/*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ffs_inode.c 8.13 (Berkeley) 4/21/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_quota.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int ffs_indirtrunc(struct inode *, ufs2_daddr_t, ufs2_daddr_t, ufs2_daddr_t, int, ufs2_daddr_t *); /* * Update the access, modified, and inode change times as specified by the * IN_ACCESS, IN_UPDATE, and IN_CHANGE flags respectively. Write the inode * to disk if the IN_MODIFIED flag is set (it may be set initially, or by * the timestamp update). The IN_LAZYMOD flag is set to force a write * later if not now. The IN_LAZYACCESS is set instead of IN_MODIFIED if the fs * is currently being suspended (or is suspended) and vnode has been accessed. * If we write now, then clear IN_MODIFIED, IN_LAZYACCESS and IN_LAZYMOD to * reflect the presumably successful write, and if waitfor is set, then wait * for the write to complete. */ int ffs_update(vp, waitfor) struct vnode *vp; int waitfor; { struct fs *fs; struct buf *bp; struct inode *ip; int flags, error; ASSERT_VOP_ELOCKED(vp, "ffs_update"); ufs_itimes(vp); ip = VTOI(vp); if ((ip->i_flag & IN_MODIFIED) == 0 && waitfor == 0) return (0); ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED); fs = ITOFS(ip); if (fs->fs_ronly && ITOUMP(ip)->um_fsckpid == 0) return (0); /* * If we are updating a snapshot and another process is currently * writing the buffer containing the inode for this snapshot then * a deadlock can occur when it tries to check the snapshot to see * if that block needs to be copied. Thus when updating a snapshot * we check to see if the buffer is already locked, and if it is * we drop the snapshot lock until the buffer has been written * and is available to us. We have to grab a reference to the * snapshot vnode to prevent it from being removed while we are * waiting for the buffer. */ flags = 0; if (IS_SNAPSHOT(ip)) flags = GB_LOCK_NOWAIT; loop: error = bread_gb(ITODEVVP(ip), fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), (int) fs->fs_bsize, NOCRED, flags, &bp); if (error != 0) { if (error != EBUSY) return (error); KASSERT((IS_SNAPSHOT(ip)), ("EBUSY from non-snapshot")); /* * Wait for our inode block to become available. * * Hold a reference to the vnode to protect against * ffs_snapgone(). Since we hold a reference, it can only * get reclaimed (VIRF_DOOMED flag) in a forcible downgrade * or unmount. For an unmount, the entire filesystem will be * gone, so we cannot attempt to touch anything associated * with it while the vnode is unlocked; all we can do is * pause briefly and try again. If when we relock the vnode * we discover that it has been reclaimed, updating it is no * longer necessary and we can just return an error. */ vref(vp); VOP_UNLOCK(vp); pause("ffsupd", 1); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); vrele(vp); if (VN_IS_DOOMED(vp)) return (ENOENT); goto loop; } if (DOINGSOFTDEP(vp)) softdep_update_inodeblock(ip, bp, waitfor); else if (ip->i_effnlink != ip->i_nlink) panic("ffs_update: bad link cnt"); if (I_IS_UFS1(ip)) { *((struct ufs1_dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; /* * XXX: FIX? The entropy here is desirable, * but the harvesting may be expensive */ random_harvest_queue(&(ip->i_din1), sizeof(ip->i_din1), RANDOM_FS_ATIME); } else { ffs_update_dinode_ckhash(fs, ip->i_din2); *((struct ufs2_dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; /* * XXX: FIX? The entropy here is desirable, * but the harvesting may be expensive */ random_harvest_queue(&(ip->i_din2), sizeof(ip->i_din2), RANDOM_FS_ATIME); } if (waitfor) error = bwrite(bp); else if (vm_page_count_severe() || buf_dirty_count_severe()) { bawrite(bp); error = 0; } else { if (bp->b_bufsize == fs->fs_bsize) bp->b_flags |= B_CLUSTEROK; bdwrite(bp); error = 0; } return (error); } #define SINGLE 0 /* index of single indirect block */ #define DOUBLE 1 /* index of double indirect block */ #define TRIPLE 2 /* index of triple indirect block */ /* * Truncate the inode ip to at most length size, freeing the * disk blocks. */ int ffs_truncate(vp, length, flags, cred) struct vnode *vp; off_t length; int flags; struct ucred *cred; { struct inode *ip; ufs2_daddr_t bn, lbn, lastblock, lastiblock[UFS_NIADDR]; ufs2_daddr_t indir_lbn[UFS_NIADDR], oldblks[UFS_NDADDR + UFS_NIADDR]; ufs2_daddr_t newblks[UFS_NDADDR + UFS_NIADDR]; ufs2_daddr_t count, blocksreleased = 0, datablocks, blkno; struct bufobj *bo; struct fs *fs; struct buf *bp; struct ufsmount *ump; int softdeptrunc, journaltrunc; int needextclean, extblocks; int offset, size, level, nblocks; int i, error, allerror, indiroff, waitforupdate; u_long key; off_t osize; ip = VTOI(vp); ump = VFSTOUFS(vp->v_mount); fs = ump->um_fs; bo = &vp->v_bufobj; ASSERT_VOP_LOCKED(vp, "ffs_truncate"); if (length < 0) return (EINVAL); if (length > fs->fs_maxfilesize) return (EFBIG); #ifdef QUOTA error = getinoquota(ip); if (error) return (error); #endif /* * Historically clients did not have to specify which data * they were truncating. So, if not specified, we assume * traditional behavior, e.g., just the normal data. */ if ((flags & (IO_EXT | IO_NORMAL)) == 0) flags |= IO_NORMAL; if (!DOINGSOFTDEP(vp) && !DOINGASYNC(vp)) flags |= IO_SYNC; waitforupdate = (flags & IO_SYNC) != 0 || !DOINGASYNC(vp); /* * If we are truncating the extended-attributes, and cannot * do it with soft updates, then do it slowly here. If we are * truncating both the extended attributes and the file contents * (e.g., the file is being unlinked), then pick it off with * soft updates below. */ allerror = 0; needextclean = 0; softdeptrunc = 0; journaltrunc = DOINGSUJ(vp); journaltrunc = 0; /* XXX temp patch until bug found */ if (journaltrunc == 0 && DOINGSOFTDEP(vp) && length == 0) softdeptrunc = !softdep_slowdown(vp); extblocks = 0; datablocks = DIP(ip, i_blocks); if (fs->fs_magic == FS_UFS2_MAGIC && ip->i_din2->di_extsize > 0) { extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); datablocks -= extblocks; } if ((flags & IO_EXT) && extblocks > 0) { if (length != 0) panic("ffs_truncate: partial trunc of extdata"); if (softdeptrunc || journaltrunc) { if ((flags & IO_NORMAL) == 0) goto extclean; needextclean = 1; } else { if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0) return (error); #ifdef QUOTA (void) chkdq(ip, -extblocks, NOCRED, FORCE); #endif vinvalbuf(vp, V_ALT, 0, 0); vn_pages_remove(vp, OFF_TO_IDX(lblktosize(fs, -extblocks)), 0); osize = ip->i_din2->di_extsize; ip->i_din2->di_blocks -= extblocks; ip->i_din2->di_extsize = 0; for (i = 0; i < UFS_NXADDR; i++) { oldblks[i] = ip->i_din2->di_extb[i]; ip->i_din2->di_extb[i] = 0; } UFS_INODE_SET_FLAG(ip, IN_CHANGE); if ((error = ffs_update(vp, waitforupdate))) return (error); for (i = 0; i < UFS_NXADDR; i++) { if (oldblks[i] == 0) continue; ffs_blkfree(ump, fs, ITODEVVP(ip), oldblks[i], sblksize(fs, osize, i), ip->i_number, vp->v_type, NULL, SINGLETON_KEY); } } } if ((flags & IO_NORMAL) == 0) return (0); if (vp->v_type == VLNK && (ip->i_size < vp->v_mount->mnt_maxsymlinklen || datablocks == 0)) { #ifdef INVARIANTS if (length != 0) panic("ffs_truncate: partial truncate of symlink"); #endif bzero(SHORTLINK(ip), (u_int)ip->i_size); ip->i_size = 0; DIP_SET(ip, i_size, 0); UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); if (needextclean) goto extclean; return (ffs_update(vp, waitforupdate)); } if (ip->i_size == length) { UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); if (needextclean) goto extclean; return (ffs_update(vp, 0)); } if (fs->fs_ronly) panic("ffs_truncate: read-only filesystem"); if (IS_SNAPSHOT(ip)) ffs_snapremove(vp); vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0; osize = ip->i_size; /* * Lengthen the size of the file. We must ensure that the * last byte of the file is allocated. Since the smallest * value of osize is 0, length will be at least 1. */ if (osize < length) { vnode_pager_setsize(vp, length); flags |= BA_CLRBUF; error = UFS_BALLOC(vp, length - 1, 1, cred, flags, &bp); if (error) { vnode_pager_setsize(vp, osize); return (error); } ip->i_size = length; DIP_SET(ip, i_size, length); if (bp->b_bufsize == fs->fs_bsize) bp->b_flags |= B_CLUSTEROK; if (flags & IO_SYNC) bwrite(bp); else if (DOINGASYNC(vp)) bdwrite(bp); else bawrite(bp); UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); return (ffs_update(vp, waitforupdate)); } /* * Lookup block number for a given offset. Zero length files * have no blocks, so return a blkno of -1. */ lbn = lblkno(fs, length - 1); if (length == 0) { blkno = -1; } else if (lbn < UFS_NDADDR) { blkno = DIP(ip, i_db[lbn]); } else { error = UFS_BALLOC(vp, lblktosize(fs, (off_t)lbn), fs->fs_bsize, cred, BA_METAONLY, &bp); if (error) return (error); indiroff = (lbn - UFS_NDADDR) % NINDIR(fs); if (I_IS_UFS1(ip)) blkno = ((ufs1_daddr_t *)(bp->b_data))[indiroff]; else blkno = ((ufs2_daddr_t *)(bp->b_data))[indiroff]; /* * If the block number is non-zero, then the indirect block * must have been previously allocated and need not be written. * If the block number is zero, then we may have allocated * the indirect block and hence need to write it out. */ if (blkno != 0) brelse(bp); else if (flags & IO_SYNC) bwrite(bp); else bdwrite(bp); } /* * If the block number at the new end of the file is zero, * then we must allocate it to ensure that the last block of * the file is allocated. Soft updates does not handle this * case, so here we have to clean up the soft updates data * structures describing the allocation past the truncation * point. Finding and deallocating those structures is a lot of * work. Since partial truncation with a hole at the end occurs * rarely, we solve the problem by syncing the file so that it * will have no soft updates data structures left. */ if (blkno == 0 && (error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0) return (error); if (blkno != 0 && DOINGSOFTDEP(vp)) { if (softdeptrunc == 0 && journaltrunc == 0) { /* * If soft updates cannot handle this truncation, * clean up soft dependency data structures and * fall through to the synchronous truncation. */ if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0) return (error); } else { flags = IO_NORMAL | (needextclean ? IO_EXT: 0); if (journaltrunc) softdep_journal_freeblocks(ip, cred, length, flags); else softdep_setup_freeblocks(ip, length, flags); ASSERT_VOP_LOCKED(vp, "ffs_truncate1"); if (journaltrunc == 0) { UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); error = ffs_update(vp, 0); } return (error); } } /* * Shorten the size of the file. If the last block of the * shortened file is unallocated, we must allocate it. * Additionally, if the file is not being truncated to a * block boundary, the contents of the partial block * following the end of the file must be zero'ed in * case it ever becomes accessible again because of * subsequent file growth. Directories however are not * zero'ed as they should grow back initialized to empty. */ offset = blkoff(fs, length); if (blkno != 0 && offset == 0) { ip->i_size = length; DIP_SET(ip, i_size, length); } else { lbn = lblkno(fs, length); flags |= BA_CLRBUF; error = UFS_BALLOC(vp, length - 1, 1, cred, flags, &bp); if (error) return (error); /* * When we are doing soft updates and the UFS_BALLOC * above fills in a direct block hole with a full sized * block that will be truncated down to a fragment below, * we must flush out the block dependency with an FSYNC * so that we do not get a soft updates inconsistency * when we create the fragment below. */ if (DOINGSOFTDEP(vp) && lbn < UFS_NDADDR && fragroundup(fs, blkoff(fs, length)) < fs->fs_bsize && (error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0) return (error); ip->i_size = length; DIP_SET(ip, i_size, length); size = blksize(fs, ip, lbn); if (vp->v_type != VDIR && offset != 0) bzero((char *)bp->b_data + offset, (u_int)(size - offset)); /* Kirk's code has reallocbuf(bp, size, 1) here */ allocbuf(bp, size); if (bp->b_bufsize == fs->fs_bsize) bp->b_flags |= B_CLUSTEROK; if (flags & IO_SYNC) bwrite(bp); else if (DOINGASYNC(vp)) bdwrite(bp); else bawrite(bp); } /* * Calculate index into inode's block list of * last direct and indirect blocks (if any) * which we want to keep. Lastblock is -1 when * the file is truncated to 0. */ lastblock = lblkno(fs, length + fs->fs_bsize - 1) - 1; lastiblock[SINGLE] = lastblock - UFS_NDADDR; lastiblock[DOUBLE] = lastiblock[SINGLE] - NINDIR(fs); lastiblock[TRIPLE] = lastiblock[DOUBLE] - NINDIR(fs) * NINDIR(fs); nblocks = btodb(fs->fs_bsize); /* * Update file and block pointers on disk before we start freeing * blocks. If we crash before free'ing blocks below, the blocks * will be returned to the free list. lastiblock values are also * normalized to -1 for calls to ffs_indirtrunc below. */ for (level = TRIPLE; level >= SINGLE; level--) { oldblks[UFS_NDADDR + level] = DIP(ip, i_ib[level]); if (lastiblock[level] < 0) { DIP_SET(ip, i_ib[level], 0); lastiblock[level] = -1; } } for (i = 0; i < UFS_NDADDR; i++) { oldblks[i] = DIP(ip, i_db[i]); if (i > lastblock) DIP_SET(ip, i_db[i], 0); } UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); allerror = ffs_update(vp, waitforupdate); /* * Having written the new inode to disk, save its new configuration * and put back the old block pointers long enough to process them. * Note that we save the new block configuration so we can check it * when we are done. */ for (i = 0; i < UFS_NDADDR; i++) { newblks[i] = DIP(ip, i_db[i]); DIP_SET(ip, i_db[i], oldblks[i]); } for (i = 0; i < UFS_NIADDR; i++) { newblks[UFS_NDADDR + i] = DIP(ip, i_ib[i]); DIP_SET(ip, i_ib[i], oldblks[UFS_NDADDR + i]); } ip->i_size = osize; DIP_SET(ip, i_size, osize); error = vtruncbuf(vp, length, fs->fs_bsize); if (error && (allerror == 0)) allerror = error; /* * Indirect blocks first. */ indir_lbn[SINGLE] = -UFS_NDADDR; indir_lbn[DOUBLE] = indir_lbn[SINGLE] - NINDIR(fs) - 1; indir_lbn[TRIPLE] = indir_lbn[DOUBLE] - NINDIR(fs) * NINDIR(fs) - 1; for (level = TRIPLE; level >= SINGLE; level--) { bn = DIP(ip, i_ib[level]); if (bn != 0) { error = ffs_indirtrunc(ip, indir_lbn[level], fsbtodb(fs, bn), lastiblock[level], level, &count); if (error) allerror = error; blocksreleased += count; if (lastiblock[level] < 0) { DIP_SET(ip, i_ib[level], 0); ffs_blkfree(ump, fs, ump->um_devvp, bn, fs->fs_bsize, ip->i_number, vp->v_type, NULL, SINGLETON_KEY); blocksreleased += nblocks; } } if (lastiblock[level] >= 0) goto done; } /* * All whole direct blocks or frags. */ key = ffs_blkrelease_start(ump, ump->um_devvp, ip->i_number); for (i = UFS_NDADDR - 1; i > lastblock; i--) { long bsize; bn = DIP(ip, i_db[i]); if (bn == 0) continue; DIP_SET(ip, i_db[i], 0); bsize = blksize(fs, ip, i); ffs_blkfree(ump, fs, ump->um_devvp, bn, bsize, ip->i_number, vp->v_type, NULL, key); blocksreleased += btodb(bsize); } ffs_blkrelease_finish(ump, key); if (lastblock < 0) goto done; /* * Finally, look for a change in size of the * last direct block; release any frags. */ bn = DIP(ip, i_db[lastblock]); if (bn != 0) { long oldspace, newspace; /* * Calculate amount of space we're giving * back as old block size minus new block size. */ oldspace = blksize(fs, ip, lastblock); ip->i_size = length; DIP_SET(ip, i_size, length); newspace = blksize(fs, ip, lastblock); if (newspace == 0) panic("ffs_truncate: newspace"); if (oldspace - newspace > 0) { /* * Block number of space to be free'd is * the old block # plus the number of frags * required for the storage we're keeping. */ bn += numfrags(fs, newspace); ffs_blkfree(ump, fs, ump->um_devvp, bn, oldspace - newspace, ip->i_number, vp->v_type, NULL, SINGLETON_KEY); blocksreleased += btodb(oldspace - newspace); } } done: #ifdef INVARIANTS for (level = SINGLE; level <= TRIPLE; level++) if (newblks[UFS_NDADDR + level] != DIP(ip, i_ib[level])) panic("ffs_truncate1: level %d newblks %jd != i_ib %jd", level, (intmax_t)newblks[UFS_NDADDR + level], (intmax_t)DIP(ip, i_ib[level])); for (i = 0; i < UFS_NDADDR; i++) if (newblks[i] != DIP(ip, i_db[i])) panic("ffs_truncate2: blkno %d newblks %jd != i_db %jd", i, (intmax_t)newblks[UFS_NDADDR + level], (intmax_t)DIP(ip, i_ib[level])); BO_LOCK(bo); if (length == 0 && (fs->fs_magic != FS_UFS2_MAGIC || ip->i_din2->di_extsize == 0) && (bo->bo_dirty.bv_cnt > 0 || bo->bo_clean.bv_cnt > 0)) panic("ffs_truncate3: vp = %p, buffers: dirty = %d, clean = %d", vp, bo->bo_dirty.bv_cnt, bo->bo_clean.bv_cnt); BO_UNLOCK(bo); #endif /* INVARIANTS */ /* * Put back the real size. */ ip->i_size = length; DIP_SET(ip, i_size, length); if (DIP(ip, i_blocks) >= blocksreleased) DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - blocksreleased); else /* sanity */ DIP_SET(ip, i_blocks, 0); UFS_INODE_SET_FLAG(ip, IN_CHANGE); #ifdef QUOTA (void) chkdq(ip, -blocksreleased, NOCRED, FORCE); #endif return (allerror); extclean: if (journaltrunc) softdep_journal_freeblocks(ip, cred, length, IO_EXT); else softdep_setup_freeblocks(ip, length, IO_EXT); return (ffs_update(vp, waitforupdate)); } /* * Release blocks associated with the inode ip and stored in the indirect * block bn. Blocks are free'd in LIFO order up to (but not including) * lastbn. If level is greater than SINGLE, the block is an indirect block * and recursive calls to indirtrunc must be used to cleanse other indirect * blocks. */ static int ffs_indirtrunc(ip, lbn, dbn, lastbn, level, countp) struct inode *ip; ufs2_daddr_t lbn, lastbn; ufs2_daddr_t dbn; int level; ufs2_daddr_t *countp; { struct buf *bp; struct fs *fs; struct ufsmount *ump; struct vnode *vp; caddr_t copy = NULL; u_long key; int i, nblocks, error = 0, allerror = 0; ufs2_daddr_t nb, nlbn, last; ufs2_daddr_t blkcount, factor, blocksreleased = 0; ufs1_daddr_t *bap1 = NULL; ufs2_daddr_t *bap2 = NULL; #define BAP(ip, i) (I_IS_UFS1(ip) ? bap1[i] : bap2[i]) fs = ITOFS(ip); ump = ITOUMP(ip); /* * Calculate index in current block of last * block to be kept. -1 indicates the entire * block so we need not calculate the index. */ factor = lbn_offset(fs, level); last = lastbn; if (lastbn > 0) last /= factor; nblocks = btodb(fs->fs_bsize); /* * Get buffer of block pointers, zero those entries corresponding * to blocks to be free'd, and update on disk copy first. Since * double(triple) indirect before single(double) indirect, calls * to VOP_BMAP() on these blocks will fail. However, we already * have the on-disk address, so we just pass it to bread() instead * of having bread() attempt to calculate it using VOP_BMAP(). */ vp = ITOV(ip); error = breadn_flags(vp, lbn, dbn, (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL, &bp); if (error) { *countp = 0; return (error); } if (I_IS_UFS1(ip)) bap1 = (ufs1_daddr_t *)bp->b_data; else bap2 = (ufs2_daddr_t *)bp->b_data; if (lastbn != -1) { copy = malloc(fs->fs_bsize, M_TEMP, M_WAITOK); bcopy((caddr_t)bp->b_data, copy, (u_int)fs->fs_bsize); for (i = last + 1; i < NINDIR(fs); i++) if (I_IS_UFS1(ip)) bap1[i] = 0; else bap2[i] = 0; if (DOINGASYNC(vp)) { bdwrite(bp); } else { error = bwrite(bp); if (error) allerror = error; } if (I_IS_UFS1(ip)) bap1 = (ufs1_daddr_t *)copy; else bap2 = (ufs2_daddr_t *)copy; } /* * Recursively free totally unused blocks. */ key = ffs_blkrelease_start(ump, ITODEVVP(ip), ip->i_number); for (i = NINDIR(fs) - 1, nlbn = lbn + 1 - i * factor; i > last; i--, nlbn += factor) { nb = BAP(ip, i); if (nb == 0) continue; if (level > SINGLE) { if ((error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb), (ufs2_daddr_t)-1, level - 1, &blkcount)) != 0) allerror = error; blocksreleased += blkcount; } ffs_blkfree(ump, fs, ITODEVVP(ip), nb, fs->fs_bsize, ip->i_number, vp->v_type, NULL, key); blocksreleased += nblocks; } ffs_blkrelease_finish(ump, key); /* * Recursively free last partial block. */ if (level > SINGLE && lastbn >= 0) { last = lastbn % factor; nb = BAP(ip, i); if (nb != 0) { error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb), last, level - 1, &blkcount); if (error) allerror = error; blocksreleased += blkcount; } } if (copy != NULL) { free(copy, M_TEMP); } else { bp->b_flags |= B_INVAL | B_NOCACHE; brelse(bp); } *countp = blocksreleased; return (allerror); } int ffs_rdonly(struct inode *ip) { return (ITOFS(ip)->fs_ronly != 0); }