/*- * Copyright (c) 1997, 1998, 1999 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * 3Com 3c90x Etherlink XL PCI NIC driver * * Supports the 3Com "boomerang", "cyclone" and "hurricane" PCI * bus-master chips (3c90x cards and embedded controllers) including * the following: * * 3Com 3c900-TPO 10Mbps/RJ-45 * 3Com 3c900-COMBO 10Mbps/RJ-45,AUI,BNC * 3Com 3c905-TX 10/100Mbps/RJ-45 * 3Com 3c905-T4 10/100Mbps/RJ-45 * 3Com 3c900B-TPO 10Mbps/RJ-45 * 3Com 3c900B-COMBO 10Mbps/RJ-45,AUI,BNC * 3Com 3c900B-TPC 10Mbps/RJ-45,BNC * 3Com 3c900B-FL 10Mbps/Fiber-optic * 3Com 3c905B-COMBO 10/100Mbps/RJ-45,AUI,BNC * 3Com 3c905B-TX 10/100Mbps/RJ-45 * 3Com 3c905B-FL/FX 10/100Mbps/Fiber-optic * 3Com 3c905C-TX 10/100Mbps/RJ-45 (Tornado ASIC) * 3Com 3c980-TX 10/100Mbps server adapter (Hurricane ASIC) * 3Com 3c980C-TX 10/100Mbps server adapter (Tornado ASIC) * 3Com 3cSOHO100-TX 10/100Mbps/RJ-45 (Hurricane ASIC) * 3Com 3c450-TX 10/100Mbps/RJ-45 (Tornado ASIC) * 3Com 3c555 10/100Mbps/RJ-45 (MiniPCI, Laptop Hurricane) * 3Com 3c556 10/100Mbps/RJ-45 (MiniPCI, Hurricane ASIC) * 3Com 3c556B 10/100Mbps/RJ-45 (MiniPCI, Hurricane ASIC) * 3Com 3c575TX 10/100Mbps/RJ-45 (Cardbus, Hurricane ASIC) * 3Com 3c575B 10/100Mbps/RJ-45 (Cardbus, Hurricane ASIC) * 3Com 3c575C 10/100Mbps/RJ-45 (Cardbus, Hurricane ASIC) * 3Com 3cxfem656 10/100Mbps/RJ-45 (Cardbus, Hurricane ASIC) * 3Com 3cxfem656b 10/100Mbps/RJ-45 (Cardbus, Hurricane ASIC) * 3Com 3cxfem656c 10/100Mbps/RJ-45 (Cardbus, Tornado ASIC) * Dell Optiplex GX1 on-board 3c918 10/100Mbps/RJ-45 * Dell on-board 3c920 10/100Mbps/RJ-45 * Dell Precision on-board 3c905B 10/100Mbps/RJ-45 * Dell Latitude laptop docking station embedded 3c905-TX * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The 3c90x series chips use a bus-master DMA interface for transfering * packets to and from the controller chip. Some of the "vortex" cards * (3c59x) also supported a bus master mode, however for those chips * you could only DMA packets to/from a contiguous memory buffer. For * transmission this would mean copying the contents of the queued mbuf * chain into an mbuf cluster and then DMAing the cluster. This extra * copy would sort of defeat the purpose of the bus master support for * any packet that doesn't fit into a single mbuf. * * By contrast, the 3c90x cards support a fragment-based bus master * mode where mbuf chains can be encapsulated using TX descriptors. * This is similar to other PCI chips such as the Texas Instruments * ThunderLAN and the Intel 82557/82558. * * The "vortex" driver (if_vx.c) happens to work for the "boomerang" * bus master chips because they maintain the old PIO interface for * backwards compatibility, but starting with the 3c905B and the * "cyclone" chips, the compatibility interface has been dropped. * Since using bus master DMA is a big win, we use this driver to * support the PCI "boomerang" chips even though they work with the * "vortex" driver in order to obtain better performance. * * This driver is in the /sys/pci directory because it only supports * PCI-based NICs. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MODULE_DEPEND(xl, pci, 1, 1, 1); MODULE_DEPEND(xl, ether, 1, 1, 1); MODULE_DEPEND(xl, miibus, 1, 1, 1); /* "device miibus" required. See GENERIC if you get errors here. */ #include "miibus_if.h" #include /* * TX Checksumming is disabled by default for two reasons: * - TX Checksumming will occasionally produce corrupt packets * - TX Checksumming seems to reduce performance * * Only 905B/C cards were reported to have this problem, it is possible * that later chips _may_ be immune. */ #define XL905B_TXCSUM_BROKEN 1 #ifdef XL905B_TXCSUM_BROKEN #define XL905B_CSUM_FEATURES 0 #else #define XL905B_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) #endif /* * Various supported device vendors/types and their names. */ static struct xl_type xl_devs[] = { { TC_VENDORID, TC_DEVICEID_BOOMERANG_10BT, "3Com 3c900-TPO Etherlink XL" }, { TC_VENDORID, TC_DEVICEID_BOOMERANG_10BT_COMBO, "3Com 3c900-COMBO Etherlink XL" }, { TC_VENDORID, TC_DEVICEID_BOOMERANG_10_100BT, "3Com 3c905-TX Fast Etherlink XL" }, { TC_VENDORID, TC_DEVICEID_BOOMERANG_100BT4, "3Com 3c905-T4 Fast Etherlink XL" }, { TC_VENDORID, TC_DEVICEID_KRAKATOA_10BT, "3Com 3c900B-TPO Etherlink XL" }, { TC_VENDORID, TC_DEVICEID_KRAKATOA_10BT_COMBO, "3Com 3c900B-COMBO Etherlink XL" }, { TC_VENDORID, TC_DEVICEID_KRAKATOA_10BT_TPC, "3Com 3c900B-TPC Etherlink XL" }, { TC_VENDORID, TC_DEVICEID_CYCLONE_10FL, "3Com 3c900B-FL Etherlink XL" }, { TC_VENDORID, TC_DEVICEID_HURRICANE_10_100BT, "3Com 3c905B-TX Fast Etherlink XL" }, { TC_VENDORID, TC_DEVICEID_CYCLONE_10_100BT4, "3Com 3c905B-T4 Fast Etherlink XL" }, { TC_VENDORID, TC_DEVICEID_CYCLONE_10_100FX, "3Com 3c905B-FX/SC Fast Etherlink XL" }, { TC_VENDORID, TC_DEVICEID_CYCLONE_10_100_COMBO, "3Com 3c905B-COMBO Fast Etherlink XL" }, { TC_VENDORID, TC_DEVICEID_TORNADO_10_100BT, "3Com 3c905C-TX Fast Etherlink XL" }, { TC_VENDORID, TC_DEVICEID_TORNADO_10_100BT_920B, "3Com 3c920B-EMB Integrated Fast Etherlink XL" }, { TC_VENDORID, TC_DEVICEID_TORNADO_10_100BT_920B_WNM, "3Com 3c920B-EMB-WNM Integrated Fast Etherlink XL" }, { TC_VENDORID, TC_DEVICEID_HURRICANE_10_100BT_SERV, "3Com 3c980 Fast Etherlink XL" }, { TC_VENDORID, TC_DEVICEID_TORNADO_10_100BT_SERV, "3Com 3c980C Fast Etherlink XL" }, { TC_VENDORID, TC_DEVICEID_HURRICANE_SOHO100TX, "3Com 3cSOHO100-TX OfficeConnect" }, { TC_VENDORID, TC_DEVICEID_TORNADO_HOMECONNECT, "3Com 3c450-TX HomeConnect" }, { TC_VENDORID, TC_DEVICEID_HURRICANE_555, "3Com 3c555 Fast Etherlink XL" }, { TC_VENDORID, TC_DEVICEID_HURRICANE_556, "3Com 3c556 Fast Etherlink XL" }, { TC_VENDORID, TC_DEVICEID_HURRICANE_556B, "3Com 3c556B Fast Etherlink XL" }, { TC_VENDORID, TC_DEVICEID_HURRICANE_575A, "3Com 3c575TX Fast Etherlink XL" }, { TC_VENDORID, TC_DEVICEID_HURRICANE_575B, "3Com 3c575B Fast Etherlink XL" }, { TC_VENDORID, TC_DEVICEID_HURRICANE_575C, "3Com 3c575C Fast Etherlink XL" }, { TC_VENDORID, TC_DEVICEID_HURRICANE_656, "3Com 3c656 Fast Etherlink XL" }, { TC_VENDORID, TC_DEVICEID_HURRICANE_656B, "3Com 3c656B Fast Etherlink XL" }, { TC_VENDORID, TC_DEVICEID_TORNADO_656C, "3Com 3c656C Fast Etherlink XL" }, { 0, 0, NULL } }; static int xl_probe(device_t); static int xl_attach(device_t); static int xl_detach(device_t); static int xl_newbuf(struct xl_softc *, struct xl_chain_onefrag *); static void xl_stats_update(void *); static void xl_stats_update_locked(struct xl_softc *); static int xl_encap(struct xl_softc *, struct xl_chain *, struct mbuf *); static void xl_rxeof(struct xl_softc *); static int xl_rx_resync(struct xl_softc *); static void xl_txeof(struct xl_softc *); static void xl_txeof_90xB(struct xl_softc *); static void xl_txeoc(struct xl_softc *); static void xl_intr(void *); static void xl_start(struct ifnet *); static void xl_start_locked(struct ifnet *); static void xl_start_90xB_locked(struct ifnet *); static int xl_ioctl(struct ifnet *, u_long, caddr_t); static void xl_init(void *); static void xl_init_locked(struct xl_softc *); static void xl_stop(struct xl_softc *); static void xl_watchdog(struct ifnet *); static void xl_shutdown(device_t); static int xl_suspend(device_t); static int xl_resume(device_t); static int xl_ifmedia_upd(struct ifnet *); static void xl_ifmedia_sts(struct ifnet *, struct ifmediareq *); static int xl_eeprom_wait(struct xl_softc *); static int xl_read_eeprom(struct xl_softc *, caddr_t, int, int, int); static void xl_mii_sync(struct xl_softc *); static void xl_mii_send(struct xl_softc *, u_int32_t, int); static int xl_mii_readreg(struct xl_softc *, struct xl_mii_frame *); static int xl_mii_writereg(struct xl_softc *, struct xl_mii_frame *); static void xl_setcfg(struct xl_softc *); static void xl_setmode(struct xl_softc *, int); static void xl_setmulti(struct xl_softc *); static void xl_setmulti_hash(struct xl_softc *); static void xl_reset(struct xl_softc *); static int xl_list_rx_init(struct xl_softc *); static int xl_list_tx_init(struct xl_softc *); static int xl_list_tx_init_90xB(struct xl_softc *); static void xl_wait(struct xl_softc *); static void xl_mediacheck(struct xl_softc *); static void xl_choose_media(struct xl_softc *sc, int *media); static void xl_choose_xcvr(struct xl_softc *, int); static void xl_dma_map_addr(void *, bus_dma_segment_t *, int, int); static void xl_dma_map_rxbuf(void *, bus_dma_segment_t *, int, bus_size_t, int); static void xl_dma_map_txbuf(void *, bus_dma_segment_t *, int, bus_size_t, int); #ifdef notdef static void xl_testpacket(struct xl_softc *); #endif static int xl_miibus_readreg(device_t, int, int); static int xl_miibus_writereg(device_t, int, int, int); static void xl_miibus_statchg(device_t); static void xl_miibus_mediainit(device_t); static device_method_t xl_methods[] = { /* Device interface */ DEVMETHOD(device_probe, xl_probe), DEVMETHOD(device_attach, xl_attach), DEVMETHOD(device_detach, xl_detach), DEVMETHOD(device_shutdown, xl_shutdown), DEVMETHOD(device_suspend, xl_suspend), DEVMETHOD(device_resume, xl_resume), /* bus interface */ DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(bus_driver_added, bus_generic_driver_added), /* MII interface */ DEVMETHOD(miibus_readreg, xl_miibus_readreg), DEVMETHOD(miibus_writereg, xl_miibus_writereg), DEVMETHOD(miibus_statchg, xl_miibus_statchg), DEVMETHOD(miibus_mediainit, xl_miibus_mediainit), { 0, 0 } }; static driver_t xl_driver = { "xl", xl_methods, sizeof(struct xl_softc) }; static devclass_t xl_devclass; DRIVER_MODULE(xl, cardbus, xl_driver, xl_devclass, 0, 0); DRIVER_MODULE(xl, pci, xl_driver, xl_devclass, 0, 0); DRIVER_MODULE(miibus, xl, miibus_driver, miibus_devclass, 0, 0); static void xl_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) { u_int32_t *paddr; paddr = arg; *paddr = segs->ds_addr; } static void xl_dma_map_rxbuf(void *arg, bus_dma_segment_t *segs, int nseg, bus_size_t mapsize, int error) { u_int32_t *paddr; if (error) return; KASSERT(nseg == 1, ("xl_dma_map_rxbuf: too many DMA segments")); paddr = arg; *paddr = segs->ds_addr; } static void xl_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg, bus_size_t mapsize, int error) { struct xl_list *l; int i, total_len; if (error) return; KASSERT(nseg <= XL_MAXFRAGS, ("too many DMA segments")); total_len = 0; l = arg; for (i = 0; i < nseg; i++) { KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large")); l->xl_frag[i].xl_addr = htole32(segs[i].ds_addr); l->xl_frag[i].xl_len = htole32(segs[i].ds_len); total_len += segs[i].ds_len; } l->xl_frag[nseg - 1].xl_len = htole32(segs[nseg - 1].ds_len | XL_LAST_FRAG); l->xl_status = htole32(total_len); l->xl_next = 0; } /* * Murphy's law says that it's possible the chip can wedge and * the 'command in progress' bit may never clear. Hence, we wait * only a finite amount of time to avoid getting caught in an * infinite loop. Normally this delay routine would be a macro, * but it isn't called during normal operation so we can afford * to make it a function. */ static void xl_wait(struct xl_softc *sc) { register int i; for (i = 0; i < XL_TIMEOUT; i++) { if ((CSR_READ_2(sc, XL_STATUS) & XL_STAT_CMDBUSY) == 0) break; } if (i == XL_TIMEOUT) if_printf(&sc->arpcom.ac_if, "command never completed!\n"); } /* * MII access routines are provided for adapters with external * PHYs (3c905-TX, 3c905-T4, 3c905B-T4) and those with built-in * autoneg logic that's faked up to look like a PHY (3c905B-TX). * Note: if you don't perform the MDIO operations just right, * it's possible to end up with code that works correctly with * some chips/CPUs/processor speeds/bus speeds/etc but not * with others. */ #define MII_SET(x) \ CSR_WRITE_2(sc, XL_W4_PHY_MGMT, \ CSR_READ_2(sc, XL_W4_PHY_MGMT) | (x)) #define MII_CLR(x) \ CSR_WRITE_2(sc, XL_W4_PHY_MGMT, \ CSR_READ_2(sc, XL_W4_PHY_MGMT) & ~(x)) /* * Sync the PHYs by setting data bit and strobing the clock 32 times. */ static void xl_mii_sync(struct xl_softc *sc) { register int i; XL_SEL_WIN(4); MII_SET(XL_MII_DIR|XL_MII_DATA); for (i = 0; i < 32; i++) { MII_SET(XL_MII_CLK); MII_SET(XL_MII_DATA); MII_SET(XL_MII_DATA); MII_CLR(XL_MII_CLK); MII_SET(XL_MII_DATA); MII_SET(XL_MII_DATA); } } /* * Clock a series of bits through the MII. */ static void xl_mii_send(struct xl_softc *sc, u_int32_t bits, int cnt) { int i; XL_SEL_WIN(4); MII_CLR(XL_MII_CLK); for (i = (0x1 << (cnt - 1)); i; i >>= 1) { if (bits & i) { MII_SET(XL_MII_DATA); } else { MII_CLR(XL_MII_DATA); } MII_CLR(XL_MII_CLK); MII_SET(XL_MII_CLK); } } /* * Read an PHY register through the MII. */ static int xl_mii_readreg(struct xl_softc *sc, struct xl_mii_frame *frame) { int i, ack; /*XL_LOCK_ASSERT(sc);*/ /* Set up frame for RX. */ frame->mii_stdelim = XL_MII_STARTDELIM; frame->mii_opcode = XL_MII_READOP; frame->mii_turnaround = 0; frame->mii_data = 0; /* Select register window 4. */ XL_SEL_WIN(4); CSR_WRITE_2(sc, XL_W4_PHY_MGMT, 0); /* Turn on data xmit. */ MII_SET(XL_MII_DIR); xl_mii_sync(sc); /* Send command/address info. */ xl_mii_send(sc, frame->mii_stdelim, 2); xl_mii_send(sc, frame->mii_opcode, 2); xl_mii_send(sc, frame->mii_phyaddr, 5); xl_mii_send(sc, frame->mii_regaddr, 5); /* Idle bit */ MII_CLR((XL_MII_CLK|XL_MII_DATA)); MII_SET(XL_MII_CLK); /* Turn off xmit. */ MII_CLR(XL_MII_DIR); /* Check for ack */ MII_CLR(XL_MII_CLK); ack = CSR_READ_2(sc, XL_W4_PHY_MGMT) & XL_MII_DATA; MII_SET(XL_MII_CLK); /* * Now try reading data bits. If the ack failed, we still * need to clock through 16 cycles to keep the PHY(s) in sync. */ if (ack) { for (i = 0; i < 16; i++) { MII_CLR(XL_MII_CLK); MII_SET(XL_MII_CLK); } goto fail; } for (i = 0x8000; i; i >>= 1) { MII_CLR(XL_MII_CLK); if (!ack) { if (CSR_READ_2(sc, XL_W4_PHY_MGMT) & XL_MII_DATA) frame->mii_data |= i; } MII_SET(XL_MII_CLK); } fail: MII_CLR(XL_MII_CLK); MII_SET(XL_MII_CLK); return (ack ? 1 : 0); } /* * Write to a PHY register through the MII. */ static int xl_mii_writereg(struct xl_softc *sc, struct xl_mii_frame *frame) { /*XL_LOCK_ASSERT(sc);*/ /* Set up frame for TX. */ frame->mii_stdelim = XL_MII_STARTDELIM; frame->mii_opcode = XL_MII_WRITEOP; frame->mii_turnaround = XL_MII_TURNAROUND; /* Select the window 4. */ XL_SEL_WIN(4); /* Turn on data output. */ MII_SET(XL_MII_DIR); xl_mii_sync(sc); xl_mii_send(sc, frame->mii_stdelim, 2); xl_mii_send(sc, frame->mii_opcode, 2); xl_mii_send(sc, frame->mii_phyaddr, 5); xl_mii_send(sc, frame->mii_regaddr, 5); xl_mii_send(sc, frame->mii_turnaround, 2); xl_mii_send(sc, frame->mii_data, 16); /* Idle bit. */ MII_SET(XL_MII_CLK); MII_CLR(XL_MII_CLK); /* Turn off xmit. */ MII_CLR(XL_MII_DIR); return (0); } static int xl_miibus_readreg(device_t dev, int phy, int reg) { struct xl_softc *sc; struct xl_mii_frame frame; sc = device_get_softc(dev); /* * Pretend that PHYs are only available at MII address 24. * This is to guard against problems with certain 3Com ASIC * revisions that incorrectly map the internal transceiver * control registers at all MII addresses. This can cause * the miibus code to attach the same PHY several times over. */ if ((sc->xl_flags & XL_FLAG_PHYOK) == 0 && phy != 24) return (0); bzero((char *)&frame, sizeof(frame)); frame.mii_phyaddr = phy; frame.mii_regaddr = reg; xl_mii_readreg(sc, &frame); return (frame.mii_data); } static int xl_miibus_writereg(device_t dev, int phy, int reg, int data) { struct xl_softc *sc; struct xl_mii_frame frame; sc = device_get_softc(dev); if ((sc->xl_flags & XL_FLAG_PHYOK) == 0 && phy != 24) return (0); bzero((char *)&frame, sizeof(frame)); frame.mii_phyaddr = phy; frame.mii_regaddr = reg; frame.mii_data = data; xl_mii_writereg(sc, &frame); return (0); } static void xl_miibus_statchg(device_t dev) { struct xl_softc *sc; struct mii_data *mii; sc = device_get_softc(dev); mii = device_get_softc(sc->xl_miibus); /*XL_LOCK_ASSERT(sc);*/ xl_setcfg(sc); /* Set ASIC's duplex mode to match the PHY. */ XL_SEL_WIN(3); if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) CSR_WRITE_1(sc, XL_W3_MAC_CTRL, XL_MACCTRL_DUPLEX); else CSR_WRITE_1(sc, XL_W3_MAC_CTRL, (CSR_READ_1(sc, XL_W3_MAC_CTRL) & ~XL_MACCTRL_DUPLEX)); } /* * Special support for the 3c905B-COMBO. This card has 10/100 support * plus BNC and AUI ports. This means we will have both an miibus attached * plus some non-MII media settings. In order to allow this, we have to * add the extra media to the miibus's ifmedia struct, but we can't do * that during xl_attach() because the miibus hasn't been attached yet. * So instead, we wait until the miibus probe/attach is done, at which * point we will get a callback telling is that it's safe to add our * extra media. */ static void xl_miibus_mediainit(device_t dev) { struct xl_softc *sc; struct mii_data *mii; struct ifmedia *ifm; sc = device_get_softc(dev); mii = device_get_softc(sc->xl_miibus); ifm = &mii->mii_media; /*XL_LOCK_ASSERT(sc);*/ if (sc->xl_media & (XL_MEDIAOPT_AUI | XL_MEDIAOPT_10FL)) { /* * Check for a 10baseFL board in disguise. */ if (sc->xl_type == XL_TYPE_905B && sc->xl_media == XL_MEDIAOPT_10FL) { if (bootverbose) if_printf(&sc->arpcom.ac_if, "found 10baseFL\n"); ifmedia_add(ifm, IFM_ETHER | IFM_10_FL, 0, NULL); ifmedia_add(ifm, IFM_ETHER | IFM_10_FL|IFM_HDX, 0, NULL); if (sc->xl_caps & XL_CAPS_FULL_DUPLEX) ifmedia_add(ifm, IFM_ETHER | IFM_10_FL | IFM_FDX, 0, NULL); } else { if (bootverbose) if_printf(&sc->arpcom.ac_if, "found AUI\n"); ifmedia_add(ifm, IFM_ETHER | IFM_10_5, 0, NULL); } } if (sc->xl_media & XL_MEDIAOPT_BNC) { if (bootverbose) if_printf(&sc->arpcom.ac_if, "found BNC\n"); ifmedia_add(ifm, IFM_ETHER | IFM_10_2, 0, NULL); } } /* * The EEPROM is slow: give it time to come ready after issuing * it a command. */ static int xl_eeprom_wait(struct xl_softc *sc) { int i; for (i = 0; i < 100; i++) { if (CSR_READ_2(sc, XL_W0_EE_CMD) & XL_EE_BUSY) DELAY(162); else break; } if (i == 100) { if_printf(&sc->arpcom.ac_if, "eeprom failed to come ready\n"); return (1); } return (0); } /* * Read a sequence of words from the EEPROM. Note that ethernet address * data is stored in the EEPROM in network byte order. */ static int xl_read_eeprom(struct xl_softc *sc, caddr_t dest, int off, int cnt, int swap) { int err = 0, i; u_int16_t word = 0, *ptr; XL_LOCK_ASSERT(sc); #define EEPROM_5BIT_OFFSET(A) ((((A) << 2) & 0x7F00) | ((A) & 0x003F)) #define EEPROM_8BIT_OFFSET(A) ((A) & 0x003F) /* * XXX: WARNING! DANGER! * It's easy to accidentally overwrite the rom content! * Note: the 3c575 uses 8bit EEPROM offsets. */ XL_SEL_WIN(0); if (xl_eeprom_wait(sc)) return (1); if (sc->xl_flags & XL_FLAG_EEPROM_OFFSET_30) off += 0x30; for (i = 0; i < cnt; i++) { if (sc->xl_flags & XL_FLAG_8BITROM) CSR_WRITE_2(sc, XL_W0_EE_CMD, XL_EE_8BIT_READ | EEPROM_8BIT_OFFSET(off + i)); else CSR_WRITE_2(sc, XL_W0_EE_CMD, XL_EE_READ | EEPROM_5BIT_OFFSET(off + i)); err = xl_eeprom_wait(sc); if (err) break; word = CSR_READ_2(sc, XL_W0_EE_DATA); ptr = (u_int16_t *)(dest + (i * 2)); if (swap) *ptr = ntohs(word); else *ptr = word; } return (err ? 1 : 0); } /* * NICs older than the 3c905B have only one multicast option, which * is to enable reception of all multicast frames. */ static void xl_setmulti(struct xl_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; struct ifmultiaddr *ifma; u_int8_t rxfilt; int mcnt = 0; XL_LOCK_ASSERT(sc); XL_SEL_WIN(5); rxfilt = CSR_READ_1(sc, XL_W5_RX_FILTER); if (ifp->if_flags & IFF_ALLMULTI) { rxfilt |= XL_RXFILTER_ALLMULTI; CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt); return; } TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) mcnt++; if (mcnt) rxfilt |= XL_RXFILTER_ALLMULTI; else rxfilt &= ~XL_RXFILTER_ALLMULTI; CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt); } /* * 3c905B adapters have a hash filter that we can program. */ static void xl_setmulti_hash(struct xl_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; int h = 0, i; struct ifmultiaddr *ifma; u_int8_t rxfilt; int mcnt = 0; XL_LOCK_ASSERT(sc); XL_SEL_WIN(5); rxfilt = CSR_READ_1(sc, XL_W5_RX_FILTER); if (ifp->if_flags & IFF_ALLMULTI) { rxfilt |= XL_RXFILTER_ALLMULTI; CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt); return; } else rxfilt &= ~XL_RXFILTER_ALLMULTI; /* first, zot all the existing hash bits */ for (i = 0; i < XL_HASHFILT_SIZE; i++) CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_HASH|i); /* now program new ones */ TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; /* * Note: the 3c905B currently only supports a 64-bit hash * table, which means we really only need 6 bits, but the * manual indicates that future chip revisions will have a * 256-bit hash table, hence the routine is set up to * calculate 8 bits of position info in case we need it some * day. * Note II, The Sequel: _CURRENT_ versions of the 3c905B have * a 256 bit hash table. This means we have to use all 8 bits * regardless. On older cards, the upper 2 bits will be * ignored. Grrrr.... */ h = ether_crc32_be(LLADDR((struct sockaddr_dl *) ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF; CSR_WRITE_2(sc, XL_COMMAND, h | XL_CMD_RX_SET_HASH | XL_HASH_SET); mcnt++; } if (mcnt) rxfilt |= XL_RXFILTER_MULTIHASH; else rxfilt &= ~XL_RXFILTER_MULTIHASH; CSR_WRITE_2(sc, XL_COMMAND, rxfilt | XL_CMD_RX_SET_FILT); } #ifdef notdef static void xl_testpacket(struct xl_softc *sc) { struct mbuf *m; struct ifnet *ifp = &sc->arpcom.ac_if; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) return; bcopy(&sc->arpcom.ac_enaddr, mtod(m, struct ether_header *)->ether_dhost, ETHER_ADDR_LEN); bcopy(&sc->arpcom.ac_enaddr, mtod(m, struct ether_header *)->ether_shost, ETHER_ADDR_LEN); mtod(m, struct ether_header *)->ether_type = htons(3); mtod(m, unsigned char *)[14] = 0; mtod(m, unsigned char *)[15] = 0; mtod(m, unsigned char *)[16] = 0xE3; m->m_len = m->m_pkthdr.len = sizeof(struct ether_header) + 3; IFQ_ENQUEUE(&ifp->if_snd, m); xl_start(ifp); } #endif static void xl_setcfg(struct xl_softc *sc) { u_int32_t icfg; /*XL_LOCK_ASSERT(sc);*/ XL_SEL_WIN(3); icfg = CSR_READ_4(sc, XL_W3_INTERNAL_CFG); icfg &= ~XL_ICFG_CONNECTOR_MASK; if (sc->xl_media & XL_MEDIAOPT_MII || sc->xl_media & XL_MEDIAOPT_BT4) icfg |= (XL_XCVR_MII << XL_ICFG_CONNECTOR_BITS); if (sc->xl_media & XL_MEDIAOPT_BTX) icfg |= (XL_XCVR_AUTO << XL_ICFG_CONNECTOR_BITS); CSR_WRITE_4(sc, XL_W3_INTERNAL_CFG, icfg); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_STOP); } static void xl_setmode(struct xl_softc *sc, int media) { u_int32_t icfg; u_int16_t mediastat; char *pmsg = "", *dmsg = ""; /*XL_LOCK_ASSERT(sc);*/ XL_SEL_WIN(4); mediastat = CSR_READ_2(sc, XL_W4_MEDIA_STATUS); XL_SEL_WIN(3); icfg = CSR_READ_4(sc, XL_W3_INTERNAL_CFG); if (sc->xl_media & XL_MEDIAOPT_BT) { if (IFM_SUBTYPE(media) == IFM_10_T) { pmsg = "10baseT transceiver"; sc->xl_xcvr = XL_XCVR_10BT; icfg &= ~XL_ICFG_CONNECTOR_MASK; icfg |= (XL_XCVR_10BT << XL_ICFG_CONNECTOR_BITS); mediastat |= XL_MEDIASTAT_LINKBEAT | XL_MEDIASTAT_JABGUARD; mediastat &= ~XL_MEDIASTAT_SQEENB; } } if (sc->xl_media & XL_MEDIAOPT_BFX) { if (IFM_SUBTYPE(media) == IFM_100_FX) { pmsg = "100baseFX port"; sc->xl_xcvr = XL_XCVR_100BFX; icfg &= ~XL_ICFG_CONNECTOR_MASK; icfg |= (XL_XCVR_100BFX << XL_ICFG_CONNECTOR_BITS); mediastat |= XL_MEDIASTAT_LINKBEAT; mediastat &= ~XL_MEDIASTAT_SQEENB; } } if (sc->xl_media & (XL_MEDIAOPT_AUI|XL_MEDIAOPT_10FL)) { if (IFM_SUBTYPE(media) == IFM_10_5) { pmsg = "AUI port"; sc->xl_xcvr = XL_XCVR_AUI; icfg &= ~XL_ICFG_CONNECTOR_MASK; icfg |= (XL_XCVR_AUI << XL_ICFG_CONNECTOR_BITS); mediastat &= ~(XL_MEDIASTAT_LINKBEAT | XL_MEDIASTAT_JABGUARD); mediastat |= ~XL_MEDIASTAT_SQEENB; } if (IFM_SUBTYPE(media) == IFM_10_FL) { pmsg = "10baseFL transceiver"; sc->xl_xcvr = XL_XCVR_AUI; icfg &= ~XL_ICFG_CONNECTOR_MASK; icfg |= (XL_XCVR_AUI << XL_ICFG_CONNECTOR_BITS); mediastat &= ~(XL_MEDIASTAT_LINKBEAT | XL_MEDIASTAT_JABGUARD); mediastat |= ~XL_MEDIASTAT_SQEENB; } } if (sc->xl_media & XL_MEDIAOPT_BNC) { if (IFM_SUBTYPE(media) == IFM_10_2) { pmsg = "AUI port"; sc->xl_xcvr = XL_XCVR_COAX; icfg &= ~XL_ICFG_CONNECTOR_MASK; icfg |= (XL_XCVR_COAX << XL_ICFG_CONNECTOR_BITS); mediastat &= ~(XL_MEDIASTAT_LINKBEAT | XL_MEDIASTAT_JABGUARD | XL_MEDIASTAT_SQEENB); } } if ((media & IFM_GMASK) == IFM_FDX || IFM_SUBTYPE(media) == IFM_100_FX) { dmsg = "full"; XL_SEL_WIN(3); CSR_WRITE_1(sc, XL_W3_MAC_CTRL, XL_MACCTRL_DUPLEX); } else { dmsg = "half"; XL_SEL_WIN(3); CSR_WRITE_1(sc, XL_W3_MAC_CTRL, (CSR_READ_1(sc, XL_W3_MAC_CTRL) & ~XL_MACCTRL_DUPLEX)); } if (IFM_SUBTYPE(media) == IFM_10_2) CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_START); else CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_STOP); CSR_WRITE_4(sc, XL_W3_INTERNAL_CFG, icfg); XL_SEL_WIN(4); CSR_WRITE_2(sc, XL_W4_MEDIA_STATUS, mediastat); DELAY(800); XL_SEL_WIN(7); if_printf(&sc->arpcom.ac_if, "selecting %s, %s duplex\n", pmsg, dmsg); } static void xl_reset(struct xl_softc *sc) { register int i; XL_LOCK_ASSERT(sc); XL_SEL_WIN(0); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RESET | ((sc->xl_flags & XL_FLAG_WEIRDRESET) ? XL_RESETOPT_DISADVFD:0)); /* * If we're using memory mapped register mode, pause briefly * after issuing the reset command before trying to access any * other registers. With my 3c575C cardbus card, failing to do * this results in the system locking up while trying to poll * the command busy bit in the status register. */ if (sc->xl_flags & XL_FLAG_USE_MMIO) DELAY(100000); for (i = 0; i < XL_TIMEOUT; i++) { DELAY(10); if (!(CSR_READ_2(sc, XL_STATUS) & XL_STAT_CMDBUSY)) break; } if (i == XL_TIMEOUT) if_printf(&sc->arpcom.ac_if, "reset didn't complete\n"); /* Reset TX and RX. */ /* Note: the RX reset takes an absurd amount of time * on newer versions of the Tornado chips such as those * on the 3c905CX and newer 3c908C cards. We wait an * extra amount of time so that xl_wait() doesn't complain * and annoy the users. */ CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_RESET); DELAY(100000); xl_wait(sc); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET); xl_wait(sc); if (sc->xl_flags & XL_FLAG_INVERT_LED_PWR || sc->xl_flags & XL_FLAG_INVERT_MII_PWR) { XL_SEL_WIN(2); CSR_WRITE_2(sc, XL_W2_RESET_OPTIONS, CSR_READ_2(sc, XL_W2_RESET_OPTIONS) | ((sc->xl_flags & XL_FLAG_INVERT_LED_PWR) ? XL_RESETOPT_INVERT_LED : 0) | ((sc->xl_flags & XL_FLAG_INVERT_MII_PWR) ? XL_RESETOPT_INVERT_MII : 0)); } /* Wait a little while for the chip to get its brains in order. */ DELAY(100000); } /* * Probe for a 3Com Etherlink XL chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. */ static int xl_probe(device_t dev) { struct xl_type *t; t = xl_devs; while (t->xl_name != NULL) { if ((pci_get_vendor(dev) == t->xl_vid) && (pci_get_device(dev) == t->xl_did)) { device_set_desc(dev, t->xl_name); return (BUS_PROBE_DEFAULT); } t++; } return (ENXIO); } /* * This routine is a kludge to work around possible hardware faults * or manufacturing defects that can cause the media options register * (or reset options register, as it's called for the first generation * 3c90x adapters) to return an incorrect result. I have encountered * one Dell Latitude laptop docking station with an integrated 3c905-TX * which doesn't have any of the 'mediaopt' bits set. This screws up * the attach routine pretty badly because it doesn't know what media * to look for. If we find ourselves in this predicament, this routine * will try to guess the media options values and warn the user of a * possible manufacturing defect with his adapter/system/whatever. */ static void xl_mediacheck(struct xl_softc *sc) { XL_LOCK_ASSERT(sc); /* * If some of the media options bits are set, assume they are * correct. If not, try to figure it out down below. * XXX I should check for 10baseFL, but I don't have an adapter * to test with. */ if (sc->xl_media & (XL_MEDIAOPT_MASK & ~XL_MEDIAOPT_VCO)) { /* * Check the XCVR value. If it's not in the normal range * of values, we need to fake it up here. */ if (sc->xl_xcvr <= XL_XCVR_AUTO) return; else { if_printf(&sc->arpcom.ac_if, "bogus xcvr value in EEPROM (%x)\n", sc->xl_xcvr); if_printf(&sc->arpcom.ac_if, "choosing new default based on card type\n"); } } else { if (sc->xl_type == XL_TYPE_905B && sc->xl_media & XL_MEDIAOPT_10FL) return; if_printf(&sc->arpcom.ac_if, "WARNING: no media options bits set in the media options register!!\n"); if_printf(&sc->arpcom.ac_if, "this could be a manufacturing defect in your adapter or system\n"); if_printf(&sc->arpcom.ac_if, "attempting to guess media type; you should probably consult your vendor\n"); } xl_choose_xcvr(sc, 1); } static void xl_choose_xcvr(struct xl_softc *sc, int verbose) { u_int16_t devid; /* * Read the device ID from the EEPROM. * This is what's loaded into the PCI device ID register, so it has * to be correct otherwise we wouldn't have gotten this far. */ xl_read_eeprom(sc, (caddr_t)&devid, XL_EE_PRODID, 1, 0); switch (devid) { case TC_DEVICEID_BOOMERANG_10BT: /* 3c900-TPO */ case TC_DEVICEID_KRAKATOA_10BT: /* 3c900B-TPO */ sc->xl_media = XL_MEDIAOPT_BT; sc->xl_xcvr = XL_XCVR_10BT; if (verbose) if_printf(&sc->arpcom.ac_if, "guessing 10BaseT transceiver\n"); break; case TC_DEVICEID_BOOMERANG_10BT_COMBO: /* 3c900-COMBO */ case TC_DEVICEID_KRAKATOA_10BT_COMBO: /* 3c900B-COMBO */ sc->xl_media = XL_MEDIAOPT_BT|XL_MEDIAOPT_BNC|XL_MEDIAOPT_AUI; sc->xl_xcvr = XL_XCVR_10BT; if (verbose) if_printf(&sc->arpcom.ac_if, "guessing COMBO (AUI/BNC/TP)\n"); break; case TC_DEVICEID_KRAKATOA_10BT_TPC: /* 3c900B-TPC */ sc->xl_media = XL_MEDIAOPT_BT|XL_MEDIAOPT_BNC; sc->xl_xcvr = XL_XCVR_10BT; if (verbose) if_printf(&sc->arpcom.ac_if, "guessing TPC (BNC/TP)\n"); break; case TC_DEVICEID_CYCLONE_10FL: /* 3c900B-FL */ sc->xl_media = XL_MEDIAOPT_10FL; sc->xl_xcvr = XL_XCVR_AUI; if (verbose) if_printf(&sc->arpcom.ac_if, "guessing 10baseFL\n"); break; case TC_DEVICEID_BOOMERANG_10_100BT: /* 3c905-TX */ case TC_DEVICEID_HURRICANE_555: /* 3c555 */ case TC_DEVICEID_HURRICANE_556: /* 3c556 */ case TC_DEVICEID_HURRICANE_556B: /* 3c556B */ case TC_DEVICEID_HURRICANE_575A: /* 3c575TX */ case TC_DEVICEID_HURRICANE_575B: /* 3c575B */ case TC_DEVICEID_HURRICANE_575C: /* 3c575C */ case TC_DEVICEID_HURRICANE_656: /* 3c656 */ case TC_DEVICEID_HURRICANE_656B: /* 3c656B */ case TC_DEVICEID_TORNADO_656C: /* 3c656C */ case TC_DEVICEID_TORNADO_10_100BT_920B: /* 3c920B-EMB */ case TC_DEVICEID_TORNADO_10_100BT_920B_WNM: /* 3c920B-EMB-WNM */ sc->xl_media = XL_MEDIAOPT_MII; sc->xl_xcvr = XL_XCVR_MII; if (verbose) if_printf(&sc->arpcom.ac_if, "guessing MII\n"); break; case TC_DEVICEID_BOOMERANG_100BT4: /* 3c905-T4 */ case TC_DEVICEID_CYCLONE_10_100BT4: /* 3c905B-T4 */ sc->xl_media = XL_MEDIAOPT_BT4; sc->xl_xcvr = XL_XCVR_MII; if (verbose) if_printf(&sc->arpcom.ac_if, "guessing 100baseT4/MII\n"); break; case TC_DEVICEID_HURRICANE_10_100BT: /* 3c905B-TX */ case TC_DEVICEID_HURRICANE_10_100BT_SERV:/*3c980-TX */ case TC_DEVICEID_TORNADO_10_100BT_SERV: /* 3c980C-TX */ case TC_DEVICEID_HURRICANE_SOHO100TX: /* 3cSOHO100-TX */ case TC_DEVICEID_TORNADO_10_100BT: /* 3c905C-TX */ case TC_DEVICEID_TORNADO_HOMECONNECT: /* 3c450-TX */ sc->xl_media = XL_MEDIAOPT_BTX; sc->xl_xcvr = XL_XCVR_AUTO; if (verbose) if_printf(&sc->arpcom.ac_if, "guessing 10/100 internal\n"); break; case TC_DEVICEID_CYCLONE_10_100_COMBO: /* 3c905B-COMBO */ sc->xl_media = XL_MEDIAOPT_BTX|XL_MEDIAOPT_BNC|XL_MEDIAOPT_AUI; sc->xl_xcvr = XL_XCVR_AUTO; if (verbose) if_printf(&sc->arpcom.ac_if, "guessing 10/100 plus BNC/AUI\n"); break; default: if_printf(&sc->arpcom.ac_if, "unknown device ID: %x -- defaulting to 10baseT\n", devid); sc->xl_media = XL_MEDIAOPT_BT; break; } } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static int xl_attach(device_t dev) { u_char eaddr[ETHER_ADDR_LEN]; u_int16_t xcvr[2]; struct xl_softc *sc; struct ifnet *ifp; int media; int unit, error = 0, rid, res; uint16_t did; sc = device_get_softc(dev); unit = device_get_unit(dev); mtx_init(&sc->xl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); ifmedia_init(&sc->ifmedia, 0, xl_ifmedia_upd, xl_ifmedia_sts); did = pci_get_device(dev); sc->xl_flags = 0; if (did == TC_DEVICEID_HURRICANE_555) sc->xl_flags |= XL_FLAG_EEPROM_OFFSET_30 | XL_FLAG_PHYOK; if (did == TC_DEVICEID_HURRICANE_556 || did == TC_DEVICEID_HURRICANE_556B) sc->xl_flags |= XL_FLAG_FUNCREG | XL_FLAG_PHYOK | XL_FLAG_EEPROM_OFFSET_30 | XL_FLAG_WEIRDRESET | XL_FLAG_INVERT_LED_PWR | XL_FLAG_INVERT_MII_PWR; if (did == TC_DEVICEID_HURRICANE_555 || did == TC_DEVICEID_HURRICANE_556) sc->xl_flags |= XL_FLAG_8BITROM; if (did == TC_DEVICEID_HURRICANE_556B) sc->xl_flags |= XL_FLAG_NO_XCVR_PWR; if (did == TC_DEVICEID_HURRICANE_575A || did == TC_DEVICEID_HURRICANE_575B || did == TC_DEVICEID_HURRICANE_575C || did == TC_DEVICEID_HURRICANE_656B || did == TC_DEVICEID_TORNADO_656C) sc->xl_flags |= XL_FLAG_FUNCREG | XL_FLAG_PHYOK | XL_FLAG_EEPROM_OFFSET_30 | XL_FLAG_8BITROM; if (did == TC_DEVICEID_HURRICANE_656) sc->xl_flags |= XL_FLAG_FUNCREG | XL_FLAG_PHYOK; if (did == TC_DEVICEID_HURRICANE_575B) sc->xl_flags |= XL_FLAG_INVERT_LED_PWR; if (did == TC_DEVICEID_HURRICANE_575C) sc->xl_flags |= XL_FLAG_INVERT_MII_PWR; if (did == TC_DEVICEID_TORNADO_656C) sc->xl_flags |= XL_FLAG_INVERT_MII_PWR; if (did == TC_DEVICEID_HURRICANE_656 || did == TC_DEVICEID_HURRICANE_656B) sc->xl_flags |= XL_FLAG_INVERT_MII_PWR | XL_FLAG_INVERT_LED_PWR; if (did == TC_DEVICEID_TORNADO_10_100BT_920B || did == TC_DEVICEID_TORNADO_10_100BT_920B_WNM) sc->xl_flags |= XL_FLAG_PHYOK; switch (did) { case TC_DEVICEID_BOOMERANG_10_100BT: /* 3c905-TX */ case TC_DEVICEID_HURRICANE_575A: case TC_DEVICEID_HURRICANE_575B: case TC_DEVICEID_HURRICANE_575C: sc->xl_flags |= XL_FLAG_NO_MMIO; break; default: break; } /* * Map control/status registers. */ pci_enable_busmaster(dev); if ((sc->xl_flags & XL_FLAG_NO_MMIO) == 0) { rid = XL_PCI_LOMEM; res = SYS_RES_MEMORY; sc->xl_res = bus_alloc_resource_any(dev, res, &rid, RF_ACTIVE); } if (sc->xl_res != NULL) { sc->xl_flags |= XL_FLAG_USE_MMIO; if (bootverbose) device_printf(dev, "using memory mapped I/O\n"); } else { rid = XL_PCI_LOIO; res = SYS_RES_IOPORT; sc->xl_res = bus_alloc_resource_any(dev, res, &rid, RF_ACTIVE); if (sc->xl_res == NULL) { device_printf(dev, "couldn't map ports/memory\n"); error = ENXIO; goto fail; } if (bootverbose) device_printf(dev, "using port I/O\n"); } sc->xl_btag = rman_get_bustag(sc->xl_res); sc->xl_bhandle = rman_get_bushandle(sc->xl_res); if (sc->xl_flags & XL_FLAG_FUNCREG) { rid = XL_PCI_FUNCMEM; sc->xl_fres = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (sc->xl_fres == NULL) { device_printf(dev, "couldn't map ports/memory\n"); error = ENXIO; goto fail; } sc->xl_ftag = rman_get_bustag(sc->xl_fres); sc->xl_fhandle = rman_get_bushandle(sc->xl_fres); } /* Allocate interrupt */ rid = 0; sc->xl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE); if (sc->xl_irq == NULL) { device_printf(dev, "couldn't map interrupt\n"); error = ENXIO; goto fail; } /* Initialize interface name. */ ifp = &sc->arpcom.ac_if; ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); XL_LOCK(sc); /* Reset the adapter. */ xl_reset(sc); /* * Get station address from the EEPROM. */ if (xl_read_eeprom(sc, (caddr_t)&eaddr, XL_EE_OEM_ADR0, 3, 1)) { device_printf(dev, "failed to read station address\n"); error = ENXIO; XL_UNLOCK(sc); goto fail; } XL_UNLOCK(sc); sc->xl_unit = unit; callout_handle_init(&sc->xl_stat_ch); bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); /* * Now allocate a tag for the DMA descriptor lists and a chunk * of DMA-able memory based on the tag. Also obtain the DMA * addresses of the RX and TX ring, which we'll need later. * All of our lists are allocated as a contiguous block * of memory. */ error = bus_dma_tag_create(NULL, 8, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, XL_RX_LIST_SZ, 1, XL_RX_LIST_SZ, 0, NULL, NULL, &sc->xl_ldata.xl_rx_tag); if (error) { device_printf(dev, "failed to allocate rx dma tag\n"); goto fail; } error = bus_dmamem_alloc(sc->xl_ldata.xl_rx_tag, (void **)&sc->xl_ldata.xl_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->xl_ldata.xl_rx_dmamap); if (error) { device_printf(dev, "no memory for rx list buffers!\n"); bus_dma_tag_destroy(sc->xl_ldata.xl_rx_tag); sc->xl_ldata.xl_rx_tag = NULL; goto fail; } error = bus_dmamap_load(sc->xl_ldata.xl_rx_tag, sc->xl_ldata.xl_rx_dmamap, sc->xl_ldata.xl_rx_list, XL_RX_LIST_SZ, xl_dma_map_addr, &sc->xl_ldata.xl_rx_dmaaddr, BUS_DMA_NOWAIT); if (error) { device_printf(dev, "cannot get dma address of the rx ring!\n"); bus_dmamem_free(sc->xl_ldata.xl_rx_tag, sc->xl_ldata.xl_rx_list, sc->xl_ldata.xl_rx_dmamap); bus_dma_tag_destroy(sc->xl_ldata.xl_rx_tag); sc->xl_ldata.xl_rx_tag = NULL; goto fail; } error = bus_dma_tag_create(NULL, 8, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, XL_TX_LIST_SZ, 1, XL_TX_LIST_SZ, 0, NULL, NULL, &sc->xl_ldata.xl_tx_tag); if (error) { device_printf(dev, "failed to allocate tx dma tag\n"); goto fail; } error = bus_dmamem_alloc(sc->xl_ldata.xl_tx_tag, (void **)&sc->xl_ldata.xl_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->xl_ldata.xl_tx_dmamap); if (error) { device_printf(dev, "no memory for list buffers!\n"); bus_dma_tag_destroy(sc->xl_ldata.xl_tx_tag); sc->xl_ldata.xl_tx_tag = NULL; goto fail; } error = bus_dmamap_load(sc->xl_ldata.xl_tx_tag, sc->xl_ldata.xl_tx_dmamap, sc->xl_ldata.xl_tx_list, XL_TX_LIST_SZ, xl_dma_map_addr, &sc->xl_ldata.xl_tx_dmaaddr, BUS_DMA_NOWAIT); if (error) { device_printf(dev, "cannot get dma address of the tx ring!\n"); bus_dmamem_free(sc->xl_ldata.xl_tx_tag, sc->xl_ldata.xl_tx_list, sc->xl_ldata.xl_tx_dmamap); bus_dma_tag_destroy(sc->xl_ldata.xl_tx_tag); sc->xl_ldata.xl_tx_tag = NULL; goto fail; } /* * Allocate a DMA tag for the mapping of mbufs. */ error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * XL_MAXFRAGS, XL_MAXFRAGS, MCLBYTES, 0, NULL, NULL, &sc->xl_mtag); if (error) { device_printf(dev, "failed to allocate mbuf dma tag\n"); goto fail; } /* We need a spare DMA map for the RX ring. */ error = bus_dmamap_create(sc->xl_mtag, 0, &sc->xl_tmpmap); if (error) goto fail; XL_LOCK(sc); /* * Figure out the card type. 3c905B adapters have the * 'supportsNoTxLength' bit set in the capabilities * word in the EEPROM. * Note: my 3c575C cardbus card lies. It returns a value * of 0x1578 for its capabilities word, which is somewhat * nonsensical. Another way to distinguish a 3c90x chip * from a 3c90xB/C chip is to check for the 'supportsLargePackets' * bit. This will only be set for 3c90x boomerage chips. */ xl_read_eeprom(sc, (caddr_t)&sc->xl_caps, XL_EE_CAPS, 1, 0); if (sc->xl_caps & XL_CAPS_NO_TXLENGTH || !(sc->xl_caps & XL_CAPS_LARGE_PKTS)) sc->xl_type = XL_TYPE_905B; else sc->xl_type = XL_TYPE_90X; ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = xl_ioctl; ifp->if_capabilities = IFCAP_VLAN_MTU; if (sc->xl_type == XL_TYPE_905B) { ifp->if_hwassist = XL905B_CSUM_FEATURES; #ifdef XL905B_TXCSUM_BROKEN ifp->if_capabilities |= IFCAP_RXCSUM; #else ifp->if_capabilities |= IFCAP_HWCSUM; #endif } ifp->if_start = xl_start; ifp->if_watchdog = xl_watchdog; ifp->if_init = xl_init; ifp->if_baudrate = 10000000; IFQ_SET_MAXLEN(&ifp->if_snd, XL_TX_LIST_CNT - 1); ifp->if_snd.ifq_drv_maxlen = XL_TX_LIST_CNT - 1; IFQ_SET_READY(&ifp->if_snd); ifp->if_capenable = ifp->if_capabilities; /* * Now we have to see what sort of media we have. * This includes probing for an MII interace and a * possible PHY. */ XL_SEL_WIN(3); sc->xl_media = CSR_READ_2(sc, XL_W3_MEDIA_OPT); if (bootverbose) device_printf(dev, "media options word: %x\n", sc->xl_media); xl_read_eeprom(sc, (char *)&xcvr, XL_EE_ICFG_0, 2, 0); sc->xl_xcvr = xcvr[0] | xcvr[1] << 16; sc->xl_xcvr &= XL_ICFG_CONNECTOR_MASK; sc->xl_xcvr >>= XL_ICFG_CONNECTOR_BITS; xl_mediacheck(sc); /* XXX Downcalls to ifmedia, miibus about to happen. */ XL_UNLOCK(sc); if (sc->xl_media & XL_MEDIAOPT_MII || sc->xl_media & XL_MEDIAOPT_BTX || sc->xl_media & XL_MEDIAOPT_BT4) { if (bootverbose) device_printf(dev, "found MII/AUTO\n"); xl_setcfg(sc); if (mii_phy_probe(dev, &sc->xl_miibus, xl_ifmedia_upd, xl_ifmedia_sts)) { device_printf(dev, "no PHY found!\n"); error = ENXIO; goto fail; } goto done; } /* * Sanity check. If the user has selected "auto" and this isn't * a 10/100 card of some kind, we need to force the transceiver * type to something sane. */ if (sc->xl_xcvr == XL_XCVR_AUTO) { /* XXX Direct hardware access needs lock coverage. */ XL_LOCK(sc); xl_choose_xcvr(sc, bootverbose); XL_UNLOCK(sc); } /* * Do ifmedia setup. */ if (sc->xl_media & XL_MEDIAOPT_BT) { if (bootverbose) device_printf(dev, "found 10baseT\n"); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL); if (sc->xl_caps & XL_CAPS_FULL_DUPLEX) ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL); } if (sc->xl_media & (XL_MEDIAOPT_AUI|XL_MEDIAOPT_10FL)) { /* * Check for a 10baseFL board in disguise. */ if (sc->xl_type == XL_TYPE_905B && sc->xl_media == XL_MEDIAOPT_10FL) { if (bootverbose) device_printf(dev, "found 10baseFL\n"); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL|IFM_HDX, 0, NULL); if (sc->xl_caps & XL_CAPS_FULL_DUPLEX) ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL|IFM_FDX, 0, NULL); } else { if (bootverbose) device_printf(dev, "found AUI\n"); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL); } } if (sc->xl_media & XL_MEDIAOPT_BNC) { if (bootverbose) device_printf(dev, "found BNC\n"); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_2, 0, NULL); } if (sc->xl_media & XL_MEDIAOPT_BFX) { if (bootverbose) device_printf(dev, "found 100baseFX\n"); ifp->if_baudrate = 100000000; ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX, 0, NULL); } /* XXX: Unlocked, leaf will take lock. */ media = IFM_ETHER|IFM_100_TX|IFM_FDX; xl_choose_media(sc, &media); if (sc->xl_miibus == NULL) ifmedia_set(&sc->ifmedia, media); done: /* XXX: Unlocked hardware access, narrow race. */ if (sc->xl_flags & XL_FLAG_NO_XCVR_PWR) { XL_SEL_WIN(0); CSR_WRITE_2(sc, XL_W0_MFG_ID, XL_NO_XCVR_PWR_MAGICBITS); } /* * Call MI attach routine. */ ether_ifattach(ifp, eaddr); error = bus_setup_intr(dev, sc->xl_irq, INTR_TYPE_NET | INTR_MPSAFE, xl_intr, sc, &sc->xl_intrhand); if (error) { device_printf(dev, "couldn't set up irq\n"); ether_ifdetach(ifp); goto fail; } fail: if (error) xl_detach(dev); return (error); } /* * Choose a default media. * XXX This is a leaf function only called by xl_attach() and * acquires/releases the non-recursible driver mutex. */ static void xl_choose_media(struct xl_softc *sc, int *media) { XL_LOCK(sc); switch (sc->xl_xcvr) { case XL_XCVR_10BT: *media = IFM_ETHER|IFM_10_T; xl_setmode(sc, *media); break; case XL_XCVR_AUI: if (sc->xl_type == XL_TYPE_905B && sc->xl_media == XL_MEDIAOPT_10FL) { *media = IFM_ETHER|IFM_10_FL; xl_setmode(sc, *media); } else { *media = IFM_ETHER|IFM_10_5; xl_setmode(sc, *media); } break; case XL_XCVR_COAX: *media = IFM_ETHER|IFM_10_2; xl_setmode(sc, *media); break; case XL_XCVR_AUTO: case XL_XCVR_100BTX: case XL_XCVR_MII: /* Chosen by miibus */ break; case XL_XCVR_100BFX: *media = IFM_ETHER|IFM_100_FX; break; default: if_printf(&sc->arpcom.ac_if, "unknown XCVR type: %d\n", sc->xl_xcvr); /* * This will probably be wrong, but it prevents * the ifmedia code from panicking. */ *media = IFM_ETHER|IFM_10_T; break; } XL_UNLOCK(sc); } /* * Shutdown hardware and free up resources. This can be called any * time after the mutex has been initialized. It is called in both * the error case in attach and the normal detach case so it needs * to be careful about only freeing resources that have actually been * allocated. */ static int xl_detach(device_t dev) { struct xl_softc *sc; struct ifnet *ifp; int rid, res; sc = device_get_softc(dev); ifp = &sc->arpcom.ac_if; KASSERT(mtx_initialized(&sc->xl_mtx), ("xl mutex not initialized")); XL_LOCK(sc); if (sc->xl_flags & XL_FLAG_USE_MMIO) { rid = XL_PCI_LOMEM; res = SYS_RES_MEMORY; } else { rid = XL_PCI_LOIO; res = SYS_RES_IOPORT; } /* These should only be active if attach succeeded */ if (device_is_attached(dev)) { xl_reset(sc); xl_stop(sc); ether_ifdetach(ifp); } if (sc->xl_miibus) device_delete_child(dev, sc->xl_miibus); bus_generic_detach(dev); ifmedia_removeall(&sc->ifmedia); if (sc->xl_intrhand) bus_teardown_intr(dev, sc->xl_irq, sc->xl_intrhand); if (sc->xl_irq) bus_release_resource(dev, SYS_RES_IRQ, 0, sc->xl_irq); if (sc->xl_fres != NULL) bus_release_resource(dev, SYS_RES_MEMORY, XL_PCI_FUNCMEM, sc->xl_fres); if (sc->xl_res) bus_release_resource(dev, res, rid, sc->xl_res); if (sc->xl_mtag) { bus_dmamap_destroy(sc->xl_mtag, sc->xl_tmpmap); bus_dma_tag_destroy(sc->xl_mtag); } if (sc->xl_ldata.xl_rx_tag) { bus_dmamap_unload(sc->xl_ldata.xl_rx_tag, sc->xl_ldata.xl_rx_dmamap); bus_dmamem_free(sc->xl_ldata.xl_rx_tag, sc->xl_ldata.xl_rx_list, sc->xl_ldata.xl_rx_dmamap); bus_dma_tag_destroy(sc->xl_ldata.xl_rx_tag); } if (sc->xl_ldata.xl_tx_tag) { bus_dmamap_unload(sc->xl_ldata.xl_tx_tag, sc->xl_ldata.xl_tx_dmamap); bus_dmamem_free(sc->xl_ldata.xl_tx_tag, sc->xl_ldata.xl_tx_list, sc->xl_ldata.xl_tx_dmamap); bus_dma_tag_destroy(sc->xl_ldata.xl_tx_tag); } XL_UNLOCK(sc); mtx_destroy(&sc->xl_mtx); return (0); } /* * Initialize the transmit descriptors. */ static int xl_list_tx_init(struct xl_softc *sc) { struct xl_chain_data *cd; struct xl_list_data *ld; int error, i; XL_LOCK_ASSERT(sc); cd = &sc->xl_cdata; ld = &sc->xl_ldata; for (i = 0; i < XL_TX_LIST_CNT; i++) { cd->xl_tx_chain[i].xl_ptr = &ld->xl_tx_list[i]; error = bus_dmamap_create(sc->xl_mtag, 0, &cd->xl_tx_chain[i].xl_map); if (error) return (error); cd->xl_tx_chain[i].xl_phys = ld->xl_tx_dmaaddr + i * sizeof(struct xl_list); if (i == (XL_TX_LIST_CNT - 1)) cd->xl_tx_chain[i].xl_next = NULL; else cd->xl_tx_chain[i].xl_next = &cd->xl_tx_chain[i + 1]; } cd->xl_tx_free = &cd->xl_tx_chain[0]; cd->xl_tx_tail = cd->xl_tx_head = NULL; bus_dmamap_sync(ld->xl_tx_tag, ld->xl_tx_dmamap, BUS_DMASYNC_PREWRITE); return (0); } /* * Initialize the transmit descriptors. */ static int xl_list_tx_init_90xB(struct xl_softc *sc) { struct xl_chain_data *cd; struct xl_list_data *ld; int error, i; XL_LOCK_ASSERT(sc); cd = &sc->xl_cdata; ld = &sc->xl_ldata; for (i = 0; i < XL_TX_LIST_CNT; i++) { cd->xl_tx_chain[i].xl_ptr = &ld->xl_tx_list[i]; error = bus_dmamap_create(sc->xl_mtag, 0, &cd->xl_tx_chain[i].xl_map); if (error) return (error); cd->xl_tx_chain[i].xl_phys = ld->xl_tx_dmaaddr + i * sizeof(struct xl_list); if (i == (XL_TX_LIST_CNT - 1)) cd->xl_tx_chain[i].xl_next = &cd->xl_tx_chain[0]; else cd->xl_tx_chain[i].xl_next = &cd->xl_tx_chain[i + 1]; if (i == 0) cd->xl_tx_chain[i].xl_prev = &cd->xl_tx_chain[XL_TX_LIST_CNT - 1]; else cd->xl_tx_chain[i].xl_prev = &cd->xl_tx_chain[i - 1]; } bzero(ld->xl_tx_list, XL_TX_LIST_SZ); ld->xl_tx_list[0].xl_status = htole32(XL_TXSTAT_EMPTY); cd->xl_tx_prod = 1; cd->xl_tx_cons = 1; cd->xl_tx_cnt = 0; bus_dmamap_sync(ld->xl_tx_tag, ld->xl_tx_dmamap, BUS_DMASYNC_PREWRITE); return (0); } /* * Initialize the RX descriptors and allocate mbufs for them. Note that * we arrange the descriptors in a closed ring, so that the last descriptor * points back to the first. */ static int xl_list_rx_init(struct xl_softc *sc) { struct xl_chain_data *cd; struct xl_list_data *ld; int error, i, next; u_int32_t nextptr; XL_LOCK_ASSERT(sc); cd = &sc->xl_cdata; ld = &sc->xl_ldata; for (i = 0; i < XL_RX_LIST_CNT; i++) { cd->xl_rx_chain[i].xl_ptr = &ld->xl_rx_list[i]; error = bus_dmamap_create(sc->xl_mtag, 0, &cd->xl_rx_chain[i].xl_map); if (error) return (error); error = xl_newbuf(sc, &cd->xl_rx_chain[i]); if (error) return (error); if (i == (XL_RX_LIST_CNT - 1)) next = 0; else next = i + 1; nextptr = ld->xl_rx_dmaaddr + next * sizeof(struct xl_list_onefrag); cd->xl_rx_chain[i].xl_next = &cd->xl_rx_chain[next]; ld->xl_rx_list[i].xl_next = htole32(nextptr); } bus_dmamap_sync(ld->xl_rx_tag, ld->xl_rx_dmamap, BUS_DMASYNC_PREWRITE); cd->xl_rx_head = &cd->xl_rx_chain[0]; return (0); } /* * Initialize an RX descriptor and attach an MBUF cluster. * If we fail to do so, we need to leave the old mbuf and * the old DMA map untouched so that it can be reused. */ static int xl_newbuf(struct xl_softc *sc, struct xl_chain_onefrag *c) { struct mbuf *m_new = NULL; bus_dmamap_t map; int error; u_int32_t baddr; XL_LOCK_ASSERT(sc); m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (m_new == NULL) return (ENOBUFS); m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; /* Force longword alignment for packet payload. */ m_adj(m_new, ETHER_ALIGN); error = bus_dmamap_load_mbuf(sc->xl_mtag, sc->xl_tmpmap, m_new, xl_dma_map_rxbuf, &baddr, BUS_DMA_NOWAIT); if (error) { m_freem(m_new); if_printf(&sc->arpcom.ac_if, "can't map mbuf (error %d)\n", error); return (error); } bus_dmamap_unload(sc->xl_mtag, c->xl_map); map = c->xl_map; c->xl_map = sc->xl_tmpmap; sc->xl_tmpmap = map; c->xl_mbuf = m_new; c->xl_ptr->xl_frag.xl_len = htole32(m_new->m_len | XL_LAST_FRAG); c->xl_ptr->xl_status = 0; c->xl_ptr->xl_frag.xl_addr = htole32(baddr); bus_dmamap_sync(sc->xl_mtag, c->xl_map, BUS_DMASYNC_PREREAD); return (0); } static int xl_rx_resync(struct xl_softc *sc) { struct xl_chain_onefrag *pos; int i; XL_LOCK_ASSERT(sc); pos = sc->xl_cdata.xl_rx_head; for (i = 0; i < XL_RX_LIST_CNT; i++) { if (pos->xl_ptr->xl_status) break; pos = pos->xl_next; } if (i == XL_RX_LIST_CNT) return (0); sc->xl_cdata.xl_rx_head = pos; return (EAGAIN); } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ static void xl_rxeof(struct xl_softc *sc) { struct mbuf *m; struct ifnet *ifp = &sc->arpcom.ac_if; struct xl_chain_onefrag *cur_rx; int total_len = 0; u_int32_t rxstat; XL_LOCK_ASSERT(sc); again: bus_dmamap_sync(sc->xl_ldata.xl_rx_tag, sc->xl_ldata.xl_rx_dmamap, BUS_DMASYNC_POSTREAD); while ((rxstat = le32toh(sc->xl_cdata.xl_rx_head->xl_ptr->xl_status))) { cur_rx = sc->xl_cdata.xl_rx_head; sc->xl_cdata.xl_rx_head = cur_rx->xl_next; total_len = rxstat & XL_RXSTAT_LENMASK; /* * Since we have told the chip to allow large frames, * we need to trap giant frame errors in software. We allow * a little more than the normal frame size to account for * frames with VLAN tags. */ if (total_len > XL_MAX_FRAMELEN) rxstat |= (XL_RXSTAT_UP_ERROR|XL_RXSTAT_OVERSIZE); /* * If an error occurs, update stats, clear the * status word and leave the mbuf cluster in place: * it should simply get re-used next time this descriptor * comes up in the ring. */ if (rxstat & XL_RXSTAT_UP_ERROR) { ifp->if_ierrors++; cur_rx->xl_ptr->xl_status = 0; bus_dmamap_sync(sc->xl_ldata.xl_rx_tag, sc->xl_ldata.xl_rx_dmamap, BUS_DMASYNC_PREWRITE); continue; } /* * If the error bit was not set, the upload complete * bit should be set which means we have a valid packet. * If not, something truly strange has happened. */ if (!(rxstat & XL_RXSTAT_UP_CMPLT)) { if_printf(ifp, "bad receive status -- packet dropped\n"); ifp->if_ierrors++; cur_rx->xl_ptr->xl_status = 0; bus_dmamap_sync(sc->xl_ldata.xl_rx_tag, sc->xl_ldata.xl_rx_dmamap, BUS_DMASYNC_PREWRITE); continue; } /* No errors; receive the packet. */ bus_dmamap_sync(sc->xl_mtag, cur_rx->xl_map, BUS_DMASYNC_POSTREAD); m = cur_rx->xl_mbuf; /* * Try to conjure up a new mbuf cluster. If that * fails, it means we have an out of memory condition and * should leave the buffer in place and continue. This will * result in a lost packet, but there's little else we * can do in this situation. */ if (xl_newbuf(sc, cur_rx)) { ifp->if_ierrors++; cur_rx->xl_ptr->xl_status = 0; bus_dmamap_sync(sc->xl_ldata.xl_rx_tag, sc->xl_ldata.xl_rx_dmamap, BUS_DMASYNC_PREWRITE); continue; } bus_dmamap_sync(sc->xl_ldata.xl_rx_tag, sc->xl_ldata.xl_rx_dmamap, BUS_DMASYNC_PREWRITE); ifp->if_ipackets++; m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = total_len; if (ifp->if_capenable & IFCAP_RXCSUM) { /* Do IP checksum checking. */ if (rxstat & XL_RXSTAT_IPCKOK) m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; if (!(rxstat & XL_RXSTAT_IPCKERR)) m->m_pkthdr.csum_flags |= CSUM_IP_VALID; if ((rxstat & XL_RXSTAT_TCPCOK && !(rxstat & XL_RXSTAT_TCPCKERR)) || (rxstat & XL_RXSTAT_UDPCKOK && !(rxstat & XL_RXSTAT_UDPCKERR))) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID|CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } } XL_UNLOCK(sc); (*ifp->if_input)(ifp, m); XL_LOCK(sc); } /* * Handle the 'end of channel' condition. When the upload * engine hits the end of the RX ring, it will stall. This * is our cue to flush the RX ring, reload the uplist pointer * register and unstall the engine. * XXX This is actually a little goofy. With the ThunderLAN * chip, you get an interrupt when the receiver hits the end * of the receive ring, which tells you exactly when you * you need to reload the ring pointer. Here we have to * fake it. I'm mad at myself for not being clever enough * to avoid the use of a goto here. */ if (CSR_READ_4(sc, XL_UPLIST_PTR) == 0 || CSR_READ_4(sc, XL_UPLIST_STATUS) & XL_PKTSTAT_UP_STALLED) { CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_UP_STALL); xl_wait(sc); CSR_WRITE_4(sc, XL_UPLIST_PTR, sc->xl_ldata.xl_rx_dmaaddr); sc->xl_cdata.xl_rx_head = &sc->xl_cdata.xl_rx_chain[0]; CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_UP_UNSTALL); goto again; } } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ static void xl_txeof(struct xl_softc *sc) { struct xl_chain *cur_tx; struct ifnet *ifp = &sc->arpcom.ac_if; XL_LOCK_ASSERT(sc); /* Clear the timeout timer. */ ifp->if_timer = 0; /* * Go through our tx list and free mbufs for those * frames that have been uploaded. Note: the 3c905B * sets a special bit in the status word to let us * know that a frame has been downloaded, but the * original 3c900/3c905 adapters don't do that. * Consequently, we have to use a different test if * xl_type != XL_TYPE_905B. */ while (sc->xl_cdata.xl_tx_head != NULL) { cur_tx = sc->xl_cdata.xl_tx_head; if (CSR_READ_4(sc, XL_DOWNLIST_PTR)) break; sc->xl_cdata.xl_tx_head = cur_tx->xl_next; bus_dmamap_sync(sc->xl_mtag, cur_tx->xl_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->xl_mtag, cur_tx->xl_map); m_freem(cur_tx->xl_mbuf); cur_tx->xl_mbuf = NULL; ifp->if_opackets++; cur_tx->xl_next = sc->xl_cdata.xl_tx_free; sc->xl_cdata.xl_tx_free = cur_tx; } if (sc->xl_cdata.xl_tx_head == NULL) { ifp->if_flags &= ~IFF_OACTIVE; sc->xl_cdata.xl_tx_tail = NULL; } else { if (CSR_READ_4(sc, XL_DMACTL) & XL_DMACTL_DOWN_STALLED || !CSR_READ_4(sc, XL_DOWNLIST_PTR)) { CSR_WRITE_4(sc, XL_DOWNLIST_PTR, sc->xl_cdata.xl_tx_head->xl_phys); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL); } } } static void xl_txeof_90xB(struct xl_softc *sc) { struct xl_chain *cur_tx = NULL; struct ifnet *ifp = &sc->arpcom.ac_if; int idx; XL_LOCK_ASSERT(sc); bus_dmamap_sync(sc->xl_ldata.xl_tx_tag, sc->xl_ldata.xl_tx_dmamap, BUS_DMASYNC_POSTREAD); idx = sc->xl_cdata.xl_tx_cons; while (idx != sc->xl_cdata.xl_tx_prod) { cur_tx = &sc->xl_cdata.xl_tx_chain[idx]; if (!(le32toh(cur_tx->xl_ptr->xl_status) & XL_TXSTAT_DL_COMPLETE)) break; if (cur_tx->xl_mbuf != NULL) { bus_dmamap_sync(sc->xl_mtag, cur_tx->xl_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->xl_mtag, cur_tx->xl_map); m_freem(cur_tx->xl_mbuf); cur_tx->xl_mbuf = NULL; } ifp->if_opackets++; sc->xl_cdata.xl_tx_cnt--; XL_INC(idx, XL_TX_LIST_CNT); ifp->if_timer = 0; } sc->xl_cdata.xl_tx_cons = idx; if (cur_tx != NULL) ifp->if_flags &= ~IFF_OACTIVE; } /* * TX 'end of channel' interrupt handler. Actually, we should * only get a 'TX complete' interrupt if there's a transmit error, * so this is really TX error handler. */ static void xl_txeoc(struct xl_softc *sc) { u_int8_t txstat; XL_LOCK_ASSERT(sc); while ((txstat = CSR_READ_1(sc, XL_TX_STATUS))) { if (txstat & XL_TXSTATUS_UNDERRUN || txstat & XL_TXSTATUS_JABBER || txstat & XL_TXSTATUS_RECLAIM) { if_printf(&sc->arpcom.ac_if, "transmission error: %x\n", txstat); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET); xl_wait(sc); if (sc->xl_type == XL_TYPE_905B) { if (sc->xl_cdata.xl_tx_cnt) { int i; struct xl_chain *c; i = sc->xl_cdata.xl_tx_cons; c = &sc->xl_cdata.xl_tx_chain[i]; CSR_WRITE_4(sc, XL_DOWNLIST_PTR, c->xl_phys); CSR_WRITE_1(sc, XL_DOWN_POLL, 64); } } else { if (sc->xl_cdata.xl_tx_head != NULL) CSR_WRITE_4(sc, XL_DOWNLIST_PTR, sc->xl_cdata.xl_tx_head->xl_phys); } /* * Remember to set this for the * first generation 3c90X chips. */ CSR_WRITE_1(sc, XL_TX_FREETHRESH, XL_PACKET_SIZE >> 8); if (txstat & XL_TXSTATUS_UNDERRUN && sc->xl_tx_thresh < XL_PACKET_SIZE) { sc->xl_tx_thresh += XL_MIN_FRAMELEN; if_printf(&sc->arpcom.ac_if, "tx underrun, increasing tx start threshold to %d bytes\n", sc->xl_tx_thresh); } CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_SET_START|sc->xl_tx_thresh); if (sc->xl_type == XL_TYPE_905B) { CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_SET_TX_RECLAIM|(XL_PACKET_SIZE >> 4)); } CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_ENABLE); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL); } else { CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_ENABLE); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL); } /* * Write an arbitrary byte to the TX_STATUS register * to clear this interrupt/error and advance to the next. */ CSR_WRITE_1(sc, XL_TX_STATUS, 0x01); } } static void xl_intr(void *arg) { struct xl_softc *sc = arg; struct ifnet *ifp = &sc->arpcom.ac_if; u_int16_t status; XL_LOCK(sc); while ((status = CSR_READ_2(sc, XL_STATUS)) & XL_INTRS && status != 0xFFFF) { CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ACK|(status & XL_INTRS)); if (status & XL_STAT_UP_COMPLETE) { int curpkts; curpkts = ifp->if_ipackets; xl_rxeof(sc); if (curpkts == ifp->if_ipackets) { while (xl_rx_resync(sc)) xl_rxeof(sc); } } if (status & XL_STAT_DOWN_COMPLETE) { if (sc->xl_type == XL_TYPE_905B) xl_txeof_90xB(sc); else xl_txeof(sc); } if (status & XL_STAT_TX_COMPLETE) { ifp->if_oerrors++; xl_txeoc(sc); } if (status & XL_STAT_ADFAIL) { xl_reset(sc); xl_init_locked(sc); } if (status & XL_STAT_STATSOFLOW) { sc->xl_stats_no_timeout = 1; xl_stats_update_locked(sc); sc->xl_stats_no_timeout = 0; } } if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { if (sc->xl_type == XL_TYPE_905B) xl_start_90xB_locked(ifp); else xl_start_locked(ifp); } XL_UNLOCK(sc); } /* * XXX: This is an entry point for callout which needs to take the lock. */ static void xl_stats_update(void *xsc) { struct xl_softc *sc = xsc; XL_LOCK(sc); xl_stats_update_locked(sc); XL_UNLOCK(sc); } static void xl_stats_update_locked(struct xl_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; struct xl_stats xl_stats; u_int8_t *p; int i; struct mii_data *mii = NULL; XL_LOCK_ASSERT(sc); bzero((char *)&xl_stats, sizeof(struct xl_stats)); if (sc->xl_miibus != NULL) mii = device_get_softc(sc->xl_miibus); p = (u_int8_t *)&xl_stats; /* Read all the stats registers. */ XL_SEL_WIN(6); for (i = 0; i < 16; i++) *p++ = CSR_READ_1(sc, XL_W6_CARRIER_LOST + i); ifp->if_ierrors += xl_stats.xl_rx_overrun; ifp->if_collisions += xl_stats.xl_tx_multi_collision + xl_stats.xl_tx_single_collision + xl_stats.xl_tx_late_collision; /* * Boomerang and cyclone chips have an extra stats counter * in window 4 (BadSSD). We have to read this too in order * to clear out all the stats registers and avoid a statsoflow * interrupt. */ XL_SEL_WIN(4); CSR_READ_1(sc, XL_W4_BADSSD); if ((mii != NULL) && (!sc->xl_stats_no_timeout)) mii_tick(mii); XL_SEL_WIN(7); if (!sc->xl_stats_no_timeout) sc->xl_stat_ch = timeout(xl_stats_update, sc, hz); } /* * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data * pointers to the fragment pointers. */ static int xl_encap(struct xl_softc *sc, struct xl_chain *c, struct mbuf *m_head) { int error; u_int32_t status; struct ifnet *ifp = &sc->arpcom.ac_if; XL_LOCK_ASSERT(sc); /* * Start packing the mbufs in this chain into * the fragment pointers. Stop when we run out * of fragments or hit the end of the mbuf chain. */ error = bus_dmamap_load_mbuf(sc->xl_mtag, c->xl_map, m_head, xl_dma_map_txbuf, c->xl_ptr, BUS_DMA_NOWAIT); if (error && error != EFBIG) { m_freem(m_head); if_printf(ifp, "can't map mbuf (error %d)\n", error); return (1); } /* * Handle special case: we used up all 63 fragments, * but we have more mbufs left in the chain. Copy the * data into an mbuf cluster. Note that we don't * bother clearing the values in the other fragment * pointers/counters; it wouldn't gain us anything, * and would waste cycles. */ if (error) { struct mbuf *m_new; m_new = m_defrag(m_head, M_DONTWAIT); if (m_new == NULL) { m_freem(m_head); return (1); } else { m_head = m_new; } error = bus_dmamap_load_mbuf(sc->xl_mtag, c->xl_map, m_head, xl_dma_map_txbuf, c->xl_ptr, BUS_DMA_NOWAIT); if (error) { m_freem(m_head); if_printf(ifp, "can't map mbuf (error %d)\n", error); return (1); } } if (sc->xl_type == XL_TYPE_905B) { status = XL_TXSTAT_RND_DEFEAT; #ifndef XL905B_TXCSUM_BROKEN if (m_head->m_pkthdr.csum_flags) { if (m_head->m_pkthdr.csum_flags & CSUM_IP) status |= XL_TXSTAT_IPCKSUM; if (m_head->m_pkthdr.csum_flags & CSUM_TCP) status |= XL_TXSTAT_TCPCKSUM; if (m_head->m_pkthdr.csum_flags & CSUM_UDP) status |= XL_TXSTAT_UDPCKSUM; } #endif c->xl_ptr->xl_status = htole32(status); } c->xl_mbuf = m_head; bus_dmamap_sync(sc->xl_mtag, c->xl_map, BUS_DMASYNC_PREWRITE); return (0); } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit lists. We also save a * copy of the pointers since the transmit list fragment pointers are * physical addresses. */ static void xl_start(struct ifnet *ifp) { struct xl_softc *sc = ifp->if_softc; XL_LOCK(sc); if (sc->xl_type == XL_TYPE_905B) xl_start_90xB_locked(ifp); else xl_start_locked(ifp); XL_UNLOCK(sc); } static void xl_start_locked(struct ifnet *ifp) { struct xl_softc *sc = ifp->if_softc; struct mbuf *m_head = NULL; struct xl_chain *prev = NULL, *cur_tx = NULL, *start_tx; struct xl_chain *prev_tx; u_int32_t status; int error; XL_LOCK_ASSERT(sc); /* * Check for an available queue slot. If there are none, * punt. */ if (sc->xl_cdata.xl_tx_free == NULL) { xl_txeoc(sc); xl_txeof(sc); if (sc->xl_cdata.xl_tx_free == NULL) { ifp->if_flags |= IFF_OACTIVE; return; } } start_tx = sc->xl_cdata.xl_tx_free; while (sc->xl_cdata.xl_tx_free != NULL) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; /* Pick a descriptor off the free list. */ prev_tx = cur_tx; cur_tx = sc->xl_cdata.xl_tx_free; /* Pack the data into the descriptor. */ error = xl_encap(sc, cur_tx, m_head); if (error) { cur_tx = prev_tx; continue; } sc->xl_cdata.xl_tx_free = cur_tx->xl_next; cur_tx->xl_next = NULL; /* Chain it together. */ if (prev != NULL) { prev->xl_next = cur_tx; prev->xl_ptr->xl_next = htole32(cur_tx->xl_phys); } prev = cur_tx; /* * If there's a BPF listener, bounce a copy of this frame * to him. */ BPF_MTAP(ifp, cur_tx->xl_mbuf); } /* * If there are no packets queued, bail. */ if (cur_tx == NULL) return; /* * Place the request for the upload interrupt * in the last descriptor in the chain. This way, if * we're chaining several packets at once, we'll only * get an interupt once for the whole chain rather than * once for each packet. */ cur_tx->xl_ptr->xl_status = htole32(le32toh(cur_tx->xl_ptr->xl_status) | XL_TXSTAT_DL_INTR); bus_dmamap_sync(sc->xl_ldata.xl_tx_tag, sc->xl_ldata.xl_tx_dmamap, BUS_DMASYNC_PREWRITE); /* * Queue the packets. If the TX channel is clear, update * the downlist pointer register. */ CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_STALL); xl_wait(sc); if (sc->xl_cdata.xl_tx_head != NULL) { sc->xl_cdata.xl_tx_tail->xl_next = start_tx; sc->xl_cdata.xl_tx_tail->xl_ptr->xl_next = htole32(start_tx->xl_phys); status = sc->xl_cdata.xl_tx_tail->xl_ptr->xl_status; sc->xl_cdata.xl_tx_tail->xl_ptr->xl_status = htole32(le32toh(status) & ~XL_TXSTAT_DL_INTR); sc->xl_cdata.xl_tx_tail = cur_tx; } else { sc->xl_cdata.xl_tx_head = start_tx; sc->xl_cdata.xl_tx_tail = cur_tx; } if (!CSR_READ_4(sc, XL_DOWNLIST_PTR)) CSR_WRITE_4(sc, XL_DOWNLIST_PTR, start_tx->xl_phys); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL); XL_SEL_WIN(7); /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; /* * XXX Under certain conditions, usually on slower machines * where interrupts may be dropped, it's possible for the * adapter to chew up all the buffers in the receive ring * and stall, without us being able to do anything about it. * To guard against this, we need to make a pass over the * RX queue to make sure there aren't any packets pending. * Doing it here means we can flush the receive ring at the * same time the chip is DMAing the transmit descriptors we * just gave it. * * 3Com goes to some lengths to emphasize the Parallel Tasking (tm) * nature of their chips in all their marketing literature; * we may as well take advantage of it. :) */ xl_rxeof(sc); } static void xl_start_90xB_locked(struct ifnet *ifp) { struct xl_softc *sc = ifp->if_softc; struct mbuf *m_head = NULL; struct xl_chain *prev = NULL, *cur_tx = NULL, *start_tx; struct xl_chain *prev_tx; int error, idx; XL_LOCK_ASSERT(sc); if (ifp->if_flags & IFF_OACTIVE) return; idx = sc->xl_cdata.xl_tx_prod; start_tx = &sc->xl_cdata.xl_tx_chain[idx]; while (sc->xl_cdata.xl_tx_chain[idx].xl_mbuf == NULL) { if ((XL_TX_LIST_CNT - sc->xl_cdata.xl_tx_cnt) < 3) { ifp->if_flags |= IFF_OACTIVE; break; } IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; prev_tx = cur_tx; cur_tx = &sc->xl_cdata.xl_tx_chain[idx]; /* Pack the data into the descriptor. */ error = xl_encap(sc, cur_tx, m_head); if (error) { cur_tx = prev_tx; continue; } /* Chain it together. */ if (prev != NULL) prev->xl_ptr->xl_next = htole32(cur_tx->xl_phys); prev = cur_tx; /* * If there's a BPF listener, bounce a copy of this frame * to him. */ BPF_MTAP(ifp, cur_tx->xl_mbuf); XL_INC(idx, XL_TX_LIST_CNT); sc->xl_cdata.xl_tx_cnt++; } /* * If there are no packets queued, bail. */ if (cur_tx == NULL) return; /* * Place the request for the upload interrupt * in the last descriptor in the chain. This way, if * we're chaining several packets at once, we'll only * get an interupt once for the whole chain rather than * once for each packet. */ cur_tx->xl_ptr->xl_status = htole32(le32toh(cur_tx->xl_ptr->xl_status) | XL_TXSTAT_DL_INTR); bus_dmamap_sync(sc->xl_ldata.xl_tx_tag, sc->xl_ldata.xl_tx_dmamap, BUS_DMASYNC_PREWRITE); /* Start transmission */ sc->xl_cdata.xl_tx_prod = idx; start_tx->xl_prev->xl_ptr->xl_next = htole32(start_tx->xl_phys); /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; } static void xl_init(void *xsc) { struct xl_softc *sc = xsc; XL_LOCK(sc); xl_init_locked(sc); XL_UNLOCK(sc); } static void xl_init_locked(struct xl_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; int error, i; u_int16_t rxfilt = 0; struct mii_data *mii = NULL; XL_LOCK_ASSERT(sc); /* * Cancel pending I/O and free all RX/TX buffers. */ xl_stop(sc); if (sc->xl_miibus == NULL) { CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_RESET); xl_wait(sc); } CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET); xl_wait(sc); DELAY(10000); if (sc->xl_miibus != NULL) mii = device_get_softc(sc->xl_miibus); /* Init our MAC address */ XL_SEL_WIN(2); for (i = 0; i < ETHER_ADDR_LEN; i++) { CSR_WRITE_1(sc, XL_W2_STATION_ADDR_LO + i, sc->arpcom.ac_enaddr[i]); } /* Clear the station mask. */ for (i = 0; i < 3; i++) CSR_WRITE_2(sc, XL_W2_STATION_MASK_LO + (i * 2), 0); #ifdef notdef /* Reset TX and RX. */ CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_RESET); xl_wait(sc); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET); xl_wait(sc); #endif /* Init circular RX list. */ error = xl_list_rx_init(sc); if (error) { if_printf(ifp, "initialization of the rx ring failed (%d)\n", error); xl_stop(sc); return; } /* Init TX descriptors. */ if (sc->xl_type == XL_TYPE_905B) error = xl_list_tx_init_90xB(sc); else error = xl_list_tx_init(sc); if (error) { if_printf(ifp, "initialization of the tx ring failed (%d)\n", error); xl_stop(sc); return; } /* * Set the TX freethresh value. * Note that this has no effect on 3c905B "cyclone" * cards but is required for 3c900/3c905 "boomerang" * cards in order to enable the download engine. */ CSR_WRITE_1(sc, XL_TX_FREETHRESH, XL_PACKET_SIZE >> 8); /* Set the TX start threshold for best performance. */ sc->xl_tx_thresh = XL_MIN_FRAMELEN; CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_SET_START|sc->xl_tx_thresh); /* * If this is a 3c905B, also set the tx reclaim threshold. * This helps cut down on the number of tx reclaim errors * that could happen on a busy network. The chip multiplies * the register value by 16 to obtain the actual threshold * in bytes, so we divide by 16 when setting the value here. * The existing threshold value can be examined by reading * the register at offset 9 in window 5. */ if (sc->xl_type == XL_TYPE_905B) { CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_SET_TX_RECLAIM|(XL_PACKET_SIZE >> 4)); } /* Set RX filter bits. */ XL_SEL_WIN(5); rxfilt = CSR_READ_1(sc, XL_W5_RX_FILTER); /* Set the individual bit to receive frames for this host only. */ rxfilt |= XL_RXFILTER_INDIVIDUAL; /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) { rxfilt |= XL_RXFILTER_ALLFRAMES; CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt); } else { rxfilt &= ~XL_RXFILTER_ALLFRAMES; CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt); } /* * Set capture broadcast bit to capture broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) { rxfilt |= XL_RXFILTER_BROADCAST; CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt); } else { rxfilt &= ~XL_RXFILTER_BROADCAST; CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt); } /* * Program the multicast filter, if necessary. */ if (sc->xl_type == XL_TYPE_905B) xl_setmulti_hash(sc); else xl_setmulti(sc); /* * Load the address of the RX list. We have to * stall the upload engine before we can manipulate * the uplist pointer register, then unstall it when * we're finished. We also have to wait for the * stall command to complete before proceeding. * Note that we have to do this after any RX resets * have completed since the uplist register is cleared * by a reset. */ CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_UP_STALL); xl_wait(sc); CSR_WRITE_4(sc, XL_UPLIST_PTR, sc->xl_ldata.xl_rx_dmaaddr); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_UP_UNSTALL); xl_wait(sc); if (sc->xl_type == XL_TYPE_905B) { /* Set polling interval */ CSR_WRITE_1(sc, XL_DOWN_POLL, 64); /* Load the address of the TX list */ CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_STALL); xl_wait(sc); CSR_WRITE_4(sc, XL_DOWNLIST_PTR, sc->xl_cdata.xl_tx_chain[0].xl_phys); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL); xl_wait(sc); } /* * If the coax transceiver is on, make sure to enable * the DC-DC converter. */ XL_SEL_WIN(3); if (sc->xl_xcvr == XL_XCVR_COAX) CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_START); else CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_STOP); /* * increase packet size to allow reception of 802.1q or ISL packets. * For the 3c90x chip, set the 'allow large packets' bit in the MAC * control register. For 3c90xB/C chips, use the RX packet size * register. */ if (sc->xl_type == XL_TYPE_905B) CSR_WRITE_2(sc, XL_W3_MAXPKTSIZE, XL_PACKET_SIZE); else { u_int8_t macctl; macctl = CSR_READ_1(sc, XL_W3_MAC_CTRL); macctl |= XL_MACCTRL_ALLOW_LARGE_PACK; CSR_WRITE_1(sc, XL_W3_MAC_CTRL, macctl); } /* Clear out the stats counters. */ CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STATS_DISABLE); sc->xl_stats_no_timeout = 1; xl_stats_update_locked(sc); sc->xl_stats_no_timeout = 0; XL_SEL_WIN(4); CSR_WRITE_2(sc, XL_W4_NET_DIAG, XL_NETDIAG_UPPER_BYTES_ENABLE); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STATS_ENABLE); /* * Enable interrupts. */ CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ACK|0xFF); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STAT_ENB|XL_INTRS); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ENB|XL_INTRS); if (sc->xl_flags & XL_FLAG_FUNCREG) bus_space_write_4(sc->xl_ftag, sc->xl_fhandle, 4, 0x8000); /* Set the RX early threshold */ CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_THRESH|(XL_PACKET_SIZE >>2)); CSR_WRITE_2(sc, XL_DMACTL, XL_DMACTL_UP_RX_EARLY); /* Enable receiver and transmitter. */ CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_ENABLE); xl_wait(sc); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_ENABLE); xl_wait(sc); /* XXX Downcall to miibus. */ if (mii != NULL) mii_mediachg(mii); /* Select window 7 for normal operations. */ XL_SEL_WIN(7); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; sc->xl_stat_ch = timeout(xl_stats_update, sc, hz); } /* * Set media options. */ static int xl_ifmedia_upd(struct ifnet *ifp) { struct xl_softc *sc = ifp->if_softc; struct ifmedia *ifm = NULL; struct mii_data *mii = NULL; /*XL_LOCK_ASSERT(sc);*/ if (sc->xl_miibus != NULL) mii = device_get_softc(sc->xl_miibus); if (mii == NULL) ifm = &sc->ifmedia; else ifm = &mii->mii_media; switch (IFM_SUBTYPE(ifm->ifm_media)) { case IFM_100_FX: case IFM_10_FL: case IFM_10_2: case IFM_10_5: xl_setmode(sc, ifm->ifm_media); return (0); break; default: break; } if (sc->xl_media & XL_MEDIAOPT_MII || sc->xl_media & XL_MEDIAOPT_BTX || sc->xl_media & XL_MEDIAOPT_BT4) { xl_init(sc); /* XXX */ } else { xl_setmode(sc, ifm->ifm_media); } return (0); } /* * Report current media status. */ static void xl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct xl_softc *sc = ifp->if_softc; u_int32_t icfg; u_int16_t status = 0; struct mii_data *mii = NULL; /*XL_LOCK_ASSERT(sc);*/ if (sc->xl_miibus != NULL) mii = device_get_softc(sc->xl_miibus); XL_SEL_WIN(4); status = CSR_READ_2(sc, XL_W4_MEDIA_STATUS); XL_SEL_WIN(3); icfg = CSR_READ_4(sc, XL_W3_INTERNAL_CFG) & XL_ICFG_CONNECTOR_MASK; icfg >>= XL_ICFG_CONNECTOR_BITS; ifmr->ifm_active = IFM_ETHER; ifmr->ifm_status = IFM_AVALID; if ((status & XL_MEDIASTAT_CARRIER) == 0) ifmr->ifm_status |= IFM_ACTIVE; switch (icfg) { case XL_XCVR_10BT: ifmr->ifm_active = IFM_ETHER|IFM_10_T; if (CSR_READ_1(sc, XL_W3_MAC_CTRL) & XL_MACCTRL_DUPLEX) ifmr->ifm_active |= IFM_FDX; else ifmr->ifm_active |= IFM_HDX; break; case XL_XCVR_AUI: if (sc->xl_type == XL_TYPE_905B && sc->xl_media == XL_MEDIAOPT_10FL) { ifmr->ifm_active = IFM_ETHER|IFM_10_FL; if (CSR_READ_1(sc, XL_W3_MAC_CTRL) & XL_MACCTRL_DUPLEX) ifmr->ifm_active |= IFM_FDX; else ifmr->ifm_active |= IFM_HDX; } else ifmr->ifm_active = IFM_ETHER|IFM_10_5; break; case XL_XCVR_COAX: ifmr->ifm_active = IFM_ETHER|IFM_10_2; break; /* * XXX MII and BTX/AUTO should be separate cases. */ case XL_XCVR_100BTX: case XL_XCVR_AUTO: case XL_XCVR_MII: if (mii != NULL) { mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; } break; case XL_XCVR_100BFX: ifmr->ifm_active = IFM_ETHER|IFM_100_FX; break; default: if_printf(ifp, "unknown XCVR type: %d\n", icfg); break; } } static int xl_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct xl_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; int error = 0; struct mii_data *mii = NULL; u_int8_t rxfilt; switch (command) { case SIOCSIFFLAGS: XL_LOCK(sc); XL_SEL_WIN(5); rxfilt = CSR_READ_1(sc, XL_W5_RX_FILTER); if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->xl_if_flags & IFF_PROMISC)) { rxfilt |= XL_RXFILTER_ALLFRAMES; CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt); XL_SEL_WIN(7); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->xl_if_flags & IFF_PROMISC) { rxfilt &= ~XL_RXFILTER_ALLFRAMES; CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt); XL_SEL_WIN(7); } else { if ((ifp->if_flags & IFF_RUNNING) == 0) xl_init_locked(sc); } } else { if (ifp->if_flags & IFF_RUNNING) xl_stop(sc); } sc->xl_if_flags = ifp->if_flags; XL_UNLOCK(sc); error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: /* XXX Downcall from if_addmulti() possibly with locks held. */ XL_LOCK(sc); if (sc->xl_type == XL_TYPE_905B) xl_setmulti_hash(sc); else xl_setmulti(sc); XL_UNLOCK(sc); error = 0; break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: /* XXX Downcall from ifmedia possibly with locks held. */ /*XL_LOCK(sc);*/ if (sc->xl_miibus != NULL) mii = device_get_softc(sc->xl_miibus); if (mii == NULL) error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); else error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); /*XL_UNLOCK(sc);*/ break; case SIOCSIFCAP: XL_LOCK(sc); ifp->if_capenable = ifr->ifr_reqcap; if (ifp->if_capenable & IFCAP_TXCSUM) ifp->if_hwassist = XL905B_CSUM_FEATURES; else ifp->if_hwassist = 0; XL_UNLOCK(sc); break; default: error = ether_ioctl(ifp, command, data); break; } return (error); } /* * XXX: Invoked from ifnet slow timer. Lock coverage needed. */ static void xl_watchdog(struct ifnet *ifp) { struct xl_softc *sc = ifp->if_softc; u_int16_t status = 0; XL_LOCK(sc); ifp->if_oerrors++; XL_SEL_WIN(4); status = CSR_READ_2(sc, XL_W4_MEDIA_STATUS); if_printf(ifp, "watchdog timeout\n"); if (status & XL_MEDIASTAT_CARRIER) if_printf(ifp, "no carrier - transceiver cable problem?\n"); xl_txeoc(sc); xl_txeof(sc); xl_rxeof(sc); xl_reset(sc); xl_init_locked(sc); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { if (sc->xl_type == XL_TYPE_905B) xl_start_90xB_locked(ifp); else xl_start_locked(ifp); } XL_UNLOCK(sc); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void xl_stop(struct xl_softc *sc) { register int i; struct ifnet *ifp = &sc->arpcom.ac_if; XL_LOCK_ASSERT(sc); ifp->if_timer = 0; CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_DISABLE); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STATS_DISABLE); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ENB); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_DISCARD); xl_wait(sc); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_DISABLE); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_STOP); DELAY(800); #ifdef foo CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_RESET); xl_wait(sc); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET); xl_wait(sc); #endif CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ACK|XL_STAT_INTLATCH); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STAT_ENB|0); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ENB|0); if (sc->xl_flags & XL_FLAG_FUNCREG) bus_space_write_4(sc->xl_ftag, sc->xl_fhandle, 4, 0x8000); /* Stop the stats updater. */ untimeout(xl_stats_update, sc, sc->xl_stat_ch); /* * Free data in the RX lists. */ for (i = 0; i < XL_RX_LIST_CNT; i++) { if (sc->xl_cdata.xl_rx_chain[i].xl_mbuf != NULL) { bus_dmamap_unload(sc->xl_mtag, sc->xl_cdata.xl_rx_chain[i].xl_map); bus_dmamap_destroy(sc->xl_mtag, sc->xl_cdata.xl_rx_chain[i].xl_map); m_freem(sc->xl_cdata.xl_rx_chain[i].xl_mbuf); sc->xl_cdata.xl_rx_chain[i].xl_mbuf = NULL; } } if (sc->xl_ldata.xl_rx_list != NULL) bzero(sc->xl_ldata.xl_rx_list, XL_RX_LIST_SZ); /* * Free the TX list buffers. */ for (i = 0; i < XL_TX_LIST_CNT; i++) { if (sc->xl_cdata.xl_tx_chain[i].xl_mbuf != NULL) { bus_dmamap_unload(sc->xl_mtag, sc->xl_cdata.xl_tx_chain[i].xl_map); bus_dmamap_destroy(sc->xl_mtag, sc->xl_cdata.xl_tx_chain[i].xl_map); m_freem(sc->xl_cdata.xl_tx_chain[i].xl_mbuf); sc->xl_cdata.xl_tx_chain[i].xl_mbuf = NULL; } } if (sc->xl_ldata.xl_tx_list != NULL) bzero(sc->xl_ldata.xl_tx_list, XL_TX_LIST_SZ); ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static void xl_shutdown(device_t dev) { struct xl_softc *sc; sc = device_get_softc(dev); XL_LOCK(sc); xl_reset(sc); xl_stop(sc); XL_UNLOCK(sc); } static int xl_suspend(device_t dev) { struct xl_softc *sc; sc = device_get_softc(dev); XL_LOCK(sc); xl_stop(sc); XL_UNLOCK(sc); return (0); } static int xl_resume(device_t dev) { struct xl_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); ifp = &sc->arpcom.ac_if; XL_LOCK(sc); xl_reset(sc); if (ifp->if_flags & IFF_UP) xl_init_locked(sc); XL_UNLOCK(sc); return (0); }