc.len); } static u_int32_t inc_seq(struct mp *mp, u_int32_t seq) { seq++; if (mp->peer_is12bit) { if (seq & 0xfffff000) seq = 0; } else if (seq & 0xff000000) seq = 0; return seq; } static int mp_ReadHeader(struct mp *mp, struct mbuf *m, struct mp_header *header) { if (mp->local_is12bit) { header->seq = ntohs(*(u_int16_t *)MBUF_CTOP(m)); if (header->seq & 0x3000) { LogPrintf(LogWARN, "Oops - MP header without required zero bits\n"); return 0; } header->begin = header->seq & 0x8000 ? 1 : 0; header->end = header->seq & 0x4000 ? 1 : 0; header->seq &= 0x0fff; return 2; } else { header->seq = ntohl(*(u_int32_t *)MBUF_CTOP(m)); if (header->seq & 0x3f000000) { LogPrintf(LogWARN, "Oops - MP header without required zero bits\n"); return 0; } header->begin = header->seq & 0x80000000 ? 1 : 0; header->end = header->seq & 0x40000000 ? 1 : 0; header->seq &= 0x00ffffff; return 4; } } static void mp_LayerStart(void *v, struct fsm *fp) { /* The given FSM (ccp) is about to start up ! */ } static void mp_LayerUp(void *v, struct fsm *fp) { /* The given fsm (ccp) is now up */ } static void mp_LayerDown(void *v, struct fsm *fp) { /* The given FSM (ccp) has been told to come down */ } static void mp_LayerFinish(void *v, struct fsm *fp) { /* The given fsm (ccp) is now down */ } void mp_Init(struct mp *mp, struct bundle *bundle) { mp->peer_is12bit = mp->local_is12bit = 0; mp->peer_mrru = mp->local_mrru = 0; peerid_Init(&mp->peer); mp->seq.out = 0; mp->seq.min_in = 0; mp->seq.next_in = 0; mp->inbufs = NULL; mp->bundle = bundle; mp->link.type = MP_LINK; mp->link.name = "mp"; mp->link.len = sizeof *mp; throughput_init(&mp->link.throughput); memset(mp->link.Queue, '\0', sizeof mp->link.Queue); memset(mp->link.proto_in, '\0', sizeof mp->link.proto_in); memset(mp->link.proto_out, '\0', sizeof mp->link.proto_out); mp->fsmp.LayerStart = mp_LayerStart; mp->fsmp.LayerUp = mp_LayerUp; mp->fsmp.LayerDown = mp_LayerDown; mp->fsmp.LayerFinish = mp_LayerFinish; mp->fsmp.object = mp; mp->cfg.mrru = 0; mp->cfg.shortseq = NEG_ENABLED|NEG_ACCEPTED; mp->cfg.enddisc.class = 0; *mp->cfg.enddisc.address = '\0'; mp->cfg.enddisc.len = 0; lcp_Init(&mp->link.lcp, mp->bundle, &mp->link, NULL); ccp_Init(&mp->link.ccp, mp->bundle, &mp->link, &mp->fsmp); } int mp_Up(struct mp *mp, const struct peerid *peer, u_short local_mrru, u_short peer_mrru, int local_shortseq, int peer_shortseq) { if (mp->active) { /* We're adding a link - do a last validation on our parameters */ if (!peerid_Equal(peer, &mp->peer)) { LogPrintf(LogPHASE, "Inappropriate peer !\n"); return 0; } if (mp->local_mrru != local_mrru || mp->peer_mrru != peer_mrru || mp->local_is12bit != local_shortseq || mp->peer_is12bit != peer_shortseq) { LogPrintf(LogPHASE, "Invalid MRRU/SHORTSEQ MP parameters !\n"); return 0; } } else { /* First link in multilink mode */ mp->local_mrru = local_mrru; mp->peer_mrru = peer_mrru; mp->local_is12bit = local_shortseq; mp->peer_is12bit = peer_shortseq; mp->peer = *peer; throughput_init(&mp->link.throughput); memset(mp->link.Queue, '\0', sizeof mp->link.Queue); memset(mp->link.proto_in, '\0', sizeof mp->link.proto_in); memset(mp->link.proto_out, '\0', sizeof mp->link.proto_out); mp->seq.out = 0; mp->seq.min_in = 0; mp->seq.next_in = 0; /* Re-point our IPCP layer at our MP link */ ipcp_SetLink(&mp->bundle->ncp.ipcp, &mp->link); /* Our lcp's already up 'cos of the NULL parent */ FsmUp(&mp->link.ccp.fsm); FsmOpen(&mp->link.ccp.fsm); mp->active = 1; } return 1; } void mp_Down(struct mp *mp) { if (mp->active) { struct mbuf *next; /* CCP goes down with a bank */ FsmDown(&mp->link.ccp.fsm); FsmClose(&mp->link.ccp.fsm); /* Received fragments go in the bit-bucket */ while (mp->inbufs) { next = mp->inbufs->pnext; pfree(mp->inbufs); mp->inbufs = next; } peerid_Init(&mp->peer); mp->active = 0; } } void mp_linkInit(struct mp_link *mplink) { mplink->seq = 0; mplink->weight = 1500; } void mp_Input(struct mp *mp, struct mbuf *m, struct physical *p) { struct mp_header mh, h; struct mbuf *q, *last; int32_t seq; if (mp_ReadHeader(mp, m, &mh) == 0) { pfree(m); return; } seq = p->dl->mp.seq; p->dl->mp.seq = mh.seq; if (mp->seq.min_in == seq) { /* * We've received new data on the link that has our min (oldest) seq. * Figure out which link now has the smallest (oldest) seq. */ struct datalink *dl; mp->seq.min_in = p->dl->mp.seq; for (dl = mp->bundle->links; dl; dl = dl->next) if (mp->seq.min_in > dl->mp.seq) mp->seq.min_in = dl->mp.seq; } /* * Now process as many of our fragments as we can, adding our new * fragment in as we go, and ordering with the oldest at the top of * the queue. */ if (!mp->inbufs) { mp->inbufs = m; m = NULL; } last = NULL; seq = mp->seq.next_in; q = mp->inbufs; while (q) { mp_ReadHeader(mp, q, &h); if (m && h.seq > mh.seq) { /* Our received fragment fits in before this one, so link it in */ if (last) last->pnext = m; else mp->inbufs = m; m->pnext = q; q = m; h = mh; m = NULL; } if (h.seq != seq) { /* we're missing something :-( */ if (mp->seq.min_in > seq) { /* we're never gonna get it */ struct mbuf *next; /* Zap all older fragments */ while (mp->inbufs != q) { LogPrintf(LogDEBUG, "Drop frag\n"); next = mp->inbufs->pnext; pfree(mp->inbufs); mp->inbufs = next; } /* * Zap everything until the next `end' fragment OR just before * the next `begin' fragment OR 'till seq.min_in - whichever * comes first. */ do { mp_ReadHeader(mp, mp->inbufs, &h); if (h.begin) { /* We might be able to process this ! */ h.seq--; /* We're gonna look for fragment with h.seq+1 */ break; } next = mp->inbufs->pnext; LogPrintf(LogDEBUG, "Drop frag %u\n", h.seq); pfree(mp->inbufs); mp->inbufs = next; } while (mp->inbufs && (h.seq >= mp->seq.min_in || h.end)); /* * Continue processing things from here. * This deals with the possibility that we received a fragment * on the slowest link that invalidates some of our data (because * of the hole at `q'), but where there are subsequent `whole' * packets that have already been received. */ mp->seq.next_in = seq = h.seq + 1; last = NULL; q = mp->inbufs; } else /* we may still receive the missing fragment */ break; } else if (h.end) { /* We've got something, reassemble */ struct mbuf **frag = &q; int len; u_long first = -1; do { *frag = mp->inbufs; mp->inbufs = mp->inbufs->pnext; len = mp_ReadHeader(mp, *frag, &h); if (first == -1) first = h.seq; (*frag)->offset += len; (*frag)->cnt -= len; (*frag)->pnext = NULL; if (frag == &q && !h.begin) { LogPrintf(LogWARN, "Oops - MP frag %lu should have a begin flag\n", (u_long)h.seq); pfree(q); q = NULL; } else if (frag != &q && h.begin) { LogPrintf(LogWARN, "Oops - MP frag %lu should have an end flag\n", (u_long)h.seq - 1); /* * Stuff our fragment back at the front of the queue and zap * our half-assembed packet. */ (*frag)->pnext = mp->inbufs; mp->inbufs = *frag; *frag = NULL; pfree(q); q = NULL; frag = &q; h.end = 0; /* just in case it's a whole packet */ } else do frag = &(*frag)->next; while (*frag != NULL); } while (!h.end); if (q) { u_short proto; u_char ch; q = mbread(q, &ch, 1); proto = ch; if (!(proto & 1)) { q = mbread(q, &ch, 1); proto <<= 8; proto += ch; } if (LogIsKept(LogDEBUG)) LogPrintf(LogDEBUG, "MP: Reassembled frags %ld-%lu, length %d\n", first, (u_long)h.seq, plength(q)); hdlc_DecodePacket(mp->bundle, proto, q, &mp->link); } mp->seq.next_in = seq = h.seq + 1; last = NULL; q = mp->inbufs; } else { /* Look for the next fragment */ seq++; last = q; q = q->pnext; } } if (m) { /* We still have to find a home for our new fragment */ last = NULL; for (q = mp->inbufs; q; last = q, q = q->pnext) { mp_ReadHeader(mp, q, &h); if (h.seq > mh.seq) { /* Our received fragment fits in before this one, so link it in */ if (last) last->pnext = m; else mp->inbufs = m; m->pnext = q; break; } } } } static void mp_Output(struct mp *mp, struct link *l, struct mbuf *m, int begin, int end) { struct mbuf *mo; /* Stuff an MP header on the front of our packet and send it */ mo = mballoc(4, MB_MP); mo->next = m; if (mp->peer_is12bit) { u_int16_t *seq16; seq16 = (u_int16_t *)MBUF_CTOP(mo); *seq16 = htons((begin << 15) | (end << 14) | (u_int16_t)mp->seq.out); mo->cnt = 2; } else { u_int32_t *seq32; seq32 = (u_int32_t *)MBUF_CTOP(mo); *seq32 = htonl((begin << 31) | (end << 30) | (u_int32_t)mp->seq.out); mo->cnt = 4; } if (LogIsKept(LogDEBUG)) LogPrintf(LogDEBUG, "MP[frag %d]: Send %d bytes on %s\n", mp->seq.out, plength(mo), l->name); mp->seq.out = inc_seq(mp, mp->seq.out); HdlcOutput(l, PRI_NORMAL, PROTO_MP, mo); } int mp_FillQueues(struct bundle *bundle) { struct mp *mp = &bundle->ncp.mp; struct datalink *dl; int total, add, len, begin, end, looped; struct mbuf *m, *mo; /* * XXX: This routine is fairly simplistic. It should re-order the * links based on the amount of data less than the links weight * that was queued. That way we'd ``prefer'' the least used * links the next time 'round. */ total = 0; for (dl = bundle->links; dl; dl = dl->next) { if (dl->physical->out) /* this link has suffered a short write. Let it continue */ continue; add = link_QueueLen(&dl->physical->link); total += add; if (add) /* this link has got stuff already queued. Let it continue */ continue; if (!link_QueueLen(&mp->link) && !IpFlushPacket(&mp->link, bundle)) /* Nothing else to send */ break; m = link_Dequeue(&mp->link); len = plength(m); add += len; begin = 1; end = 0; looped = 0; for (; !end; dl = dl->next) { if (dl == NULL) { /* Keep going 'till we get rid of the whole of `m' */ looped = 1; dl = bundle->links; } if (len <= dl->mp.weight + LINK_MINWEIGHT) { mo = m; end = 1; } else { mo = mballoc(dl->mp.weight, MB_MP); mo->cnt = dl->mp.weight; len -= mo->cnt; m = mbread(m, MBUF_CTOP(mo), mo->cnt); } mp_Output(mp, &dl->physical->link, mo, begin, end); begin = 0; } if (!dl || looped) break; } return total; } int mp_SetDatalinkWeight(struct cmdargs const *arg) { int val; if (arg->argc != arg->argn+1) return -1; val = atoi(arg->argv[arg->argn]); if (val < LINK_MINWEIGHT) { LogPrintf(LogWARN, "Link weights must not be less than %d\n", LINK_MINWEIGHT); return 1; } arg->cx->mp.weight = val; return 0; } int mp_ShowStatus(struct cmdargs const *arg) { struct mp *mp = &arg->bundle->ncp.mp; prompt_Printf(arg->prompt, "Multilink is %sactive\n", mp->active ? "" : "in"); prompt_Printf(arg->prompt, "\nMy Side:\n"); if (mp->active) { prompt_Printf(arg->prompt, " MRRU: %u\n", mp->local_mrru); prompt_Printf(arg->prompt, " Short Seq: %s\n", mp->local_is12bit ? "on" : "off"); } prompt_Printf(arg->prompt, " Discriminator: %s\n", mp_Enddisc(mp->cfg.enddisc.class, mp->cfg.enddisc.address, mp->cfg.enddisc.len)); prompt_Printf(arg->prompt, "\nHis Side:\n"); if (mp->active) { prompt_Printf(arg->prompt, " Auth Name: %s\n", mp->peer.authname); prompt_Printf(arg->prompt, " Next SEQ: %u\n", mp->seq.out); prompt_Printf(arg->prompt, " MRRU: %u\n", mp->peer_mrru); prompt_Printf(arg->prompt, " Short Seq: %s\n", mp->peer_is12bit ? "on" : "off"); } prompt_Printf(arg->prompt, " Discriminator: %s\n", mp_Enddisc(mp->peer.enddisc.class, mp->peer.enddisc.address, mp->peer.enddisc.len)); prompt_Printf(arg->prompt, "\nDefaults:\n"); prompt_Printf(arg->prompt, " MRRU: "); if (mp->cfg.mrru) prompt_Printf(arg->prompt, "%d (multilink enabled)\n", mp->cfg.mrru); else prompt_Printf(arg->prompt, "disabled\n"); prompt_Printf(arg->prompt, " Short Seq: %s\n", command_ShowNegval(mp->cfg.shortseq)); return 0; } const char * mp_Enddisc(u_char c, const char *address, int len) { static char result[100]; int f, header; switch (c) { case ENDDISC_NULL: sprintf(result, "Null Class"); break; case ENDDISC_LOCAL: snprintf(result, sizeof result, "Local Addr: %.*s", len, address); break; case ENDDISC_IP: if (len == 4) snprintf(result, sizeof result, "IP %s", inet_ntoa(*(const struct in_addr *)address)); else sprintf(result, "IP[%d] ???", len); break; case ENDDISC_MAC: if (len == 6) { const u_char *m = (const u_char *)address; snprintf(result, sizeof result, "MAC %02x:%02x:%02x:%02x:%02x:%02x", m[0], m[1], m[2], m[3], m[4], m[5]); } else sprintf(result, "MAC[%d] ???", len); break; case ENDDISC_MAGIC: sprintf(result, "Magic: 0x"); header = strlen(result); if (len > sizeof result - header - 1) len = sizeof result - header - 1; for (f = 0; f < len; f++) sprintf(result + header + 2 * f, "%02x", address[f]); break; case ENDDISC_PSN: snprintf(result, sizeof result, "PSN: %.*s", len, address); break; default: sprintf(result, "%d: ", (int)c); header = strlen(result); if (len > sizeof result - header - 1) len = sizeof result - header - 1; for (f = 0; f < len; f++) sprintf(result + header + 2 * f, "%02x", address[f]); break; } return result; } int mp_SetEnddisc(struct cmdargs const *arg) { struct mp *mp = &arg->bundle->ncp.mp; struct in_addr addr; if (bundle_Phase(arg->bundle) != PHASE_DEAD) { LogPrintf(LogWARN, "set enddisc: Only available at phase DEAD\n"); return 1; } if (arg->argc == arg->argn) { mp->cfg.enddisc.class = 0; *mp->cfg.enddisc.address = '\0'; mp->cfg.enddisc.len = 0; } else if (arg->argc > arg->argn) if (!strcasecmp(arg->argv[arg->argn], "label")) { mp->cfg.enddisc.class = ENDDISC_LOCAL; strcpy(mp->cfg.enddisc.address, arg->bundle->cfg.label); mp->cfg.enddisc.len = strlen(mp->cfg.enddisc.address); } else if (!strcasecmp(arg->argv[arg->argn], "ip")) { if (arg->bundle->ncp.ipcp.my_ifip.s_addr == INADDR_ANY) addr = arg->bundle->ncp.ipcp.my_ip; else addr = arg->bundle->ncp.ipcp.my_ifip; memcpy(mp->cfg.enddisc.address, &addr.s_addr, sizeof addr.s_addr); mp->cfg.enddisc.class = ENDDISC_IP; mp->cfg.enddisc.len = sizeof arg->bundle->ncp.ipcp.my_ip.s_addr; } else if (!strcasecmp(arg->argv[arg->argn], "mac")) { struct sockaddr_dl hwaddr; int s; if (arg->bundle->ncp.ipcp.my_ifip.s_addr == INADDR_ANY) addr = arg->bundle->ncp.ipcp.my_ip; else addr = arg->bundle->ncp.ipcp.my_ifip; s = ID0socket(AF_INET, SOCK_DGRAM, 0); if (s < 0) { LogPrintf(LogERROR, "set enddisc: socket(): %s\n", strerror(errno)); return 2; } if (get_ether_addr(s, addr, &hwaddr)) { mp->cfg.enddisc.class = ENDDISC_MAC; memcpy(mp->cfg.enddisc.address, hwaddr.sdl_data + hwaddr.sdl_nlen, hwaddr.sdl_alen); mp->cfg.enddisc.len = hwaddr.sdl_alen; } else { LogPrintf(LogWARN, "set enddisc: Can't locate MAC address for %s\n", inet_ntoa(arg->bundle->ncp.ipcp.cfg.my_range.ipaddr)); close(s); return 4; } close(s); } else if (!strcasecmp(arg->argv[arg->argn], "magic")) { int f; randinit(); for (f = 0; f < 20; f += sizeof(long)) *(long *)(mp->cfg.enddisc.address + f) = random(); mp->cfg.enddisc.class = ENDDISC_MAGIC; mp->cfg.enddisc.len = 20; } else if (!strcasecmp(arg->argv[arg->argn], "psn")) { if (arg->argc > arg->argn+1) { mp->cfg.enddisc.class = ENDDISC_PSN; strcpy(mp->cfg.enddisc.address, arg->argv[arg->argn+1]); mp->cfg.enddisc.len = strlen(mp->cfg.enddisc.address); } else { LogPrintf(LogWARN, "PSN endpoint requires additional data\n"); return 5; } } else { LogPrintf(LogWARN, "%s: Unrecognised endpoint type\n", arg->argv[arg->argn]); return 6; } return 0; }