/*- * Copyright 1998 Massachusetts Institute of Technology * Copyright 2012 ADARA Networks, Inc. * Copyright 2017 Dell EMC Isilon * * Portions of this software were developed by Robert N. M. Watson under * contract to ADARA Networks, Inc. * * Permission to use, copy, modify, and distribute this software and * its documentation for any purpose and without fee is hereby * granted, provided that both the above copyright notice and this * permission notice appear in all copies, that both the above * copyright notice and this permission notice appear in all * supporting documentation, and that the name of M.I.T. not be used * in advertising or publicity pertaining to distribution of the * software without specific, written prior permission. M.I.T. makes * no representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied * warranty. * * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. * This is sort of sneaky in the implementation, since * we need to pretend to be enough of an Ethernet implementation * to make arp work. The way we do this is by telling everyone * that we are an Ethernet, and then catch the packets that * ether_output() sends to us via if_transmit(), rewrite them for * use by the real outgoing interface, and ask it to send them. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_vlan.h" #include "opt_ratelimit.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #endif #define VLAN_DEF_HWIDTH 4 #define VLAN_IFFLAGS (IFF_BROADCAST | IFF_MULTICAST) #define UP_AND_RUNNING(ifp) \ ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING) LIST_HEAD(ifvlanhead, ifvlan); struct ifvlantrunk { struct ifnet *parent; /* parent interface of this trunk */ struct rmlock lock; #ifdef VLAN_ARRAY #define VLAN_ARRAY_SIZE (EVL_VLID_MASK + 1) struct ifvlan *vlans[VLAN_ARRAY_SIZE]; /* static table */ #else struct ifvlanhead *hash; /* dynamic hash-list table */ uint16_t hmask; uint16_t hwidth; #endif int refcnt; }; /* * This macro provides a facility to iterate over every vlan on a trunk with * the assumption that none will be added/removed during iteration. */ #ifdef VLAN_ARRAY #define VLAN_FOREACH(_ifv, _trunk) \ size_t _i; \ for (_i = 0; _i < VLAN_ARRAY_SIZE; _i++) \ if (((_ifv) = (_trunk)->vlans[_i]) != NULL) #else /* VLAN_ARRAY */ #define VLAN_FOREACH(_ifv, _trunk) \ struct ifvlan *_next; \ size_t _i; \ for (_i = 0; _i < (1 << (_trunk)->hwidth); _i++) \ LIST_FOREACH_SAFE((_ifv), &(_trunk)->hash[_i], ifv_list, _next) #endif /* VLAN_ARRAY */ /* * This macro provides a facility to iterate over every vlan on a trunk while * also modifying the number of vlans on the trunk. The iteration continues * until some condition is met or there are no more vlans on the trunk. */ #ifdef VLAN_ARRAY /* The VLAN_ARRAY case is simple -- just a for loop using the condition. */ #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \ size_t _i; \ for (_i = 0; !(_cond) && _i < VLAN_ARRAY_SIZE; _i++) \ if (((_ifv) = (_trunk)->vlans[_i])) #else /* VLAN_ARRAY */ /* * The hash table case is more complicated. We allow for the hash table to be * modified (i.e. vlans removed) while we are iterating over it. To allow for * this we must restart the iteration every time we "touch" something during * the iteration, since removal will resize the hash table and invalidate our * current position. If acting on the touched element causes the trunk to be * emptied, then iteration also stops. */ #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \ size_t _i; \ bool _touch = false; \ for (_i = 0; \ !(_cond) && _i < (1 << (_trunk)->hwidth); \ _i = (_touch && ((_trunk) != NULL) ? 0 : _i + 1), _touch = false) \ if (((_ifv) = LIST_FIRST(&(_trunk)->hash[_i])) != NULL && \ (_touch = true)) #endif /* VLAN_ARRAY */ struct vlan_mc_entry { struct sockaddr_dl mc_addr; SLIST_ENTRY(vlan_mc_entry) mc_entries; }; struct ifvlan { struct ifvlantrunk *ifv_trunk; struct ifnet *ifv_ifp; #define TRUNK(ifv) ((ifv)->ifv_trunk) #define PARENT(ifv) ((ifv)->ifv_trunk->parent) void *ifv_cookie; int ifv_pflags; /* special flags we have set on parent */ int ifv_capenable; struct ifv_linkmib { int ifvm_encaplen; /* encapsulation length */ int ifvm_mtufudge; /* MTU fudged by this much */ int ifvm_mintu; /* min transmission unit */ uint16_t ifvm_proto; /* encapsulation ethertype */ uint16_t ifvm_tag; /* tag to apply on packets leaving if */ uint16_t ifvm_vid; /* VLAN ID */ uint8_t ifvm_pcp; /* Priority Code Point (PCP). */ } ifv_mib; struct task lladdr_task; SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead; #ifndef VLAN_ARRAY LIST_ENTRY(ifvlan) ifv_list; #endif }; #define ifv_proto ifv_mib.ifvm_proto #define ifv_tag ifv_mib.ifvm_tag #define ifv_vid ifv_mib.ifvm_vid #define ifv_pcp ifv_mib.ifvm_pcp #define ifv_encaplen ifv_mib.ifvm_encaplen #define ifv_mtufudge ifv_mib.ifvm_mtufudge #define ifv_mintu ifv_mib.ifvm_mintu /* Special flags we should propagate to parent. */ static struct { int flag; int (*func)(struct ifnet *, int); } vlan_pflags[] = { {IFF_PROMISC, ifpromisc}, {IFF_ALLMULTI, if_allmulti}, {0, NULL} }; extern int vlan_mtag_pcp; static const char vlanname[] = "vlan"; static MALLOC_DEFINE(M_VLAN, vlanname, "802.1Q Virtual LAN Interface"); static eventhandler_tag ifdetach_tag; static eventhandler_tag iflladdr_tag; /* * if_vlan uses two module-level locks to allow concurrent modification of vlan * interfaces and (mostly) allow for vlans to be destroyed while they are being * used for tx/rx. To accomplish this in a way that has acceptable performance * and cooperation with other parts of the network stack there is a * non-sleepable rmlock(9) and an sx(9). Both locks are exclusively acquired * when destroying a vlan interface, i.e. when the if_vlantrunk field of struct * ifnet is de-allocated and NULL'd. Thus a reader holding either lock has a * guarantee that the struct ifvlantrunk references a valid vlan trunk. * * The performance-sensitive paths that warrant using the rmlock(9) are * vlan_transmit and vlan_input. Both have to check for the vlan interface's * existence using if_vlantrunk, and being in the network tx/rx paths the use * of an rmlock(9) gives a measureable improvement in performance. * * The reason for having an sx(9) is mostly because there are still areas that * must be sleepable and also have safe concurrent access to a vlan interface. * Since the sx(9) exists, it is used by default in most paths unless sleeping * is not permitted, or if it is not clear whether sleeping is permitted. * * Note that despite these protections, there is still an inherent race in the * destruction of vlans since there's no guarantee that the ifnet hasn't been * freed/reused when the tx/rx functions are called by the stack. This can only * be fixed by addressing ifnet's lifetime issues. */ #define _VLAN_RM_ID ifv_rm_lock #define _VLAN_SX_ID ifv_sx static struct rmlock _VLAN_RM_ID; static struct sx _VLAN_SX_ID; #define VLAN_LOCKING_INIT() \ rm_init(&_VLAN_RM_ID, "vlan_rm"); \ sx_init(&_VLAN_SX_ID, "vlan_sx") #define VLAN_LOCKING_DESTROY() \ rm_destroy(&_VLAN_RM_ID); \ sx_destroy(&_VLAN_SX_ID) #define _VLAN_RM_TRACKER _vlan_rm_tracker #define VLAN_RLOCK() rm_rlock(&_VLAN_RM_ID, \ &_VLAN_RM_TRACKER) #define VLAN_RUNLOCK() rm_runlock(&_VLAN_RM_ID, \ &_VLAN_RM_TRACKER) #define VLAN_WLOCK() rm_wlock(&_VLAN_RM_ID) #define VLAN_WUNLOCK() rm_wunlock(&_VLAN_RM_ID) #define VLAN_RLOCK_ASSERT() rm_assert(&_VLAN_RM_ID, RA_RLOCKED) #define VLAN_WLOCK_ASSERT() rm_assert(&_VLAN_RM_ID, RA_WLOCKED) #define VLAN_RWLOCK_ASSERT() rm_assert(&_VLAN_RM_ID, RA_LOCKED) #define VLAN_LOCK_READER struct rm_priotracker _VLAN_RM_TRACKER #define VLAN_SLOCK() sx_slock(&_VLAN_SX_ID) #define VLAN_SUNLOCK() sx_sunlock(&_VLAN_SX_ID) #define VLAN_XLOCK() sx_xlock(&_VLAN_SX_ID) #define VLAN_XUNLOCK() sx_xunlock(&_VLAN_SX_ID) #define VLAN_SLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_SLOCKED) #define VLAN_XLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_XLOCKED) #define VLAN_SXLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_LOCKED) /* * We also have a per-trunk rmlock(9), that is locked shared on packet * processing and exclusive when configuration is changed. Note: This should * only be acquired while there is a shared lock on either of the global locks * via VLAN_SLOCK or VLAN_RLOCK. Thus, an exclusive lock on the global locks * makes a call to TRUNK_RLOCK/TRUNK_WLOCK technically superfluous. */ #define _TRUNK_RM_TRACKER _trunk_rm_tracker #define TRUNK_LOCK_INIT(trunk) rm_init(&(trunk)->lock, vlanname) #define TRUNK_LOCK_DESTROY(trunk) rm_destroy(&(trunk)->lock) #define TRUNK_RLOCK(trunk) rm_rlock(&(trunk)->lock, \ &_TRUNK_RM_TRACKER) #define TRUNK_WLOCK(trunk) rm_wlock(&(trunk)->lock) #define TRUNK_RUNLOCK(trunk) rm_runlock(&(trunk)->lock, \ &_TRUNK_RM_TRACKER) #define TRUNK_WUNLOCK(trunk) rm_wunlock(&(trunk)->lock) #define TRUNK_RLOCK_ASSERT(trunk) rm_assert(&(trunk)->lock, RA_RLOCKED) #define TRUNK_LOCK_ASSERT(trunk) rm_assert(&(trunk)->lock, RA_LOCKED) #define TRUNK_WLOCK_ASSERT(trunk) rm_assert(&(trunk)->lock, RA_WLOCKED) #define TRUNK_LOCK_READER struct rm_priotracker _TRUNK_RM_TRACKER /* * The VLAN_ARRAY substitutes the dynamic hash with a static array * with 4096 entries. In theory this can give a boost in processing, * however in practice it does not. Probably this is because the array * is too big to fit into CPU cache. */ #ifndef VLAN_ARRAY static void vlan_inithash(struct ifvlantrunk *trunk); static void vlan_freehash(struct ifvlantrunk *trunk); static int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv); static int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv); static void vlan_growhash(struct ifvlantrunk *trunk, int howmuch); static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid); #endif static void trunk_destroy(struct ifvlantrunk *trunk); static void vlan_init(void *foo); static void vlan_input(struct ifnet *ifp, struct mbuf *m); static int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr); #ifdef RATELIMIT static int vlan_snd_tag_alloc(struct ifnet *, union if_snd_tag_alloc_params *, struct m_snd_tag **); #endif static void vlan_qflush(struct ifnet *ifp); static int vlan_setflag(struct ifnet *ifp, int flag, int status, int (*func)(struct ifnet *, int)); static int vlan_setflags(struct ifnet *ifp, int status); static int vlan_setmulti(struct ifnet *ifp); static int vlan_transmit(struct ifnet *ifp, struct mbuf *m); static void vlan_unconfig(struct ifnet *ifp); static void vlan_unconfig_locked(struct ifnet *ifp, int departing); static int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag); static void vlan_link_state(struct ifnet *ifp); static void vlan_capabilities(struct ifvlan *ifv); static void vlan_trunk_capabilities(struct ifnet *ifp); static struct ifnet *vlan_clone_match_ethervid(const char *, int *); static int vlan_clone_match(struct if_clone *, const char *); static int vlan_clone_create(struct if_clone *, char *, size_t, caddr_t); static int vlan_clone_destroy(struct if_clone *, struct ifnet *); static void vlan_ifdetach(void *arg, struct ifnet *ifp); static void vlan_iflladdr(void *arg, struct ifnet *ifp); static void vlan_lladdr_fn(void *arg, int pending); static struct if_clone *vlan_cloner; #ifdef VIMAGE VNET_DEFINE_STATIC(struct if_clone *, vlan_cloner); #define V_vlan_cloner VNET(vlan_cloner) #endif #ifndef VLAN_ARRAY #define HASH(n, m) ((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m)) static void vlan_inithash(struct ifvlantrunk *trunk) { int i, n; /* * The trunk must not be locked here since we call malloc(M_WAITOK). * It is OK in case this function is called before the trunk struct * gets hooked up and becomes visible from other threads. */ KASSERT(trunk->hwidth == 0 && trunk->hash == NULL, ("%s: hash already initialized", __func__)); trunk->hwidth = VLAN_DEF_HWIDTH; n = 1 << trunk->hwidth; trunk->hmask = n - 1; trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK); for (i = 0; i < n; i++) LIST_INIT(&trunk->hash[i]); } static void vlan_freehash(struct ifvlantrunk *trunk) { #ifdef INVARIANTS int i; KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); for (i = 0; i < (1 << trunk->hwidth); i++) KASSERT(LIST_EMPTY(&trunk->hash[i]), ("%s: hash table not empty", __func__)); #endif free(trunk->hash, M_VLAN); trunk->hash = NULL; trunk->hwidth = trunk->hmask = 0; } static int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv) { int i, b; struct ifvlan *ifv2; TRUNK_WLOCK_ASSERT(trunk); KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); b = 1 << trunk->hwidth; i = HASH(ifv->ifv_vid, trunk->hmask); LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list) if (ifv->ifv_vid == ifv2->ifv_vid) return (EEXIST); /* * Grow the hash when the number of vlans exceeds half of the number of * hash buckets squared. This will make the average linked-list length * buckets/2. */ if (trunk->refcnt > (b * b) / 2) { vlan_growhash(trunk, 1); i = HASH(ifv->ifv_vid, trunk->hmask); } LIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list); trunk->refcnt++; return (0); } static int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv) { int i, b; struct ifvlan *ifv2; TRUNK_WLOCK_ASSERT(trunk); KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); b = 1 << trunk->hwidth; i = HASH(ifv->ifv_vid, trunk->hmask); LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list) if (ifv2 == ifv) { trunk->refcnt--; LIST_REMOVE(ifv2, ifv_list); if (trunk->refcnt < (b * b) / 2) vlan_growhash(trunk, -1); return (0); } panic("%s: vlan not found\n", __func__); return (ENOENT); /*NOTREACHED*/ } /* * Grow the hash larger or smaller if memory permits. */ static void vlan_growhash(struct ifvlantrunk *trunk, int howmuch) { struct ifvlan *ifv; struct ifvlanhead *hash2; int hwidth2, i, j, n, n2; TRUNK_WLOCK_ASSERT(trunk); KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); if (howmuch == 0) { /* Harmless yet obvious coding error */ printf("%s: howmuch is 0\n", __func__); return; } hwidth2 = trunk->hwidth + howmuch; n = 1 << trunk->hwidth; n2 = 1 << hwidth2; /* Do not shrink the table below the default */ if (hwidth2 < VLAN_DEF_HWIDTH) return; /* M_NOWAIT because we're called with trunk mutex held */ hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_NOWAIT); if (hash2 == NULL) { printf("%s: out of memory -- hash size not changed\n", __func__); return; /* We can live with the old hash table */ } for (j = 0; j < n2; j++) LIST_INIT(&hash2[j]); for (i = 0; i < n; i++) while ((ifv = LIST_FIRST(&trunk->hash[i])) != NULL) { LIST_REMOVE(ifv, ifv_list); j = HASH(ifv->ifv_vid, n2 - 1); LIST_INSERT_HEAD(&hash2[j], ifv, ifv_list); } free(trunk->hash, M_VLAN); trunk->hash = hash2; trunk->hwidth = hwidth2; trunk->hmask = n2 - 1; if (bootverbose) if_printf(trunk->parent, "VLAN hash table resized from %d to %d buckets\n", n, n2); } static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid) { struct ifvlan *ifv; TRUNK_RLOCK_ASSERT(trunk); LIST_FOREACH(ifv, &trunk->hash[HASH(vid, trunk->hmask)], ifv_list) if (ifv->ifv_vid == vid) return (ifv); return (NULL); } #if 0 /* Debugging code to view the hashtables. */ static void vlan_dumphash(struct ifvlantrunk *trunk) { int i; struct ifvlan *ifv; for (i = 0; i < (1 << trunk->hwidth); i++) { printf("%d: ", i); LIST_FOREACH(ifv, &trunk->hash[i], ifv_list) printf("%s ", ifv->ifv_ifp->if_xname); printf("\n"); } } #endif /* 0 */ #else static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid) { return trunk->vlans[vid]; } static __inline int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv) { if (trunk->vlans[ifv->ifv_vid] != NULL) return EEXIST; trunk->vlans[ifv->ifv_vid] = ifv; trunk->refcnt++; return (0); } static __inline int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv) { trunk->vlans[ifv->ifv_vid] = NULL; trunk->refcnt--; return (0); } static __inline void vlan_freehash(struct ifvlantrunk *trunk) { } static __inline void vlan_inithash(struct ifvlantrunk *trunk) { } #endif /* !VLAN_ARRAY */ static void trunk_destroy(struct ifvlantrunk *trunk) { VLAN_XLOCK_ASSERT(); VLAN_WLOCK_ASSERT(); vlan_freehash(trunk); trunk->parent->if_vlantrunk = NULL; TRUNK_LOCK_DESTROY(trunk); if_rele(trunk->parent); free(trunk, M_VLAN); } /* * Program our multicast filter. What we're actually doing is * programming the multicast filter of the parent. This has the * side effect of causing the parent interface to receive multicast * traffic that it doesn't really want, which ends up being discarded * later by the upper protocol layers. Unfortunately, there's no way * to avoid this: there really is only one physical interface. */ static int vlan_setmulti(struct ifnet *ifp) { struct ifnet *ifp_p; struct ifmultiaddr *ifma; struct ifvlan *sc; struct vlan_mc_entry *mc; int error; /* * XXX This stupidly needs the rmlock to avoid sleeping while holding * the in6_multi_mtx (see in6_mc_join_locked). */ VLAN_RWLOCK_ASSERT(); /* Find the parent. */ sc = ifp->if_softc; TRUNK_WLOCK_ASSERT(TRUNK(sc)); ifp_p = PARENT(sc); CURVNET_SET_QUIET(ifp_p->if_vnet); /* First, remove any existing filter entries. */ while ((mc = SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) { SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries); (void)if_delmulti(ifp_p, (struct sockaddr *)&mc->mc_addr); free(mc, M_VLAN); } /* Now program new ones. */ IF_ADDR_WLOCK(ifp); CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT); if (mc == NULL) { IF_ADDR_WUNLOCK(ifp); return (ENOMEM); } bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len); mc->mc_addr.sdl_index = ifp_p->if_index; SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries); } IF_ADDR_WUNLOCK(ifp); SLIST_FOREACH (mc, &sc->vlan_mc_listhead, mc_entries) { error = if_addmulti(ifp_p, (struct sockaddr *)&mc->mc_addr, NULL); if (error) return (error); } CURVNET_RESTORE(); return (0); } /* * A handler for parent interface link layer address changes. * If the parent interface link layer address is changed we * should also change it on all children vlans. */ static void vlan_iflladdr(void *arg __unused, struct ifnet *ifp) { struct ifvlan *ifv; struct ifnet *ifv_ifp; struct ifvlantrunk *trunk; struct sockaddr_dl *sdl; VLAN_LOCK_READER; /* Need the rmlock since this is run on taskqueue_swi. */ VLAN_RLOCK(); trunk = ifp->if_vlantrunk; if (trunk == NULL) { VLAN_RUNLOCK(); return; } /* * OK, it's a trunk. Loop over and change all vlan's lladdrs on it. * We need an exclusive lock here to prevent concurrent SIOCSIFLLADDR * ioctl calls on the parent garbling the lladdr of the child vlan. */ TRUNK_WLOCK(trunk); VLAN_FOREACH(ifv, trunk) { /* * Copy new new lladdr into the ifv_ifp, enqueue a task * to actually call if_setlladdr. if_setlladdr needs to * be deferred to a taskqueue because it will call into * the if_vlan ioctl path and try to acquire the global * lock. */ ifv_ifp = ifv->ifv_ifp; bcopy(IF_LLADDR(ifp), IF_LLADDR(ifv_ifp), ifp->if_addrlen); sdl = (struct sockaddr_dl *)ifv_ifp->if_addr->ifa_addr; sdl->sdl_alen = ifp->if_addrlen; taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task); } TRUNK_WUNLOCK(trunk); VLAN_RUNLOCK(); } /* * A handler for network interface departure events. * Track departure of trunks here so that we don't access invalid * pointers or whatever if a trunk is ripped from under us, e.g., * by ejecting its hot-plug card. However, if an ifnet is simply * being renamed, then there's no need to tear down the state. */ static void vlan_ifdetach(void *arg __unused, struct ifnet *ifp) { struct ifvlan *ifv; struct ifvlantrunk *trunk; /* If the ifnet is just being renamed, don't do anything. */ if (ifp->if_flags & IFF_RENAMING) return; VLAN_XLOCK(); trunk = ifp->if_vlantrunk; if (trunk == NULL) { VLAN_XUNLOCK(); return; } /* * OK, it's a trunk. Loop over and detach all vlan's on it. * Check trunk pointer after each vlan_unconfig() as it will * free it and set to NULL after the last vlan was detached. */ VLAN_FOREACH_UNTIL_SAFE(ifv, ifp->if_vlantrunk, ifp->if_vlantrunk == NULL) vlan_unconfig_locked(ifv->ifv_ifp, 1); /* Trunk should have been destroyed in vlan_unconfig(). */ KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__)); VLAN_XUNLOCK(); } /* * Return the trunk device for a virtual interface. */ static struct ifnet * vlan_trunkdev(struct ifnet *ifp) { struct ifvlan *ifv; VLAN_LOCK_READER; if (ifp->if_type != IFT_L2VLAN) return (NULL); /* Not clear if callers are sleepable, so acquire the rmlock. */ VLAN_RLOCK(); ifv = ifp->if_softc; ifp = NULL; if (ifv->ifv_trunk) ifp = PARENT(ifv); VLAN_RUNLOCK(); return (ifp); } /* * Return the 12-bit VLAN VID for this interface, for use by external * components such as Infiniband. * * XXXRW: Note that the function name here is historical; it should be named * vlan_vid(). */ static int vlan_tag(struct ifnet *ifp, uint16_t *vidp) { struct ifvlan *ifv; if (ifp->if_type != IFT_L2VLAN) return (EINVAL); ifv = ifp->if_softc; *vidp = ifv->ifv_vid; return (0); } /* * Return a driver specific cookie for this interface. Synchronization * with setcookie must be provided by the driver. */ static void * vlan_cookie(struct ifnet *ifp) { struct ifvlan *ifv; if (ifp->if_type != IFT_L2VLAN) return (NULL); ifv = ifp->if_softc; return (ifv->ifv_cookie); } /* * Store a cookie in our softc that drivers can use to store driver * private per-instance data in. */ static int vlan_setcookie(struct ifnet *ifp, void *cookie) { struct ifvlan *ifv; if (ifp->if_type != IFT_L2VLAN) return (EINVAL); ifv = ifp->if_softc; ifv->ifv_cookie = cookie; return (0); } /* * Return the vlan device present at the specific VID. */ static struct ifnet * vlan_devat(struct ifnet *ifp, uint16_t vid) { struct ifvlantrunk *trunk; struct ifvlan *ifv; VLAN_LOCK_READER; TRUNK_LOCK_READER; /* Not clear if callers are sleepable, so acquire the rmlock. */ VLAN_RLOCK(); trunk = ifp->if_vlantrunk; if (trunk == NULL) { VLAN_RUNLOCK(); return (NULL); } ifp = NULL; TRUNK_RLOCK(trunk); ifv = vlan_gethash(trunk, vid); if (ifv) ifp = ifv->ifv_ifp; TRUNK_RUNLOCK(trunk); VLAN_RUNLOCK(); return (ifp); } /* * Recalculate the cached VLAN tag exposed via the MIB. */ static void vlan_tag_recalculate(struct ifvlan *ifv) { ifv->ifv_tag = EVL_MAKETAG(ifv->ifv_vid, ifv->ifv_pcp, 0); } /* * VLAN support can be loaded as a module. The only place in the * system that's intimately aware of this is ether_input. We hook * into this code through vlan_input_p which is defined there and * set here. No one else in the system should be aware of this so * we use an explicit reference here. */ extern void (*vlan_input_p)(struct ifnet *, struct mbuf *); /* For if_link_state_change() eyes only... */ extern void (*vlan_link_state_p)(struct ifnet *); static int vlan_modevent(module_t mod, int type, void *data) { switch (type) { case MOD_LOAD: ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY); if (ifdetach_tag == NULL) return (ENOMEM); iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event, vlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY); if (iflladdr_tag == NULL) return (ENOMEM); VLAN_LOCKING_INIT(); vlan_input_p = vlan_input; vlan_link_state_p = vlan_link_state; vlan_trunk_cap_p = vlan_trunk_capabilities; vlan_trunkdev_p = vlan_trunkdev; vlan_cookie_p = vlan_cookie; vlan_setcookie_p = vlan_setcookie; vlan_tag_p = vlan_tag; vlan_devat_p = vlan_devat; #ifndef VIMAGE vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match, vlan_clone_create, vlan_clone_destroy); #endif if (bootverbose) printf("vlan: initialized, using " #ifdef VLAN_ARRAY "full-size arrays" #else "hash tables with chaining" #endif "\n"); break; case MOD_UNLOAD: #ifndef VIMAGE if_clone_detach(vlan_cloner); #endif EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag); EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_tag); vlan_input_p = NULL; vlan_link_state_p = NULL; vlan_trunk_cap_p = NULL; vlan_trunkdev_p = NULL; vlan_tag_p = NULL; vlan_cookie_p = NULL; vlan_setcookie_p = NULL; vlan_devat_p = NULL; VLAN_LOCKING_DESTROY(); if (bootverbose) printf("vlan: unloaded\n"); break; default: return (EOPNOTSUPP); } return (0); } static moduledata_t vlan_mod = { "if_vlan", vlan_modevent, 0 }; DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); MODULE_VERSION(if_vlan, 3); #ifdef VIMAGE static void vnet_vlan_init(const void *unused __unused) { vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match, vlan_clone_create, vlan_clone_destroy); V_vlan_cloner = vlan_cloner; } VNET_SYSINIT(vnet_vlan_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, vnet_vlan_init, NULL); static void vnet_vlan_uninit(const void *unused __unused) { if_clone_detach(V_vlan_cloner); } VNET_SYSUNINIT(vnet_vlan_uninit, SI_SUB_INIT_IF, SI_ORDER_FIRST, vnet_vlan_uninit, NULL); #endif /* * Check for . style interface names. */ static struct ifnet * vlan_clone_match_ethervid(const char *name, int *vidp) { char ifname[IFNAMSIZ]; char *cp; struct ifnet *ifp; int vid; strlcpy(ifname, name, IFNAMSIZ); if ((cp = strchr(ifname, '.')) == NULL) return (NULL); *cp = '\0'; if ((ifp = ifunit_ref(ifname)) == NULL) return (NULL); /* Parse VID. */ if (*++cp == '\0') { if_rele(ifp); return (NULL); } vid = 0; for(; *cp >= '0' && *cp <= '9'; cp++) vid = (vid * 10) + (*cp - '0'); if (*cp != '\0') { if_rele(ifp); return (NULL); } if (vidp != NULL) *vidp = vid; return (ifp); } static int vlan_clone_match(struct if_clone *ifc, const char *name) { const char *cp; if (vlan_clone_match_ethervid(name, NULL) != NULL) return (1); if (strncmp(vlanname, name, strlen(vlanname)) != 0) return (0); for (cp = name + 4; *cp != '\0'; cp++) { if (*cp < '0' || *cp > '9') return (0); } return (1); } static int vlan_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params) { char *dp; int wildcard; int unit; int error; int vid; struct ifvlan *ifv; struct ifnet *ifp; struct ifnet *p; struct ifaddr *ifa; struct sockaddr_dl *sdl; struct vlanreq vlr; static const u_char eaddr[ETHER_ADDR_LEN]; /* 00:00:00:00:00:00 */ /* * There are 3 (ugh) ways to specify the cloned device: * o pass a parameter block with the clone request. * o specify parameters in the text of the clone device name * o specify no parameters and get an unattached device that * must be configured separately. * The first technique is preferred; the latter two are * supported for backwards compatibility. * * XXXRW: Note historic use of the word "tag" here. New ioctls may be * called for. */ if (params) { error = copyin(params, &vlr, sizeof(vlr)); if (error) return error; p = ifunit_ref(vlr.vlr_parent); if (p == NULL) return (ENXIO); error = ifc_name2unit(name, &unit); if (error != 0) { if_rele(p); return (error); } vid = vlr.vlr_tag; wildcard = (unit < 0); } else if ((p = vlan_clone_match_ethervid(name, &vid)) != NULL) { unit = -1; wildcard = 0; } else { p = NULL; error = ifc_name2unit(name, &unit); if (error != 0) return (error); wildcard = (unit < 0); } error = ifc_alloc_unit(ifc, &unit); if (error != 0) { if (p != NULL) if_rele(p); return (error); } /* In the wildcard case, we need to update the name. */ if (wildcard) { for (dp = name; *dp != '\0'; dp++); if (snprintf(dp, len - (dp-name), "%d", unit) > len - (dp-name) - 1) { panic("%s: interface name too long", __func__); } } ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO); ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { ifc_free_unit(ifc, unit); free(ifv, M_VLAN); if (p != NULL) if_rele(p); return (ENOSPC); } SLIST_INIT(&ifv->vlan_mc_listhead); ifp->if_softc = ifv; /* * Set the name manually rather than using if_initname because * we don't conform to the default naming convention for interfaces. */ strlcpy(ifp->if_xname, name, IFNAMSIZ); ifp->if_dname = vlanname; ifp->if_dunit = unit; /* NB: flags are not set here */ ifp->if_linkmib = &ifv->ifv_mib; ifp->if_linkmiblen = sizeof(ifv->ifv_mib); /* NB: mtu is not set here */ ifp->if_init = vlan_init; ifp->if_transmit = vlan_transmit; ifp->if_qflush = vlan_qflush; ifp->if_ioctl = vlan_ioctl; #ifdef RATELIMIT ifp->if_snd_tag_alloc = vlan_snd_tag_alloc; #endif ifp->if_flags = VLAN_IFFLAGS; ether_ifattach(ifp, eaddr); /* Now undo some of the damage... */ ifp->if_baudrate = 0; ifp->if_type = IFT_L2VLAN; ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN; ifa = ifp->if_addr; sdl = (struct sockaddr_dl *)ifa->ifa_addr; sdl->sdl_type = IFT_L2VLAN; if (p != NULL) { error = vlan_config(ifv, p, vid); if_rele(p); if (error != 0) { /* * Since we've partially failed, we need to back * out all the way, otherwise userland could get * confused. Thus, we destroy the interface. */ ether_ifdetach(ifp); vlan_unconfig(ifp); if_free(ifp); ifc_free_unit(ifc, unit); free(ifv, M_VLAN); return (error); } } return (0); } static int vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp) { struct ifvlan *ifv = ifp->if_softc; int unit = ifp->if_dunit; ether_ifdetach(ifp); /* first, remove it from system-wide lists */ vlan_unconfig(ifp); /* now it can be unconfigured and freed */ /* * We should have the only reference to the ifv now, so we can now * drain any remaining lladdr task before freeing the ifnet and the * ifvlan. */ taskqueue_drain(taskqueue_thread, &ifv->lladdr_task); if_free(ifp); free(ifv, M_VLAN); ifc_free_unit(ifc, unit); return (0); } /* * The ifp->if_init entry point for vlan(4) is a no-op. */ static void vlan_init(void *foo __unused) { } /* * The if_transmit method for vlan(4) interface. */ static int vlan_transmit(struct ifnet *ifp, struct mbuf *m) { struct ifvlan *ifv; struct ifnet *p; int error, len, mcast; VLAN_LOCK_READER; VLAN_RLOCK(); ifv = ifp->if_softc; if (TRUNK(ifv) == NULL) { if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); VLAN_RUNLOCK(); m_freem(m); return (ENETDOWN); } p = PARENT(ifv); len = m->m_pkthdr.len; mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1 : 0; BPF_MTAP(ifp, m); /* * Do not run parent's if_transmit() if the parent is not up, * or parent's driver will cause a system crash. */ if (!UP_AND_RUNNING(p)) { if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); VLAN_RUNLOCK(); m_freem(m); return (ENETDOWN); } if (!ether_8021q_frame(&m, ifp, p, ifv->ifv_vid, ifv->ifv_pcp)) { if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); VLAN_RUNLOCK(); return (0); } /* * Send it, precisely as ether_output() would have. */ error = (p->if_transmit)(p, m); if (error == 0) { if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); if_inc_counter(ifp, IFCOUNTER_OBYTES, len); if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast); } else if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); VLAN_RUNLOCK(); return (error); } /* * The ifp->if_qflush entry point for vlan(4) is a no-op. */ static void vlan_qflush(struct ifnet *ifp __unused) { } static void vlan_input(struct ifnet *ifp, struct mbuf *m) { struct ifvlantrunk *trunk; struct ifvlan *ifv; VLAN_LOCK_READER; TRUNK_LOCK_READER; struct m_tag *mtag; uint16_t vid, tag; VLAN_RLOCK(); trunk = ifp->if_vlantrunk; if (trunk == NULL) { VLAN_RUNLOCK(); m_freem(m); return; } if (m->m_flags & M_VLANTAG) { /* * Packet is tagged, but m contains a normal * Ethernet frame; the tag is stored out-of-band. */ tag = m->m_pkthdr.ether_vtag; m->m_flags &= ~M_VLANTAG; } else { struct ether_vlan_header *evl; /* * Packet is tagged in-band as specified by 802.1q. */ switch (ifp->if_type) { case IFT_ETHER: if (m->m_len < sizeof(*evl) && (m = m_pullup(m, sizeof(*evl))) == NULL) { if_printf(ifp, "cannot pullup VLAN header\n"); VLAN_RUNLOCK(); return; } evl = mtod(m, struct ether_vlan_header *); tag = ntohs(evl->evl_tag); /* * Remove the 802.1q header by copying the Ethernet * addresses over it and adjusting the beginning of * the data in the mbuf. The encapsulated Ethernet * type field is already in place. */ bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN, ETHER_HDR_LEN - ETHER_TYPE_LEN); m_adj(m, ETHER_VLAN_ENCAP_LEN); break; default: #ifdef INVARIANTS panic("%s: %s has unsupported if_type %u", __func__, ifp->if_xname, ifp->if_type); #endif if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); VLAN_RUNLOCK(); m_freem(m); return; } } vid = EVL_VLANOFTAG(tag); TRUNK_RLOCK(trunk); ifv = vlan_gethash(trunk, vid); if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) { TRUNK_RUNLOCK(trunk); if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); VLAN_RUNLOCK(); m_freem(m); return; } TRUNK_RUNLOCK(trunk); if (vlan_mtag_pcp) { /* * While uncommon, it is possible that we will find a 802.1q * packet encapsulated inside another packet that also had an * 802.1q header. For example, ethernet tunneled over IPSEC * arriving over ethernet. In that case, we replace the * existing 802.1q PCP m_tag value. */ mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); if (mtag == NULL) { mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_IN, sizeof(uint8_t), M_NOWAIT); if (mtag == NULL) { if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); VLAN_RUNLOCK(); m_freem(m); return; } m_tag_prepend(m, mtag); } *(uint8_t *)(mtag + 1) = EVL_PRIOFTAG(tag); } m->m_pkthdr.rcvif = ifv->ifv_ifp; if_inc_counter(ifv->ifv_ifp, IFCOUNTER_IPACKETS, 1); VLAN_RUNLOCK(); /* Pass it back through the parent's input routine. */ (*ifv->ifv_ifp->if_input)(ifv->ifv_ifp, m); } static void vlan_lladdr_fn(void *arg, int pending __unused) { struct ifvlan *ifv; struct ifnet *ifp; ifv = (struct ifvlan *)arg; ifp = ifv->ifv_ifp; /* The ifv_ifp already has the lladdr copied in. */ if_setlladdr(ifp, IF_LLADDR(ifp), ifp->if_addrlen); } static int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t vid) { struct ifvlantrunk *trunk; struct ifnet *ifp; int error = 0; /* * We can handle non-ethernet hardware types as long as * they handle the tagging and headers themselves. */ if (p->if_type != IFT_ETHER && (p->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) return (EPROTONOSUPPORT); if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS) return (EPROTONOSUPPORT); /* * Don't let the caller set up a VLAN VID with * anything except VLID bits. * VID numbers 0x0 and 0xFFF are reserved. */ if (vid == 0 || vid == 0xFFF || (vid & ~EVL_VLID_MASK)) return (EINVAL); if (ifv->ifv_trunk) return (EBUSY); /* Acquire rmlock after the branch so we can M_WAITOK. */ VLAN_XLOCK(); if (p->if_vlantrunk == NULL) { trunk = malloc(sizeof(struct ifvlantrunk), M_VLAN, M_WAITOK | M_ZERO); vlan_inithash(trunk); TRUNK_LOCK_INIT(trunk); VLAN_WLOCK(); TRUNK_WLOCK(trunk); p->if_vlantrunk = trunk; trunk->parent = p; if_ref(trunk->parent); } else { VLAN_WLOCK(); trunk = p->if_vlantrunk; TRUNK_WLOCK(trunk); } ifv->ifv_vid = vid; /* must set this before vlan_inshash() */ ifv->ifv_pcp = 0; /* Default: best effort delivery. */ vlan_tag_recalculate(ifv); error = vlan_inshash(trunk, ifv); if (error) goto done; ifv->ifv_proto = ETHERTYPE_VLAN; ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN; ifv->ifv_mintu = ETHERMIN; ifv->ifv_pflags = 0; ifv->ifv_capenable = -1; /* * If the parent supports the VLAN_MTU capability, * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames, * use it. */ if (p->if_capenable & IFCAP_VLAN_MTU) { /* * No need to fudge the MTU since the parent can * handle extended frames. */ ifv->ifv_mtufudge = 0; } else { /* * Fudge the MTU by the encapsulation size. This * makes us incompatible with strictly compliant * 802.1Q implementations, but allows us to use * the feature with other NetBSD implementations, * which might still be useful. */ ifv->ifv_mtufudge = ifv->ifv_encaplen; } ifv->ifv_trunk = trunk; ifp = ifv->ifv_ifp; /* * Initialize fields from our parent. This duplicates some * work with ether_ifattach() but allows for non-ethernet * interfaces to also work. */ ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge; ifp->if_baudrate = p->if_baudrate; ifp->if_output = p->if_output; ifp->if_input = p->if_input; ifp->if_resolvemulti = p->if_resolvemulti; ifp->if_addrlen = p->if_addrlen; ifp->if_broadcastaddr = p->if_broadcastaddr; /* * Copy only a selected subset of flags from the parent. * Other flags are none of our business. */ #define VLAN_COPY_FLAGS (IFF_SIMPLEX) ifp->if_flags &= ~VLAN_COPY_FLAGS; ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS; #undef VLAN_COPY_FLAGS ifp->if_link_state = p->if_link_state; vlan_capabilities(ifv); /* * Set up our interface address to reflect the underlying * physical interface's. */ bcopy(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen); ((struct sockaddr_dl *)ifp->if_addr->ifa_addr)->sdl_alen = p->if_addrlen; /* * Configure multicast addresses that may already be * joined on the vlan device. */ (void)vlan_setmulti(ifp); TASK_INIT(&ifv->lladdr_task, 0, vlan_lladdr_fn, ifv); /* We are ready for operation now. */ ifp->if_drv_flags |= IFF_DRV_RUNNING; /* Update flags on the parent, if necessary. */ vlan_setflags(ifp, 1); done: /* * We need to drop the non-sleepable rmlock so that the underlying * devices can sleep in their vlan_config hooks. */ TRUNK_WUNLOCK(trunk); VLAN_WUNLOCK(); if (error == 0) EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_vid); VLAN_XUNLOCK(); return (error); } static void vlan_unconfig(struct ifnet *ifp) { VLAN_XLOCK(); vlan_unconfig_locked(ifp, 0); VLAN_XUNLOCK(); } static void vlan_unconfig_locked(struct ifnet *ifp, int departing) { struct ifvlantrunk *trunk; struct vlan_mc_entry *mc; struct ifvlan *ifv; struct ifnet *parent; int error; VLAN_XLOCK_ASSERT(); ifv = ifp->if_softc; trunk = ifv->ifv_trunk; parent = NULL; if (trunk != NULL) { /* * Both vlan_transmit and vlan_input rely on the trunk fields * being NULL to determine whether to bail, so we need to get * an exclusive lock here to prevent them from using bad * ifvlans. */ VLAN_WLOCK(); parent = trunk->parent; /* * Since the interface is being unconfigured, we need to * empty the list of multicast groups that we may have joined * while we were alive from the parent's list. */ while ((mc = SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) { /* * If the parent interface is being detached, * all its multicast addresses have already * been removed. Warn about errors if * if_delmulti() does fail, but don't abort as * all callers expect vlan destruction to * succeed. */ if (!departing) { error = if_delmulti(parent, (struct sockaddr *)&mc->mc_addr); if (error) if_printf(ifp, "Failed to delete multicast address from parent: %d\n", error); } SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries); free(mc, M_VLAN); } vlan_setflags(ifp, 0); /* clear special flags on parent */ /* * The trunk lock isn't actually required here, but * vlan_remhash expects it. */ TRUNK_WLOCK(trunk); vlan_remhash(trunk, ifv); TRUNK_WUNLOCK(trunk); ifv->ifv_trunk = NULL; /* * Check if we were the last. */ if (trunk->refcnt == 0) { parent->if_vlantrunk = NULL; trunk_destroy(trunk); } VLAN_WUNLOCK(); } /* Disconnect from parent. */ if (ifv->ifv_pflags) if_printf(ifp, "%s: ifv_pflags unclean\n", __func__); ifp->if_mtu = ETHERMTU; ifp->if_link_state = LINK_STATE_UNKNOWN; ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* * Only dispatch an event if vlan was * attached, otherwise there is nothing * to cleanup anyway. */ if (parent != NULL) EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_vid); } /* Handle a reference counted flag that should be set on the parent as well */ static int vlan_setflag(struct ifnet *ifp, int flag, int status, int (*func)(struct ifnet *, int)) { struct ifvlan *ifv; int error; VLAN_SXLOCK_ASSERT(); ifv = ifp->if_softc; status = status ? (ifp->if_flags & flag) : 0; /* Now "status" contains the flag value or 0 */ /* * See if recorded parent's status is different from what * we want it to be. If it is, flip it. We record parent's * status in ifv_pflags so that we won't clear parent's flag * we haven't set. In fact, we don't clear or set parent's * flags directly, but get or release references to them. * That's why we can be sure that recorded flags still are * in accord with actual parent's flags. */ if (status != (ifv->ifv_pflags & flag)) { error = (*func)(PARENT(ifv), status); if (error) return (error); ifv->ifv_pflags &= ~flag; ifv->ifv_pflags |= status; } return (0); } /* * Handle IFF_* flags that require certain changes on the parent: * if "status" is true, update parent's flags respective to our if_flags; * if "status" is false, forcedly clear the flags set on parent. */ static int vlan_setflags(struct ifnet *ifp, int status) { int error, i; for (i = 0; vlan_pflags[i].flag; i++) { error = vlan_setflag(ifp, vlan_pflags[i].flag, status, vlan_pflags[i].func); if (error) return (error); } return (0); } /* Inform all vlans that their parent has changed link state */ static void vlan_link_state(struct ifnet *ifp) { struct ifvlantrunk *trunk; struct ifvlan *ifv; VLAN_LOCK_READER; /* Called from a taskqueue_swi task, so we cannot sleep. */ VLAN_RLOCK(); trunk = ifp->if_vlantrunk; if (trunk == NULL) { VLAN_RUNLOCK(); return; } TRUNK_WLOCK(trunk); VLAN_FOREACH(ifv, trunk) { ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate; if_link_state_change(ifv->ifv_ifp, trunk->parent->if_link_state); } TRUNK_WUNLOCK(trunk); VLAN_RUNLOCK(); } static void vlan_capabilities(struct ifvlan *ifv) { struct ifnet *p; struct ifnet *ifp; struct ifnet_hw_tsomax hw_tsomax; int cap = 0, ena = 0, mena; u_long hwa = 0; VLAN_SXLOCK_ASSERT(); TRUNK_WLOCK_ASSERT(TRUNK(ifv)); p = PARENT(ifv); ifp = ifv->ifv_ifp; /* Mask parent interface enabled capabilities disabled by user. */ mena = p->if_capenable & ifv->ifv_capenable; /* * If the parent interface can do checksum offloading * on VLANs, then propagate its hardware-assisted * checksumming flags. Also assert that checksum * offloading requires hardware VLAN tagging. */ if (p->if_capabilities & IFCAP_VLAN_HWCSUM) cap |= p->if_capabilities & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6); if (p->if_capenable & IFCAP_VLAN_HWCSUM && p->if_capenable & IFCAP_VLAN_HWTAGGING) { ena |= mena & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6); if (ena & IFCAP_TXCSUM) hwa |= p->if_hwassist & (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_SCTP); if (ena & IFCAP_TXCSUM_IPV6) hwa |= p->if_hwassist & (CSUM_TCP_IPV6 | CSUM_UDP_IPV6 | CSUM_SCTP_IPV6); } /* * If the parent interface can do TSO on VLANs then * propagate the hardware-assisted flag. TSO on VLANs * does not necessarily require hardware VLAN tagging. */ memset(&hw_tsomax, 0, sizeof(hw_tsomax)); if_hw_tsomax_common(p, &hw_tsomax); if_hw_tsomax_update(ifp, &hw_tsomax); if (p->if_capabilities & IFCAP_VLAN_HWTSO) cap |= p->if_capabilities & IFCAP_TSO; if (p->if_capenable & IFCAP_VLAN_HWTSO) { ena |= mena & IFCAP_TSO; if (ena & IFCAP_TSO) hwa |= p->if_hwassist & CSUM_TSO; } /* * If the parent interface can do LRO and checksum offloading on * VLANs, then guess it may do LRO on VLANs. False positive here * cost nothing, while false negative may lead to some confusions. */ if (p->if_capabilities & IFCAP_VLAN_HWCSUM) cap |= p->if_capabilities & IFCAP_LRO; if (p->if_capenable & IFCAP_VLAN_HWCSUM) ena |= p->if_capenable & IFCAP_LRO; /* * If the parent interface can offload TCP connections over VLANs then * propagate its TOE capability to the VLAN interface. * * All TOE drivers in the tree today can deal with VLANs. If this * changes then IFCAP_VLAN_TOE should be promoted to a full capability * with its own bit. */ #define IFCAP_VLAN_TOE IFCAP_TOE if (p->if_capabilities & IFCAP_VLAN_TOE) cap |= p->if_capabilities & IFCAP_TOE; if (p->if_capenable & IFCAP_VLAN_TOE) { TOEDEV(ifp) = TOEDEV(p); ena |= mena & IFCAP_TOE; } /* * If the parent interface supports dynamic link state, so does the * VLAN interface. */ cap |= (p->if_capabilities & IFCAP_LINKSTATE); ena |= (mena & IFCAP_LINKSTATE); #ifdef RATELIMIT /* * If the parent interface supports ratelimiting, so does the * VLAN interface. */ cap |= (p->if_capabilities & IFCAP_TXRTLMT); ena |= (mena & IFCAP_TXRTLMT); #endif ifp->if_capabilities = cap; ifp->if_capenable = ena; ifp->if_hwassist = hwa; } static void vlan_trunk_capabilities(struct ifnet *ifp) { struct ifvlantrunk *trunk; struct ifvlan *ifv; VLAN_SLOCK(); trunk = ifp->if_vlantrunk; if (trunk == NULL) { VLAN_SUNLOCK(); return; } TRUNK_WLOCK(trunk); VLAN_FOREACH(ifv, trunk) { vlan_capabilities(ifv); } TRUNK_WUNLOCK(trunk); VLAN_SUNLOCK(); } static int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct ifnet *p; struct ifreq *ifr; struct ifaddr *ifa; struct ifvlan *ifv; struct ifvlantrunk *trunk; struct vlanreq vlr; int error = 0; VLAN_LOCK_READER; ifr = (struct ifreq *)data; ifa = (struct ifaddr *) data; ifv = ifp->if_softc; switch (cmd) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; #ifdef INET if (ifa->ifa_addr->sa_family == AF_INET) arp_ifinit(ifp, ifa); #endif break; case SIOCGIFADDR: bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0], ifp->if_addrlen); break; case SIOCGIFMEDIA: VLAN_SLOCK(); if (TRUNK(ifv) != NULL) { p = PARENT(ifv); if_ref(p); error = (*p->if_ioctl)(p, SIOCGIFMEDIA, data); if_rele(p); /* Limit the result to the parent's current config. */ if (error == 0) { struct ifmediareq *ifmr; ifmr = (struct ifmediareq *)data; if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) { ifmr->ifm_count = 1; error = copyout(&ifmr->ifm_current, ifmr->ifm_ulist, sizeof(int)); } } } else { error = EINVAL; } VLAN_SUNLOCK(); break; case SIOCSIFMEDIA: error = EINVAL; break; case SIOCSIFMTU: /* * Set the interface MTU. */ VLAN_SLOCK(); trunk = TRUNK(ifv); if (trunk != NULL) { TRUNK_WLOCK(trunk); if (ifr->ifr_mtu > (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) || ifr->ifr_mtu < (ifv->ifv_mintu - ifv->ifv_mtufudge)) error = EINVAL; else ifp->if_mtu = ifr->ifr_mtu; TRUNK_WUNLOCK(trunk); } else error = EINVAL; VLAN_SUNLOCK(); break; case SIOCSETVLAN: #ifdef VIMAGE /* * XXXRW/XXXBZ: The goal in these checks is to allow a VLAN * interface to be delegated to a jail without allowing the * jail to change what underlying interface/VID it is * associated with. We are not entirely convinced that this * is the right way to accomplish that policy goal. */ if (ifp->if_vnet != ifp->if_home_vnet) { error = EPERM; break; } #endif error = copyin(ifr_data_get_ptr(ifr), &vlr, sizeof(vlr)); if (error) break; if (vlr.vlr_parent[0] == '\0') { vlan_unconfig(ifp); break; } p = ifunit_ref(vlr.vlr_parent); if (p == NULL) { error = ENOENT; break; } error = vlan_config(ifv, p, vlr.vlr_tag); if_rele(p); break; case SIOCGETVLAN: #ifdef VIMAGE if (ifp->if_vnet != ifp->if_home_vnet) { error = EPERM; break; } #endif bzero(&vlr, sizeof(vlr)); VLAN_SLOCK(); if (TRUNK(ifv) != NULL) { strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname, sizeof(vlr.vlr_parent)); vlr.vlr_tag = ifv->ifv_vid; } VLAN_SUNLOCK(); error = copyout(&vlr, ifr_data_get_ptr(ifr), sizeof(vlr)); break; case SIOCSIFFLAGS: /* * We should propagate selected flags to the parent, * e.g., promiscuous mode. */ VLAN_XLOCK(); if (TRUNK(ifv) != NULL) error = vlan_setflags(ifp, 1); VLAN_XUNLOCK(); break; case SIOCADDMULTI: case SIOCDELMULTI: /* * If we don't have a parent, just remember the membership for * when we do. * * XXX We need the rmlock here to avoid sleeping while * holding in6_multi_mtx. */ VLAN_RLOCK(); trunk = TRUNK(ifv); if (trunk != NULL) { TRUNK_WLOCK(trunk); error = vlan_setmulti(ifp); TRUNK_WUNLOCK(trunk); } VLAN_RUNLOCK(); break; case SIOCGVLANPCP: #ifdef VIMAGE if (ifp->if_vnet != ifp->if_home_vnet) { error = EPERM; break; } #endif ifr->ifr_vlan_pcp = ifv->ifv_pcp; break; case SIOCSVLANPCP: #ifdef VIMAGE if (ifp->if_vnet != ifp->if_home_vnet) { error = EPERM; break; } #endif error = priv_check(curthread, PRIV_NET_SETVLANPCP); if (error) break; if (ifr->ifr_vlan_pcp > 7) { error = EINVAL; break; } ifv->ifv_pcp = ifr->ifr_vlan_pcp; vlan_tag_recalculate(ifv); /* broadcast event about PCP change */ EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP); break; case SIOCSIFCAP: VLAN_SLOCK(); ifv->ifv_capenable = ifr->ifr_reqcap; trunk = TRUNK(ifv); if (trunk != NULL) { TRUNK_WLOCK(trunk); vlan_capabilities(ifv); TRUNK_WUNLOCK(trunk); } VLAN_SUNLOCK(); break; default: error = EINVAL; break; } return (error); } #ifdef RATELIMIT static int vlan_snd_tag_alloc(struct ifnet *ifp, union if_snd_tag_alloc_params *params, struct m_snd_tag **ppmt) { /* get trunk device */ ifp = vlan_trunkdev(ifp); if (ifp == NULL || (ifp->if_capenable & IFCAP_TXRTLMT) == 0) return (EOPNOTSUPP); /* forward allocation request */ return (ifp->if_snd_tag_alloc(ifp, params, ppmt)); } #endif