/*- * Copyright (c) 1999 The NetBSD Foundation, Inc. * Copyright (c) 2001-2003 Thomas Moestl . * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Paul Kranenburg. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * from: NetBSD: hme.c,v 1.45 2005/02/18 00:22:11 heas Exp */ #include __FBSDID("$FreeBSD$"); /* * HME Ethernet module driver. * * The HME is e.g. part of the PCIO PCI multi function device. * It supports TX gathering and TX and RX checksum offloading. * RX buffers must be aligned at a programmable offset modulo 16. We choose 2 * for this offset: mbuf clusters are usually on about 2^11 boundaries, 2 bytes * are skipped to make sure the header after the ethernet header is aligned on a * natural boundary, so this ensures minimal wastage in the most common case. * * Also, apparently, the buffers must extend to a DMA burst boundary beyond the * maximum packet size (this is not verified). Buffers starting on odd * boundaries must be mapped so that the burst can start on a natural boundary. * * STP2002QFP-UG says that Ethernet hardware supports TCP checksum offloading. * In reality, we can do the same technique for UDP datagram too. However, * the hardware doesn't compensate the checksum for UDP datagram which can yield * to 0x0. As a safe guard, UDP checksum offload is disabled by default. It * can be reactivated by setting special link option link0 with ifconfig(8). */ #define HME_CSUM_FEATURES (CSUM_TCP) #if 0 #define HMEDEBUG #endif #define KTR_HME KTR_SPARE2 /* XXX */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include CTASSERT(powerof2(HME_NRXDESC) && HME_NRXDESC >= 32 && HME_NRXDESC <= 256); CTASSERT(HME_NTXDESC % 16 == 0 && HME_NTXDESC >= 16 && HME_NTXDESC <= 256); static void hme_start(struct ifnet *); static void hme_start_locked(struct ifnet *); static void hme_stop(struct hme_softc *); static int hme_ioctl(struct ifnet *, u_long, caddr_t); static void hme_tick(void *); static int hme_watchdog(struct hme_softc *); static void hme_init(void *); static void hme_init_locked(struct hme_softc *); static int hme_add_rxbuf(struct hme_softc *, unsigned int, int); static int hme_meminit(struct hme_softc *); static int hme_mac_bitflip(struct hme_softc *, u_int32_t, u_int32_t, u_int32_t, u_int32_t); static void hme_mifinit(struct hme_softc *); static void hme_setladrf(struct hme_softc *, int); static int hme_mediachange(struct ifnet *); static int hme_mediachange_locked(struct hme_softc *); static void hme_mediastatus(struct ifnet *, struct ifmediareq *); static int hme_load_txmbuf(struct hme_softc *, struct mbuf **); static void hme_read(struct hme_softc *, int, int, u_int32_t); static void hme_eint(struct hme_softc *, u_int); static void hme_rint(struct hme_softc *); static void hme_tint(struct hme_softc *); static void hme_rxcksum(struct mbuf *, u_int32_t); static void hme_cdma_callback(void *, bus_dma_segment_t *, int, int); devclass_t hme_devclass; static int hme_nerr; DRIVER_MODULE(miibus, hme, miibus_driver, miibus_devclass, 0, 0); MODULE_DEPEND(hme, miibus, 1, 1, 1); #define HME_SPC_READ_4(spc, sc, offs) \ bus_space_read_4((sc)->sc_ ## spc ## t, (sc)->sc_ ## spc ## h, \ (offs)) #define HME_SPC_WRITE_4(spc, sc, offs, v) \ bus_space_write_4((sc)->sc_ ## spc ## t, (sc)->sc_ ## spc ## h, \ (offs), (v)) #define HME_SPC_BARRIER(spc, sc, offs, l, f) \ bus_space_barrier((sc)->sc_ ## spc ## t, (sc)->sc_ ## spc ## h, \ (offs), (l), (f)) #define HME_SEB_READ_4(sc, offs) HME_SPC_READ_4(seb, (sc), (offs)) #define HME_SEB_WRITE_4(sc, offs, v) HME_SPC_WRITE_4(seb, (sc), (offs), (v)) #define HME_SEB_BARRIER(sc, offs, l, f) \ HME_SPC_BARRIER(seb, (sc), (offs), (l), (f)) #define HME_ERX_READ_4(sc, offs) HME_SPC_READ_4(erx, (sc), (offs)) #define HME_ERX_WRITE_4(sc, offs, v) HME_SPC_WRITE_4(erx, (sc), (offs), (v)) #define HME_ERX_BARRIER(sc, offs, l, f) \ HME_SPC_BARRIER(erx, (sc), (offs), (l), (f)) #define HME_ETX_READ_4(sc, offs) HME_SPC_READ_4(etx, (sc), (offs)) #define HME_ETX_WRITE_4(sc, offs, v) HME_SPC_WRITE_4(etx, (sc), (offs), (v)) #define HME_ETX_BARRIER(sc, offs, l, f) \ HME_SPC_BARRIER(etx, (sc), (offs), (l), (f)) #define HME_MAC_READ_4(sc, offs) HME_SPC_READ_4(mac, (sc), (offs)) #define HME_MAC_WRITE_4(sc, offs, v) HME_SPC_WRITE_4(mac, (sc), (offs), (v)) #define HME_MAC_BARRIER(sc, offs, l, f) \ HME_SPC_BARRIER(mac, (sc), (offs), (l), (f)) #define HME_MIF_READ_4(sc, offs) HME_SPC_READ_4(mif, (sc), (offs)) #define HME_MIF_WRITE_4(sc, offs, v) HME_SPC_WRITE_4(mif, (sc), (offs), (v)) #define HME_MIF_BARRIER(sc, offs, l, f) \ HME_SPC_BARRIER(mif, (sc), (offs), (l), (f)) #define HME_MAXERR 5 #define HME_WHINE(dev, ...) do { \ if (hme_nerr++ < HME_MAXERR) \ device_printf(dev, __VA_ARGS__); \ if (hme_nerr == HME_MAXERR) { \ device_printf(dev, "too many errors; not reporting " \ "any more\n"); \ } \ } while(0) /* Support oversized VLAN frames. */ #define HME_MAX_FRAMESIZE (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN) int hme_config(struct hme_softc *sc) { struct ifnet *ifp; struct mii_softc *child; bus_size_t size; int error, rdesc, tdesc, i; ifp = sc->sc_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) return (ENOSPC); /* * HME common initialization. * * hme_softc fields that must be initialized by the front-end: * * the DMA bus tag: * sc_dmatag * * the bus handles, tags and offsets (splitted for SBus compatibility): * sc_seb{t,h,o} (Shared Ethernet Block registers) * sc_erx{t,h,o} (Receiver Unit registers) * sc_etx{t,h,o} (Transmitter Unit registers) * sc_mac{t,h,o} (MAC registers) * sc_mif{t,h,o} (Management Interface registers) * * the maximum bus burst size: * sc_burst * */ callout_init_mtx(&sc->sc_tick_ch, &sc->sc_lock, 0); /* Make sure the chip is stopped. */ HME_LOCK(sc); hme_stop(sc); HME_UNLOCK(sc); error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, &sc->sc_pdmatag); if (error) goto fail_ifnet; /* * Create control, RX and TX mbuf DMA tags. * Buffer descriptors must be aligned on a 2048 byte boundary; * take this into account when calculating the size. Note that * the maximum number of descriptors (256) occupies 2048 bytes, * so we allocate that much regardless of HME_N*DESC. */ size = 4096; error = bus_dma_tag_create(sc->sc_pdmatag, 2048, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size, 1, size, 0, busdma_lock_mutex, &sc->sc_lock, &sc->sc_cdmatag); if (error) goto fail_ptag; error = bus_dma_tag_create(sc->sc_pdmatag, max(0x10, sc->sc_burst), 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_rdmatag); if (error) goto fail_ctag; error = bus_dma_tag_create(sc->sc_pdmatag, max(0x10, sc->sc_burst), 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * HME_NTXSEGS, HME_NTXSEGS, MCLBYTES, BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_tdmatag); if (error) goto fail_rtag; /* Allocate the control DMA buffer. */ error = bus_dmamem_alloc(sc->sc_cdmatag, (void **)&sc->sc_rb.rb_membase, BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sc_cdmamap); if (error != 0) { device_printf(sc->sc_dev, "DMA buffer alloc error %d\n", error); goto fail_ttag; } /* Load the control DMA buffer. */ sc->sc_rb.rb_dmabase = 0; if ((error = bus_dmamap_load(sc->sc_cdmatag, sc->sc_cdmamap, sc->sc_rb.rb_membase, size, hme_cdma_callback, sc, 0)) != 0 || sc->sc_rb.rb_dmabase == 0) { device_printf(sc->sc_dev, "DMA buffer map load error %d\n", error); goto fail_free; } CTR2(KTR_HME, "hme_config: dma va %p, pa %#lx", sc->sc_rb.rb_membase, sc->sc_rb.rb_dmabase); /* * Prepare the RX descriptors. rdesc serves as marker for the last * processed descriptor and may be used later on. */ for (rdesc = 0; rdesc < HME_NRXDESC; rdesc++) { sc->sc_rb.rb_rxdesc[rdesc].hrx_m = NULL; error = bus_dmamap_create(sc->sc_rdmatag, 0, &sc->sc_rb.rb_rxdesc[rdesc].hrx_dmamap); if (error != 0) goto fail_rxdesc; } error = bus_dmamap_create(sc->sc_rdmatag, 0, &sc->sc_rb.rb_spare_dmamap); if (error != 0) goto fail_rxdesc; /* Same for the TX descs. */ for (tdesc = 0; tdesc < HME_NTXQ; tdesc++) { sc->sc_rb.rb_txdesc[tdesc].htx_m = NULL; error = bus_dmamap_create(sc->sc_tdmatag, 0, &sc->sc_rb.rb_txdesc[tdesc].htx_dmamap); if (error != 0) goto fail_txdesc; } sc->sc_csum_features = HME_CSUM_FEATURES; /* Initialize ifnet structure. */ ifp->if_softc = sc; if_initname(ifp, device_get_name(sc->sc_dev), device_get_unit(sc->sc_dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_start = hme_start; ifp->if_ioctl = hme_ioctl; ifp->if_init = hme_init; IFQ_SET_MAXLEN(&ifp->if_snd, HME_NTXQ); ifp->if_snd.ifq_drv_maxlen = HME_NTXQ; IFQ_SET_READY(&ifp->if_snd); hme_mifinit(sc); /* * DP83840A used with HME chips don't advertise their media * capabilities themselves properly so force writing the ANAR * according to the BMSR in mii_phy_setmedia(). */ error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp, hme_mediachange, hme_mediastatus, BMSR_DEFCAPMASK, HME_PHYAD_EXTERNAL, MII_OFFSET_ANY, MIIF_FORCEANEG); i = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp, hme_mediachange, hme_mediastatus, BMSR_DEFCAPMASK, HME_PHYAD_INTERNAL, MII_OFFSET_ANY, MIIF_FORCEANEG); if (error != 0 && i != 0) { error = ENXIO; device_printf(sc->sc_dev, "attaching PHYs failed\n"); goto fail_rxdesc; } sc->sc_mii = device_get_softc(sc->sc_miibus); /* * Walk along the list of attached MII devices and * establish an `MII instance' to `PHY number' * mapping. We'll use this mapping to enable the MII * drivers of the external transceiver according to * the currently selected media. */ sc->sc_phys[0] = sc->sc_phys[1] = -1; LIST_FOREACH(child, &sc->sc_mii->mii_phys, mii_list) { /* * Note: we support just two PHYs: the built-in * internal device and an external on the MII * connector. */ if ((child->mii_phy != HME_PHYAD_EXTERNAL && child->mii_phy != HME_PHYAD_INTERNAL) || child->mii_inst > 1) { device_printf(sc->sc_dev, "cannot accommodate " "MII device %s at phy %d, instance %d\n", device_get_name(child->mii_dev), child->mii_phy, child->mii_inst); continue; } sc->sc_phys[child->mii_inst] = child->mii_phy; } /* Attach the interface. */ ether_ifattach(ifp, sc->sc_enaddr); /* * Tell the upper layer(s) we support long frames/checksum offloads. */ ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_HWCSUM; ifp->if_hwassist |= sc->sc_csum_features; ifp->if_capenable |= IFCAP_VLAN_MTU | IFCAP_HWCSUM; return (0); fail_txdesc: for (i = 0; i < tdesc; i++) { bus_dmamap_destroy(sc->sc_tdmatag, sc->sc_rb.rb_txdesc[i].htx_dmamap); } bus_dmamap_destroy(sc->sc_rdmatag, sc->sc_rb.rb_spare_dmamap); fail_rxdesc: for (i = 0; i < rdesc; i++) { bus_dmamap_destroy(sc->sc_rdmatag, sc->sc_rb.rb_rxdesc[i].hrx_dmamap); } bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cdmamap); fail_free: bus_dmamem_free(sc->sc_cdmatag, sc->sc_rb.rb_membase, sc->sc_cdmamap); fail_ttag: bus_dma_tag_destroy(sc->sc_tdmatag); fail_rtag: bus_dma_tag_destroy(sc->sc_rdmatag); fail_ctag: bus_dma_tag_destroy(sc->sc_cdmatag); fail_ptag: bus_dma_tag_destroy(sc->sc_pdmatag); fail_ifnet: if_free(ifp); return (error); } void hme_detach(struct hme_softc *sc) { struct ifnet *ifp = sc->sc_ifp; int i; HME_LOCK(sc); hme_stop(sc); HME_UNLOCK(sc); callout_drain(&sc->sc_tick_ch); ether_ifdetach(ifp); if_free(ifp); device_delete_child(sc->sc_dev, sc->sc_miibus); for (i = 0; i < HME_NTXQ; i++) { bus_dmamap_destroy(sc->sc_tdmatag, sc->sc_rb.rb_txdesc[i].htx_dmamap); } bus_dmamap_destroy(sc->sc_rdmatag, sc->sc_rb.rb_spare_dmamap); for (i = 0; i < HME_NRXDESC; i++) { bus_dmamap_destroy(sc->sc_rdmatag, sc->sc_rb.rb_rxdesc[i].hrx_dmamap); } bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cdmamap); bus_dmamem_free(sc->sc_cdmatag, sc->sc_rb.rb_membase, sc->sc_cdmamap); bus_dma_tag_destroy(sc->sc_tdmatag); bus_dma_tag_destroy(sc->sc_rdmatag); bus_dma_tag_destroy(sc->sc_cdmatag); bus_dma_tag_destroy(sc->sc_pdmatag); } void hme_suspend(struct hme_softc *sc) { HME_LOCK(sc); hme_stop(sc); HME_UNLOCK(sc); } void hme_resume(struct hme_softc *sc) { struct ifnet *ifp = sc->sc_ifp; HME_LOCK(sc); if ((ifp->if_flags & IFF_UP) != 0) hme_init_locked(sc); HME_UNLOCK(sc); } static void hme_cdma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error) { struct hme_softc *sc = (struct hme_softc *)xsc; if (error != 0) return; KASSERT(nsegs == 1, ("%s: too many DMA segments (%d)", __func__, nsegs)); sc->sc_rb.rb_dmabase = segs[0].ds_addr; } static void hme_tick(void *arg) { struct hme_softc *sc = arg; struct ifnet *ifp; HME_LOCK_ASSERT(sc, MA_OWNED); ifp = sc->sc_ifp; /* * Unload collision counters */ ifp->if_collisions += HME_MAC_READ_4(sc, HME_MACI_NCCNT) + HME_MAC_READ_4(sc, HME_MACI_FCCNT) + HME_MAC_READ_4(sc, HME_MACI_EXCNT) + HME_MAC_READ_4(sc, HME_MACI_LTCNT); /* * then clear the hardware counters. */ HME_MAC_WRITE_4(sc, HME_MACI_NCCNT, 0); HME_MAC_WRITE_4(sc, HME_MACI_FCCNT, 0); HME_MAC_WRITE_4(sc, HME_MACI_EXCNT, 0); HME_MAC_WRITE_4(sc, HME_MACI_LTCNT, 0); mii_tick(sc->sc_mii); if (hme_watchdog(sc) == EJUSTRETURN) return; callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc); } static void hme_stop(struct hme_softc *sc) { u_int32_t v; int n; callout_stop(&sc->sc_tick_ch); sc->sc_wdog_timer = 0; sc->sc_ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); sc->sc_flags &= ~HME_LINK; /* Mask all interrupts */ HME_SEB_WRITE_4(sc, HME_SEBI_IMASK, 0xffffffff); /* Reset transmitter and receiver */ HME_SEB_WRITE_4(sc, HME_SEBI_RESET, HME_SEB_RESET_ETX | HME_SEB_RESET_ERX); HME_SEB_BARRIER(sc, HME_SEBI_RESET, 4, BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); for (n = 0; n < 20; n++) { v = HME_SEB_READ_4(sc, HME_SEBI_RESET); if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0) return; DELAY(20); } device_printf(sc->sc_dev, "hme_stop: reset failed\n"); } /* * Discard the contents of an mbuf in the RX ring, freeing the buffer in the * ring for subsequent use. */ static __inline void hme_discard_rxbuf(struct hme_softc *sc, int ix) { /* * Dropped a packet, reinitialize the descriptor and turn the * ownership back to the hardware. */ HME_XD_SETFLAGS(sc->sc_flags & HME_PCI, sc->sc_rb.rb_rxd, ix, HME_XD_OWN | HME_XD_ENCODE_RSIZE(HME_DESC_RXLEN(sc, &sc->sc_rb.rb_rxdesc[ix]))); } static int hme_add_rxbuf(struct hme_softc *sc, unsigned int ri, int keepold) { struct hme_rxdesc *rd; struct mbuf *m; bus_dma_segment_t segs[1]; bus_dmamap_t map; uintptr_t b; int a, unmap, nsegs; rd = &sc->sc_rb.rb_rxdesc[ri]; unmap = rd->hrx_m != NULL; if (unmap && keepold) { /* * Reinitialize the descriptor flags, as they may have been * altered by the hardware. */ hme_discard_rxbuf(sc, ri); return (0); } if ((m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR)) == NULL) return (ENOBUFS); m->m_len = m->m_pkthdr.len = m->m_ext.ext_size; b = mtod(m, uintptr_t); /* * Required alignment boundary. At least 16 is needed, but since * the mapping must be done in a way that a burst can start on a * natural boundary we might need to extend this. */ a = imax(HME_MINRXALIGN, sc->sc_burst); /* * Make sure the buffer suitably aligned. The 2 byte offset is removed * when the mbuf is handed up. XXX: this ensures at least 16 byte * alignment of the header adjacent to the ethernet header, which * should be sufficient in all cases. Nevertheless, this second-guesses * ALIGN(). */ m_adj(m, roundup2(b, a) - b); if (bus_dmamap_load_mbuf_sg(sc->sc_rdmatag, sc->sc_rb.rb_spare_dmamap, m, segs, &nsegs, 0) != 0) { m_freem(m); return (ENOBUFS); } /* If nsegs is wrong then the stack is corrupt. */ KASSERT(nsegs == 1, ("%s: too many DMA segments (%d)", __func__, nsegs)); if (unmap) { bus_dmamap_sync(sc->sc_rdmatag, rd->hrx_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_rdmatag, rd->hrx_dmamap); } map = rd->hrx_dmamap; rd->hrx_dmamap = sc->sc_rb.rb_spare_dmamap; sc->sc_rb.rb_spare_dmamap = map; bus_dmamap_sync(sc->sc_rdmatag, rd->hrx_dmamap, BUS_DMASYNC_PREREAD); HME_XD_SETADDR(sc->sc_flags & HME_PCI, sc->sc_rb.rb_rxd, ri, segs[0].ds_addr); rd->hrx_m = m; HME_XD_SETFLAGS(sc->sc_flags & HME_PCI, sc->sc_rb.rb_rxd, ri, HME_XD_OWN | HME_XD_ENCODE_RSIZE(HME_DESC_RXLEN(sc, rd))); return (0); } static int hme_meminit(struct hme_softc *sc) { struct hme_ring *hr = &sc->sc_rb; struct hme_txdesc *td; bus_addr_t dma; caddr_t p; unsigned int i; int error; p = hr->rb_membase; dma = hr->rb_dmabase; /* * Allocate transmit descriptors */ hr->rb_txd = p; hr->rb_txddma = dma; p += HME_NTXDESC * HME_XD_SIZE; dma += HME_NTXDESC * HME_XD_SIZE; /* * We have reserved descriptor space until the next 2048 byte * boundary. */ dma = (bus_addr_t)roundup((u_long)dma, 2048); p = (caddr_t)roundup((u_long)p, 2048); /* * Allocate receive descriptors */ hr->rb_rxd = p; hr->rb_rxddma = dma; p += HME_NRXDESC * HME_XD_SIZE; dma += HME_NRXDESC * HME_XD_SIZE; /* Again move forward to the next 2048 byte boundary.*/ dma = (bus_addr_t)roundup((u_long)dma, 2048); p = (caddr_t)roundup((u_long)p, 2048); /* * Initialize transmit buffer descriptors */ for (i = 0; i < HME_NTXDESC; i++) { HME_XD_SETADDR(sc->sc_flags & HME_PCI, hr->rb_txd, i, 0); HME_XD_SETFLAGS(sc->sc_flags & HME_PCI, hr->rb_txd, i, 0); } STAILQ_INIT(&sc->sc_rb.rb_txfreeq); STAILQ_INIT(&sc->sc_rb.rb_txbusyq); for (i = 0; i < HME_NTXQ; i++) { td = &sc->sc_rb.rb_txdesc[i]; if (td->htx_m != NULL) { bus_dmamap_sync(sc->sc_tdmatag, td->htx_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_tdmatag, td->htx_dmamap); m_freem(td->htx_m); td->htx_m = NULL; } STAILQ_INSERT_TAIL(&sc->sc_rb.rb_txfreeq, td, htx_q); } /* * Initialize receive buffer descriptors */ for (i = 0; i < HME_NRXDESC; i++) { error = hme_add_rxbuf(sc, i, 1); if (error != 0) return (error); } bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); hr->rb_tdhead = hr->rb_tdtail = 0; hr->rb_td_nbusy = 0; hr->rb_rdtail = 0; CTR2(KTR_HME, "hme_meminit: tx ring va %p, pa %#lx", hr->rb_txd, hr->rb_txddma); CTR2(KTR_HME, "hme_meminit: rx ring va %p, pa %#lx", hr->rb_rxd, hr->rb_rxddma); CTR2(KTR_HME, "rx entry 1: flags %x, address %x", *(u_int32_t *)hr->rb_rxd, *(u_int32_t *)(hr->rb_rxd + 4)); CTR2(KTR_HME, "tx entry 1: flags %x, address %x", *(u_int32_t *)hr->rb_txd, *(u_int32_t *)(hr->rb_txd + 4)); return (0); } static int hme_mac_bitflip(struct hme_softc *sc, u_int32_t reg, u_int32_t val, u_int32_t clr, u_int32_t set) { int i = 0; val &= ~clr; val |= set; HME_MAC_WRITE_4(sc, reg, val); HME_MAC_BARRIER(sc, reg, 4, BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); if (clr == 0 && set == 0) return (1); /* just write, no bits to wait for */ do { DELAY(100); i++; val = HME_MAC_READ_4(sc, reg); if (i > 40) { /* After 3.5ms, we should have been done. */ device_printf(sc->sc_dev, "timeout while writing to " "MAC configuration register\n"); return (0); } } while ((val & clr) != 0 && (val & set) != set); return (1); } /* * Initialization of interface; set up initialization block * and transmit/receive descriptor rings. */ static void hme_init(void *xsc) { struct hme_softc *sc = (struct hme_softc *)xsc; HME_LOCK(sc); hme_init_locked(sc); HME_UNLOCK(sc); } static void hme_init_locked(struct hme_softc *sc) { struct ifnet *ifp = sc->sc_ifp; u_int8_t *ea; u_int32_t n, v; HME_LOCK_ASSERT(sc, MA_OWNED); /* * Initialization sequence. The numbered steps below correspond * to the sequence outlined in section 6.3.5.1 in the Ethernet * Channel Engine manual (part of the PCIO manual). * See also the STP2002-STQ document from Sun Microsystems. */ /* step 1 & 2. Reset the Ethernet Channel */ hme_stop(sc); /* Re-initialize the MIF */ hme_mifinit(sc); #if 0 /* Mask all MIF interrupts, just in case */ HME_MIF_WRITE_4(sc, HME_MIFI_IMASK, 0xffff); #endif /* step 3. Setup data structures in host memory */ if (hme_meminit(sc) != 0) { device_printf(sc->sc_dev, "out of buffers; init aborted."); return; } /* step 4. TX MAC registers & counters */ HME_MAC_WRITE_4(sc, HME_MACI_NCCNT, 0); HME_MAC_WRITE_4(sc, HME_MACI_FCCNT, 0); HME_MAC_WRITE_4(sc, HME_MACI_EXCNT, 0); HME_MAC_WRITE_4(sc, HME_MACI_LTCNT, 0); HME_MAC_WRITE_4(sc, HME_MACI_TXSIZE, HME_MAX_FRAMESIZE); /* Load station MAC address */ ea = IF_LLADDR(ifp); HME_MAC_WRITE_4(sc, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]); HME_MAC_WRITE_4(sc, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]); HME_MAC_WRITE_4(sc, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]); /* * Init seed for backoff * (source suggested by manual: low 10 bits of MAC address) */ v = ((ea[4] << 8) | ea[5]) & 0x3fff; HME_MAC_WRITE_4(sc, HME_MACI_RANDSEED, v); /* Note: Accepting power-on default for other MAC registers here.. */ /* step 5. RX MAC registers & counters */ hme_setladrf(sc, 0); /* step 6 & 7. Program Descriptor Ring Base Addresses */ HME_ETX_WRITE_4(sc, HME_ETXI_RING, sc->sc_rb.rb_txddma); /* Transmit Descriptor ring size: in increments of 16 */ HME_ETX_WRITE_4(sc, HME_ETXI_RSIZE, HME_NTXDESC / 16 - 1); HME_ERX_WRITE_4(sc, HME_ERXI_RING, sc->sc_rb.rb_rxddma); HME_MAC_WRITE_4(sc, HME_MACI_RXSIZE, HME_MAX_FRAMESIZE); /* step 8. Global Configuration & Interrupt Mask */ HME_SEB_WRITE_4(sc, HME_SEBI_IMASK, ~(/*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/ HME_SEB_STAT_HOSTTOTX | HME_SEB_STAT_RXTOHOST | HME_SEB_STAT_TXALL | HME_SEB_STAT_TXPERR | HME_SEB_STAT_RCNTEXP | HME_SEB_STAT_ALL_ERRORS )); switch (sc->sc_burst) { default: v = 0; break; case 16: v = HME_SEB_CFG_BURST16; break; case 32: v = HME_SEB_CFG_BURST32; break; case 64: v = HME_SEB_CFG_BURST64; break; } /* * Blindly setting 64bit transfers may hang PCI cards(Cheerio?). * Allowing 64bit transfers breaks TX checksum offload as well. * Don't know this comes from hardware bug or driver's DMAing * scheme. * * if (sc->sc_flags & HME_PCI == 0) * v |= HME_SEB_CFG_64BIT; */ HME_SEB_WRITE_4(sc, HME_SEBI_CFG, v); /* step 9. ETX Configuration: use mostly default values */ /* Enable DMA */ v = HME_ETX_READ_4(sc, HME_ETXI_CFG); v |= HME_ETX_CFG_DMAENABLE; HME_ETX_WRITE_4(sc, HME_ETXI_CFG, v); /* step 10. ERX Configuration */ v = HME_ERX_READ_4(sc, HME_ERXI_CFG); /* Encode Receive Descriptor ring size: four possible values */ v &= ~HME_ERX_CFG_RINGSIZEMSK; switch (HME_NRXDESC) { case 32: v |= HME_ERX_CFG_RINGSIZE32; break; case 64: v |= HME_ERX_CFG_RINGSIZE64; break; case 128: v |= HME_ERX_CFG_RINGSIZE128; break; case 256: v |= HME_ERX_CFG_RINGSIZE256; break; default: printf("hme: invalid Receive Descriptor ring size\n"); break; } /* Enable DMA, fix RX first byte offset. */ v &= ~HME_ERX_CFG_FBO_MASK; v |= HME_ERX_CFG_DMAENABLE | (HME_RXOFFS << HME_ERX_CFG_FBO_SHIFT); /* RX TCP/UDP checksum offset */ n = (ETHER_HDR_LEN + sizeof(struct ip)) / 2; n = (n << HME_ERX_CFG_CSUMSTART_SHIFT) & HME_ERX_CFG_CSUMSTART_MASK; v |= n; CTR1(KTR_HME, "hme_init: programming ERX_CFG to %x", (u_int)v); HME_ERX_WRITE_4(sc, HME_ERXI_CFG, v); /* step 11. XIF Configuration */ v = HME_MAC_READ_4(sc, HME_MACI_XIF); v |= HME_MAC_XIF_OE; CTR1(KTR_HME, "hme_init: programming XIF to %x", (u_int)v); HME_MAC_WRITE_4(sc, HME_MACI_XIF, v); /* step 12. RX_MAC Configuration Register */ v = HME_MAC_READ_4(sc, HME_MACI_RXCFG); v |= HME_MAC_RXCFG_ENABLE; v &= ~(HME_MAC_RXCFG_DCRCS); CTR1(KTR_HME, "hme_init: programming RX_MAC to %x", (u_int)v); HME_MAC_WRITE_4(sc, HME_MACI_RXCFG, v); /* step 13. TX_MAC Configuration Register */ v = HME_MAC_READ_4(sc, HME_MACI_TXCFG); v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP); CTR1(KTR_HME, "hme_init: programming TX_MAC to %x", (u_int)v); HME_MAC_WRITE_4(sc, HME_MACI_TXCFG, v); /* step 14. Issue Transmit Pending command */ #ifdef HMEDEBUG /* Debug: double-check. */ CTR4(KTR_HME, "hme_init: tx ring %#x, rsz %#x, rx ring %#x, " "rxsize %#x", HME_ETX_READ_4(sc, HME_ETXI_RING), HME_ETX_READ_4(sc, HME_ETXI_RSIZE), HME_ERX_READ_4(sc, HME_ERXI_RING), HME_MAC_READ_4(sc, HME_MACI_RXSIZE)); CTR3(KTR_HME, "hme_init: intr mask %#x, erx cfg %#x, etx cfg %#x", HME_SEB_READ_4(sc, HME_SEBI_IMASK), HME_ERX_READ_4(sc, HME_ERXI_CFG), HME_ETX_READ_4(sc, HME_ETXI_CFG)); CTR2(KTR_HME, "hme_init: mac rxcfg %#x, maci txcfg %#x", HME_MAC_READ_4(sc, HME_MACI_RXCFG), HME_MAC_READ_4(sc, HME_MACI_TXCFG)); #endif ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; /* Set the current media. */ hme_mediachange_locked(sc); /* Start the one second timer. */ sc->sc_wdog_timer = 0; callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc); } /* * Routine to DMA map an mbuf chain, set up the descriptor rings * accordingly and start the transmission. * Returns 0 on success, -1 if there were not enough free descriptors * to map the packet, or an errno otherwise. * * XXX: this relies on the fact that segments returned by * bus_dmamap_load_mbuf_sg() are readable from the nearest burst * boundary on (i.e. potentially before ds_addr) to the first * boundary beyond the end. This is usually a safe assumption to * make, but is not documented. */ static int hme_load_txmbuf(struct hme_softc *sc, struct mbuf **m0) { bus_dma_segment_t segs[HME_NTXSEGS]; struct hme_txdesc *htx; struct ip *ip; struct mbuf *m; caddr_t txd; int error, i, nsegs, pci, ri, si; uint32_t cflags, flags; if ((htx = STAILQ_FIRST(&sc->sc_rb.rb_txfreeq)) == NULL) return (ENOBUFS); cflags = 0; if (((*m0)->m_pkthdr.csum_flags & sc->sc_csum_features) != 0) { if (M_WRITABLE(*m0) == 0) { m = m_dup(*m0, M_DONTWAIT); m_freem(*m0); *m0 = m; if (m == NULL) return (ENOBUFS); } i = sizeof(struct ether_header); m = m_pullup(*m0, i + sizeof(struct ip)); if (m == NULL) { *m0 = NULL; return (ENOBUFS); } ip = (struct ip *)(mtod(m, caddr_t) + i); i += (ip->ip_hl << 2); cflags = i << HME_XD_TXCKSUM_SSHIFT | ((i + m->m_pkthdr.csum_data) << HME_XD_TXCKSUM_OSHIFT) | HME_XD_TXCKSUM; *m0 = m; } error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag, htx->htx_dmamap, *m0, segs, &nsegs, 0); if (error == EFBIG) { m = m_collapse(*m0, M_DONTWAIT, HME_NTXSEGS); if (m == NULL) { m_freem(*m0); *m0 = NULL; return (ENOMEM); } *m0 = m; error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag, htx->htx_dmamap, *m0, segs, &nsegs, 0); if (error != 0) { m_freem(*m0); *m0 = NULL; return (error); } } else if (error != 0) return (error); /* If nsegs is wrong then the stack is corrupt. */ KASSERT(nsegs <= HME_NTXSEGS, ("%s: too many DMA segments (%d)", __func__, nsegs)); if (nsegs == 0) { m_freem(*m0); *m0 = NULL; return (EIO); } if (sc->sc_rb.rb_td_nbusy + nsegs >= HME_NTXDESC) { bus_dmamap_unload(sc->sc_tdmatag, htx->htx_dmamap); /* Retry with m_collapse(9)? */ return (ENOBUFS); } bus_dmamap_sync(sc->sc_tdmatag, htx->htx_dmamap, BUS_DMASYNC_PREWRITE); si = ri = sc->sc_rb.rb_tdhead; txd = sc->sc_rb.rb_txd; pci = sc->sc_flags & HME_PCI; CTR2(KTR_HME, "hme_load_mbuf: next desc is %d (%#x)", ri, HME_XD_GETFLAGS(pci, txd, ri)); for (i = 0; i < nsegs; i++) { /* Fill the ring entry. */ flags = HME_XD_ENCODE_TSIZE(segs[i].ds_len); if (i == 0) flags |= HME_XD_SOP | cflags; else flags |= HME_XD_OWN | cflags; CTR3(KTR_HME, "hme_load_mbuf: activating ri %d, si %d (%#x)", ri, si, flags); HME_XD_SETADDR(pci, txd, ri, segs[i].ds_addr); HME_XD_SETFLAGS(pci, txd, ri, flags); sc->sc_rb.rb_td_nbusy++; htx->htx_lastdesc = ri; ri = (ri + 1) % HME_NTXDESC; } sc->sc_rb.rb_tdhead = ri; /* set EOP on the last descriptor */ ri = (ri + HME_NTXDESC - 1) % HME_NTXDESC; flags = HME_XD_GETFLAGS(pci, txd, ri); flags |= HME_XD_EOP; CTR3(KTR_HME, "hme_load_mbuf: setting EOP ri %d, si %d (%#x)", ri, si, flags); HME_XD_SETFLAGS(pci, txd, ri, flags); /* Turn the first descriptor ownership to the hme */ flags = HME_XD_GETFLAGS(pci, txd, si); flags |= HME_XD_OWN; CTR2(KTR_HME, "hme_load_mbuf: setting OWN for 1st desc ri %d, (%#x)", ri, flags); HME_XD_SETFLAGS(pci, txd, si, flags); STAILQ_REMOVE_HEAD(&sc->sc_rb.rb_txfreeq, htx_q); STAILQ_INSERT_TAIL(&sc->sc_rb.rb_txbusyq, htx, htx_q); htx->htx_m = *m0; /* start the transmission. */ HME_ETX_WRITE_4(sc, HME_ETXI_PENDING, HME_ETX_TP_DMAWAKEUP); return (0); } /* * Pass a packet to the higher levels. */ static void hme_read(struct hme_softc *sc, int ix, int len, u_int32_t flags) { struct ifnet *ifp = sc->sc_ifp; struct mbuf *m; if (len <= sizeof(struct ether_header) || len > HME_MAX_FRAMESIZE) { #ifdef HMEDEBUG HME_WHINE(sc->sc_dev, "invalid packet size %d; dropping\n", len); #endif ifp->if_ierrors++; hme_discard_rxbuf(sc, ix); return; } m = sc->sc_rb.rb_rxdesc[ix].hrx_m; CTR1(KTR_HME, "hme_read: len %d", len); if (hme_add_rxbuf(sc, ix, 0) != 0) { /* * hme_add_rxbuf will leave the old buffer in the ring until * it is sure that a new buffer can be mapped. If it can not, * drop the packet, but leave the interface up. */ ifp->if_iqdrops++; hme_discard_rxbuf(sc, ix); return; } ifp->if_ipackets++; m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = len + HME_RXOFFS; m_adj(m, HME_RXOFFS); /* RX TCP/UDP checksum */ if (ifp->if_capenable & IFCAP_RXCSUM) hme_rxcksum(m, flags); /* Pass the packet up. */ HME_UNLOCK(sc); (*ifp->if_input)(ifp, m); HME_LOCK(sc); } static void hme_start(struct ifnet *ifp) { struct hme_softc *sc = ifp->if_softc; HME_LOCK(sc); hme_start_locked(ifp); HME_UNLOCK(sc); } static void hme_start_locked(struct ifnet *ifp) { struct hme_softc *sc = (struct hme_softc *)ifp->if_softc; struct mbuf *m; int error, enq = 0; if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING || (sc->sc_flags & HME_LINK) == 0) return; for (; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && sc->sc_rb.rb_td_nbusy < HME_NTXDESC - 1;) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m); if (m == NULL) break; error = hme_load_txmbuf(sc, &m); if (error != 0) { if (m == NULL) break; ifp->if_drv_flags |= IFF_DRV_OACTIVE; IFQ_DRV_PREPEND(&ifp->if_snd, m); break; } enq++; BPF_MTAP(ifp, m); } if (enq > 0) { bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); sc->sc_wdog_timer = 5; } } /* * Transmit interrupt. */ static void hme_tint(struct hme_softc *sc) { caddr_t txd; struct ifnet *ifp = sc->sc_ifp; struct hme_txdesc *htx; unsigned int ri, txflags; txd = sc->sc_rb.rb_txd; htx = STAILQ_FIRST(&sc->sc_rb.rb_txbusyq); bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap, BUS_DMASYNC_POSTREAD); /* Fetch current position in the transmit ring */ for (ri = sc->sc_rb.rb_tdtail;; ri = (ri + 1) % HME_NTXDESC) { if (sc->sc_rb.rb_td_nbusy <= 0) { CTR0(KTR_HME, "hme_tint: not busy!"); break; } txflags = HME_XD_GETFLAGS(sc->sc_flags & HME_PCI, txd, ri); CTR2(KTR_HME, "hme_tint: index %d, flags %#x", ri, txflags); if ((txflags & HME_XD_OWN) != 0) break; CTR0(KTR_HME, "hme_tint: not owned"); --sc->sc_rb.rb_td_nbusy; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; /* Complete packet transmitted? */ if ((txflags & HME_XD_EOP) == 0) continue; KASSERT(htx->htx_lastdesc == ri, ("%s: ring indices skewed: %d != %d!", __func__, htx->htx_lastdesc, ri)); bus_dmamap_sync(sc->sc_tdmatag, htx->htx_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_tdmatag, htx->htx_dmamap); ifp->if_opackets++; m_freem(htx->htx_m); htx->htx_m = NULL; STAILQ_REMOVE_HEAD(&sc->sc_rb.rb_txbusyq, htx_q); STAILQ_INSERT_TAIL(&sc->sc_rb.rb_txfreeq, htx, htx_q); htx = STAILQ_FIRST(&sc->sc_rb.rb_txbusyq); } sc->sc_wdog_timer = sc->sc_rb.rb_td_nbusy > 0 ? 5 : 0; /* Update ring */ sc->sc_rb.rb_tdtail = ri; hme_start_locked(ifp); } /* * RX TCP/UDP checksum */ static void hme_rxcksum(struct mbuf *m, u_int32_t flags) { struct ether_header *eh; struct ip *ip; struct udphdr *uh; int32_t hlen, len, pktlen; u_int16_t cksum, *opts; u_int32_t temp32; pktlen = m->m_pkthdr.len; if (pktlen < sizeof(struct ether_header) + sizeof(struct ip)) return; eh = mtod(m, struct ether_header *); if (eh->ether_type != htons(ETHERTYPE_IP)) return; ip = (struct ip *)(eh + 1); if (ip->ip_v != IPVERSION) return; hlen = ip->ip_hl << 2; pktlen -= sizeof(struct ether_header); if (hlen < sizeof(struct ip)) return; if (ntohs(ip->ip_len) < hlen) return; if (ntohs(ip->ip_len) != pktlen) return; if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) return; /* can't handle fragmented packet */ switch (ip->ip_p) { case IPPROTO_TCP: if (pktlen < (hlen + sizeof(struct tcphdr))) return; break; case IPPROTO_UDP: if (pktlen < (hlen + sizeof(struct udphdr))) return; uh = (struct udphdr *)((caddr_t)ip + hlen); if (uh->uh_sum == 0) return; /* no checksum */ break; default: return; } cksum = ~(flags & HME_XD_RXCKSUM); /* checksum fixup for IP options */ len = hlen - sizeof(struct ip); if (len > 0) { opts = (u_int16_t *)(ip + 1); for (; len > 0; len -= sizeof(u_int16_t), opts++) { temp32 = cksum - *opts; temp32 = (temp32 >> 16) + (temp32 & 65535); cksum = temp32 & 65535; } } m->m_pkthdr.csum_flags |= CSUM_DATA_VALID; m->m_pkthdr.csum_data = cksum; } /* * Receive interrupt. */ static void hme_rint(struct hme_softc *sc) { caddr_t xdr = sc->sc_rb.rb_rxd; struct ifnet *ifp = sc->sc_ifp; unsigned int ri, len; int progress = 0; u_int32_t flags; /* * Process all buffers with valid data. */ bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap, BUS_DMASYNC_POSTREAD); for (ri = sc->sc_rb.rb_rdtail;; ri = (ri + 1) % HME_NRXDESC) { flags = HME_XD_GETFLAGS(sc->sc_flags & HME_PCI, xdr, ri); CTR2(KTR_HME, "hme_rint: index %d, flags %#x", ri, flags); if ((flags & HME_XD_OWN) != 0) break; progress++; if ((flags & HME_XD_OFL) != 0) { device_printf(sc->sc_dev, "buffer overflow, ri=%d; " "flags=0x%x\n", ri, flags); ifp->if_ierrors++; hme_discard_rxbuf(sc, ri); } else { len = HME_XD_DECODE_RSIZE(flags); hme_read(sc, ri, len, flags); } } if (progress) { bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } sc->sc_rb.rb_rdtail = ri; } static void hme_eint(struct hme_softc *sc, u_int status) { if ((status & HME_SEB_STAT_MIFIRQ) != 0) { device_printf(sc->sc_dev, "XXXlink status changed: " "cfg=%#x, stat=%#x, sm=%#x\n", HME_MIF_READ_4(sc, HME_MIFI_CFG), HME_MIF_READ_4(sc, HME_MIFI_STAT), HME_MIF_READ_4(sc, HME_MIFI_SM)); return; } /* check for fatal errors that needs reset to unfreeze DMA engine */ if ((status & HME_SEB_STAT_FATAL_ERRORS) != 0) { HME_WHINE(sc->sc_dev, "error signaled, status=%#x\n", status); hme_init_locked(sc); } } void hme_intr(void *v) { struct hme_softc *sc = (struct hme_softc *)v; u_int32_t status; HME_LOCK(sc); status = HME_SEB_READ_4(sc, HME_SEBI_STAT); CTR1(KTR_HME, "hme_intr: status %#x", (u_int)status); if ((status & HME_SEB_STAT_ALL_ERRORS) != 0) hme_eint(sc, status); if ((status & HME_SEB_STAT_RXTOHOST) != 0) hme_rint(sc); if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0) hme_tint(sc); HME_UNLOCK(sc); } static int hme_watchdog(struct hme_softc *sc) { struct ifnet *ifp = sc->sc_ifp; HME_LOCK_ASSERT(sc, MA_OWNED); #ifdef HMEDEBUG CTR1(KTR_HME, "hme_watchdog: status %x", (u_int)HME_SEB_READ_4(sc, HME_SEBI_STAT)); #endif if (sc->sc_wdog_timer == 0 || --sc->sc_wdog_timer != 0) return (0); if ((sc->sc_flags & HME_LINK) != 0) device_printf(sc->sc_dev, "device timeout\n"); else if (bootverbose) device_printf(sc->sc_dev, "device timeout (no link)\n"); ++ifp->if_oerrors; hme_init_locked(sc); hme_start_locked(ifp); return (EJUSTRETURN); } /* * Initialize the MII Management Interface */ static void hme_mifinit(struct hme_softc *sc) { u_int32_t v; /* * Configure the MIF in frame mode, polling disabled, internal PHY * selected. */ HME_MIF_WRITE_4(sc, HME_MIFI_CFG, 0); /* * If the currently selected media uses the external transceiver, * enable its MII drivers (which basically isolates the internal * one and vice versa). In case the current media hasn't been set, * yet, we default to the internal transceiver. */ v = HME_MAC_READ_4(sc, HME_MACI_XIF); if (sc->sc_mii != NULL && sc->sc_mii->mii_media.ifm_cur != NULL && sc->sc_phys[IFM_INST(sc->sc_mii->mii_media.ifm_cur->ifm_media)] == HME_PHYAD_EXTERNAL) v |= HME_MAC_XIF_MIIENABLE; else v &= ~HME_MAC_XIF_MIIENABLE; HME_MAC_WRITE_4(sc, HME_MACI_XIF, v); } /* * MII interface */ int hme_mii_readreg(device_t dev, int phy, int reg) { struct hme_softc *sc; int n; u_int32_t v; sc = device_get_softc(dev); /* Select the desired PHY in the MIF configuration register */ v = HME_MIF_READ_4(sc, HME_MIFI_CFG); if (phy == HME_PHYAD_EXTERNAL) v |= HME_MIF_CFG_PHY; else v &= ~HME_MIF_CFG_PHY; HME_MIF_WRITE_4(sc, HME_MIFI_CFG, v); /* Construct the frame command */ v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) | HME_MIF_FO_TAMSB | (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) | (phy << HME_MIF_FO_PHYAD_SHIFT) | (reg << HME_MIF_FO_REGAD_SHIFT); HME_MIF_WRITE_4(sc, HME_MIFI_FO, v); HME_MIF_BARRIER(sc, HME_MIFI_FO, 4, BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); for (n = 0; n < 100; n++) { DELAY(1); v = HME_MIF_READ_4(sc, HME_MIFI_FO); if (v & HME_MIF_FO_TALSB) return (v & HME_MIF_FO_DATA); } device_printf(sc->sc_dev, "mii_read timeout\n"); return (0); } int hme_mii_writereg(device_t dev, int phy, int reg, int val) { struct hme_softc *sc; int n; u_int32_t v; sc = device_get_softc(dev); /* Select the desired PHY in the MIF configuration register */ v = HME_MIF_READ_4(sc, HME_MIFI_CFG); if (phy == HME_PHYAD_EXTERNAL) v |= HME_MIF_CFG_PHY; else v &= ~HME_MIF_CFG_PHY; HME_MIF_WRITE_4(sc, HME_MIFI_CFG, v); /* Construct the frame command */ v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) | HME_MIF_FO_TAMSB | (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) | (phy << HME_MIF_FO_PHYAD_SHIFT) | (reg << HME_MIF_FO_REGAD_SHIFT) | (val & HME_MIF_FO_DATA); HME_MIF_WRITE_4(sc, HME_MIFI_FO, v); HME_MIF_BARRIER(sc, HME_MIFI_FO, 4, BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); for (n = 0; n < 100; n++) { DELAY(1); v = HME_MIF_READ_4(sc, HME_MIFI_FO); if (v & HME_MIF_FO_TALSB) return (1); } device_printf(sc->sc_dev, "mii_write timeout\n"); return (0); } void hme_mii_statchg(device_t dev) { struct hme_softc *sc; uint32_t rxcfg, txcfg; sc = device_get_softc(dev); #ifdef HMEDEBUG if ((sc->sc_ifp->if_flags & IFF_DEBUG) != 0) device_printf(sc->sc_dev, "hme_mii_statchg: status change\n"); #endif if ((sc->sc_mii->mii_media_status & IFM_ACTIVE) != 0 && IFM_SUBTYPE(sc->sc_mii->mii_media_active) != IFM_NONE) sc->sc_flags |= HME_LINK; else sc->sc_flags &= ~HME_LINK; txcfg = HME_MAC_READ_4(sc, HME_MACI_TXCFG); if (!hme_mac_bitflip(sc, HME_MACI_TXCFG, txcfg, HME_MAC_TXCFG_ENABLE, 0)) device_printf(sc->sc_dev, "cannot disable TX MAC\n"); rxcfg = HME_MAC_READ_4(sc, HME_MACI_RXCFG); if (!hme_mac_bitflip(sc, HME_MACI_RXCFG, rxcfg, HME_MAC_RXCFG_ENABLE, 0)) device_printf(sc->sc_dev, "cannot disable RX MAC\n"); /* Set the MAC Full Duplex bit appropriately. */ if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0) txcfg |= HME_MAC_TXCFG_FULLDPLX; else txcfg &= ~HME_MAC_TXCFG_FULLDPLX; HME_MAC_WRITE_4(sc, HME_MACI_TXCFG, txcfg); if ((sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 && (sc->sc_flags & HME_LINK) != 0) { if (!hme_mac_bitflip(sc, HME_MACI_TXCFG, txcfg, 0, HME_MAC_TXCFG_ENABLE)) device_printf(sc->sc_dev, "cannot enable TX MAC\n"); if (!hme_mac_bitflip(sc, HME_MACI_RXCFG, rxcfg, 0, HME_MAC_RXCFG_ENABLE)) device_printf(sc->sc_dev, "cannot enable RX MAC\n"); } } static int hme_mediachange(struct ifnet *ifp) { struct hme_softc *sc = ifp->if_softc; int error; HME_LOCK(sc); error = hme_mediachange_locked(sc); HME_UNLOCK(sc); return (error); } static int hme_mediachange_locked(struct hme_softc *sc) { struct mii_softc *child; HME_LOCK_ASSERT(sc, MA_OWNED); #ifdef HMEDEBUG if ((sc->sc_ifp->if_flags & IFF_DEBUG) != 0) device_printf(sc->sc_dev, "hme_mediachange_locked"); #endif hme_mifinit(sc); /* * If both PHYs are present reset them. This is required for * unisolating the previously isolated PHY when switching PHYs. * As the above hme_mifinit() call will set the MII drivers in * the XIF configuration register according to the currently * selected media, there should be no window during which the * data paths of both transceivers are open at the same time, * even if the PHY device drivers use MIIF_NOISOLATE. */ if (sc->sc_phys[0] != -1 && sc->sc_phys[1] != -1) LIST_FOREACH(child, &sc->sc_mii->mii_phys, mii_list) PHY_RESET(child); return (mii_mediachg(sc->sc_mii)); } static void hme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) { struct hme_softc *sc = ifp->if_softc; HME_LOCK(sc); if ((ifp->if_flags & IFF_UP) == 0) { HME_UNLOCK(sc); return; } mii_pollstat(sc->sc_mii); ifmr->ifm_active = sc->sc_mii->mii_media_active; ifmr->ifm_status = sc->sc_mii->mii_media_status; HME_UNLOCK(sc); } /* * Process an ioctl request. */ static int hme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct hme_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; int error = 0; switch (cmd) { case SIOCSIFFLAGS: HME_LOCK(sc); if ((ifp->if_flags & IFF_UP) != 0) { if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 && ((ifp->if_flags ^ sc->sc_ifflags) & (IFF_ALLMULTI | IFF_PROMISC)) != 0) hme_setladrf(sc, 1); else hme_init_locked(sc); } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) hme_stop(sc); if ((ifp->if_flags & IFF_LINK0) != 0) sc->sc_csum_features |= CSUM_UDP; else sc->sc_csum_features &= ~CSUM_UDP; if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) ifp->if_hwassist = sc->sc_csum_features; sc->sc_ifflags = ifp->if_flags; HME_UNLOCK(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: HME_LOCK(sc); hme_setladrf(sc, 1); HME_UNLOCK(sc); error = 0; break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii->mii_media, cmd); break; case SIOCSIFCAP: HME_LOCK(sc); ifp->if_capenable = ifr->ifr_reqcap; if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) ifp->if_hwassist = sc->sc_csum_features; else ifp->if_hwassist = 0; HME_UNLOCK(sc); break; default: error = ether_ioctl(ifp, cmd, data); break; } return (error); } /* * Set up the logical address filter. */ static void hme_setladrf(struct hme_softc *sc, int reenable) { struct ifnet *ifp = sc->sc_ifp; struct ifmultiaddr *inm; u_int32_t crc; u_int32_t hash[4]; u_int32_t macc; HME_LOCK_ASSERT(sc, MA_OWNED); /* Clear the hash table. */ hash[3] = hash[2] = hash[1] = hash[0] = 0; /* Get the current RX configuration. */ macc = HME_MAC_READ_4(sc, HME_MACI_RXCFG); /* * Turn off promiscuous mode, promiscuous group mode (all multicast), * and hash filter. Depending on the case, the right bit will be * enabled. */ macc &= ~(HME_MAC_RXCFG_PGRP | HME_MAC_RXCFG_PMISC); /* * Disable the receiver while changing it's state as the documentation * mandates. * We then must wait until the bit clears in the register. This should * take at most 3.5ms. */ if (!hme_mac_bitflip(sc, HME_MACI_RXCFG, macc, HME_MAC_RXCFG_ENABLE, 0)) device_printf(sc->sc_dev, "cannot disable RX MAC\n"); /* Disable the hash filter before writing to the filter registers. */ if (!hme_mac_bitflip(sc, HME_MACI_RXCFG, macc, HME_MAC_RXCFG_HENABLE, 0)) device_printf(sc->sc_dev, "cannot disable hash filter\n"); /* Make the RX MAC really SIMPLEX. */ macc |= HME_MAC_RXCFG_ME; if (reenable) macc |= HME_MAC_RXCFG_ENABLE; else macc &= ~HME_MAC_RXCFG_ENABLE; if ((ifp->if_flags & IFF_PROMISC) != 0) { macc |= HME_MAC_RXCFG_PMISC; goto chipit; } if ((ifp->if_flags & IFF_ALLMULTI) != 0) { macc |= HME_MAC_RXCFG_PGRP; goto chipit; } macc |= HME_MAC_RXCFG_HENABLE; /* * Set up multicast address filter by passing all multicast addresses * through a crc generator, and then using the high order 6 bits as an * index into the 64 bit logical address filter. The high order bit * selects the word, while the rest of the bits select the bit within * the word. */ if_maddr_rlock(ifp); TAILQ_FOREACH(inm, &ifp->if_multiaddrs, ifma_link) { if (inm->ifma_addr->sa_family != AF_LINK) continue; crc = ether_crc32_le(LLADDR((struct sockaddr_dl *) inm->ifma_addr), ETHER_ADDR_LEN); /* Just want the 6 most significant bits. */ crc >>= 26; /* Set the corresponding bit in the filter. */ hash[crc >> 4] |= 1 << (crc & 0xf); } if_maddr_runlock(ifp); chipit: /* Now load the hash table into the chip */ HME_MAC_WRITE_4(sc, HME_MACI_HASHTAB0, hash[0]); HME_MAC_WRITE_4(sc, HME_MACI_HASHTAB1, hash[1]); HME_MAC_WRITE_4(sc, HME_MACI_HASHTAB2, hash[2]); HME_MAC_WRITE_4(sc, HME_MACI_HASHTAB3, hash[3]); if (!hme_mac_bitflip(sc, HME_MACI_RXCFG, macc, 0, macc & (HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_HENABLE | HME_MAC_RXCFG_ME))) device_printf(sc->sc_dev, "cannot configure RX MAC\n"); }