//===---- SemaInherit.cpp - C++ Inheritance ---------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file provides Sema routines for C++ inheritance semantics, // including searching the inheritance hierarchy. // //===----------------------------------------------------------------------===// #include "SemaInherit.h" #include "Sema.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/Type.h" #include "clang/AST/TypeOrdering.h" #include #include #include #include using namespace clang; /// \brief Computes the set of declarations referenced by these base /// paths. void BasePaths::ComputeDeclsFound() { assert(NumDeclsFound == 0 && !DeclsFound && "Already computed the set of declarations"); std::set Decls; for (BasePaths::paths_iterator Path = begin(), PathEnd = end(); Path != PathEnd; ++Path) Decls.insert(*Path->Decls.first); NumDeclsFound = Decls.size(); DeclsFound = new NamedDecl * [NumDeclsFound]; std::copy(Decls.begin(), Decls.end(), DeclsFound); } BasePaths::decl_iterator BasePaths::found_decls_begin() { if (NumDeclsFound == 0) ComputeDeclsFound(); return DeclsFound; } BasePaths::decl_iterator BasePaths::found_decls_end() { if (NumDeclsFound == 0) ComputeDeclsFound(); return DeclsFound + NumDeclsFound; } /// isAmbiguous - Determines whether the set of paths provided is /// ambiguous, i.e., there are two or more paths that refer to /// different base class subobjects of the same type. BaseType must be /// an unqualified, canonical class type. bool BasePaths::isAmbiguous(QualType BaseType) { assert(BaseType->isCanonical() && "Base type must be the canonical type"); assert(BaseType.getCVRQualifiers() == 0 && "Base type must be unqualified"); std::pair& Subobjects = ClassSubobjects[BaseType]; return Subobjects.second + (Subobjects.first? 1 : 0) > 1; } /// clear - Clear out all prior path information. void BasePaths::clear() { Paths.clear(); ClassSubobjects.clear(); ScratchPath.clear(); DetectedVirtual = 0; } /// @brief Swaps the contents of this BasePaths structure with the /// contents of Other. void BasePaths::swap(BasePaths &Other) { std::swap(Origin, Other.Origin); Paths.swap(Other.Paths); ClassSubobjects.swap(Other.ClassSubobjects); std::swap(FindAmbiguities, Other.FindAmbiguities); std::swap(RecordPaths, Other.RecordPaths); std::swap(DetectVirtual, Other.DetectVirtual); std::swap(DetectedVirtual, Other.DetectedVirtual); } /// IsDerivedFrom - Determine whether the type Derived is derived from /// the type Base, ignoring qualifiers on Base and Derived. This /// routine does not assess whether an actual conversion from a /// Derived* to a Base* is legal, because it does not account for /// ambiguous conversions or conversions to private/protected bases. bool Sema::IsDerivedFrom(QualType Derived, QualType Base) { BasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/false, /*DetectVirtual=*/false); return IsDerivedFrom(Derived, Base, Paths); } /// IsDerivedFrom - Determine whether the type Derived is derived from /// the type Base, ignoring qualifiers on Base and Derived. This /// routine does not assess whether an actual conversion from a /// Derived* to a Base* is legal, because it does not account for /// ambiguous conversions or conversions to private/protected /// bases. This routine will use Paths to determine if there are /// ambiguous paths (if @c Paths.isFindingAmbiguities()) and record /// information about all of the paths (if @c Paths.isRecordingPaths()). bool Sema::IsDerivedFrom(QualType Derived, QualType Base, BasePaths &Paths) { Derived = Context.getCanonicalType(Derived).getUnqualifiedType(); Base = Context.getCanonicalType(Base).getUnqualifiedType(); if (!Derived->isRecordType() || !Base->isRecordType()) return false; if (Derived == Base) return false; Paths.setOrigin(Derived); return LookupInBases(cast(Derived->getAsRecordType()->getDecl()), MemberLookupCriteria(Base), Paths); } /// LookupInBases - Look for something that meets the specified /// Criteria within the base classes of Class (or any of its base /// classes, transitively). This routine populates BasePaths with the /// list of paths that one can take to find the entity that meets the /// search criteria, and returns true if any such entity is found. The /// various options passed to the BasePath constructor will affect the /// behavior of this lookup, e.g., whether it finds ambiguities, /// records paths, or attempts to detect the use of virtual base /// classes. bool Sema::LookupInBases(CXXRecordDecl *Class, const MemberLookupCriteria& Criteria, BasePaths &Paths) { bool FoundPath = false; for (CXXRecordDecl::base_class_const_iterator BaseSpec = Class->bases_begin(), BaseSpecEnd = Class->bases_end(); BaseSpec != BaseSpecEnd; ++BaseSpec) { // Find the record of the base class subobjects for this type. QualType BaseType = Context.getCanonicalType(BaseSpec->getType()); BaseType = BaseType.getUnqualifiedType(); // If a base class of the class template depends on a template-parameter, // the base class scope is not examined during unqualified name lookup. // [temp.dep]p3. if (BaseType->isDependentType()) continue; // Determine whether we need to visit this base class at all, // updating the count of subobjects appropriately. std::pair& Subobjects = Paths.ClassSubobjects[BaseType]; bool VisitBase = true; bool SetVirtual = false; if (BaseSpec->isVirtual()) { VisitBase = !Subobjects.first; Subobjects.first = true; if (Paths.isDetectingVirtual() && Paths.DetectedVirtual == 0) { // If this is the first virtual we find, remember it. If it turns out // there is no base path here, we'll reset it later. Paths.DetectedVirtual = BaseType->getAsRecordType(); SetVirtual = true; } } else ++Subobjects.second; if (Paths.isRecordingPaths()) { // Add this base specifier to the current path. BasePathElement Element; Element.Base = &*BaseSpec; Element.Class = Class; if (BaseSpec->isVirtual()) Element.SubobjectNumber = 0; else Element.SubobjectNumber = Subobjects.second; Paths.ScratchPath.push_back(Element); } CXXRecordDecl *BaseRecord = cast(BaseSpec->getType()->getAsRecordType()->getDecl()); // Either look at the base class type or look into the base class // type to see if we've found a member that meets the search // criteria. bool FoundPathToThisBase = false; switch (Criteria.Kind) { case MemberLookupCriteria::LK_Base: FoundPathToThisBase = (Context.getCanonicalType(BaseSpec->getType()) == Criteria.Base); break; case MemberLookupCriteria::LK_NamedMember: Paths.ScratchPath.Decls = BaseRecord->lookup(Context, Criteria.Name); while (Paths.ScratchPath.Decls.first != Paths.ScratchPath.Decls.second) { if (isAcceptableLookupResult(*Paths.ScratchPath.Decls.first, Criteria.NameKind, Criteria.IDNS)) { FoundPathToThisBase = true; break; } ++Paths.ScratchPath.Decls.first; } break; case MemberLookupCriteria::LK_OverriddenMember: Paths.ScratchPath.Decls = BaseRecord->lookup(Context, Criteria.Method->getDeclName()); while (Paths.ScratchPath.Decls.first != Paths.ScratchPath.Decls.second) { if (CXXMethodDecl *MD = dyn_cast(*Paths.ScratchPath.Decls.first)) { OverloadedFunctionDecl::function_iterator MatchedDecl; if (MD->isVirtual() && !IsOverload(Criteria.Method, MD, MatchedDecl)) { FoundPathToThisBase = true; break; } } ++Paths.ScratchPath.Decls.first; } break; } if (FoundPathToThisBase) { // We've found a path that terminates that this base. FoundPath = true; if (Paths.isRecordingPaths()) { // We have a path. Make a copy of it before moving on. Paths.Paths.push_back(Paths.ScratchPath); } else if (!Paths.isFindingAmbiguities()) { // We found a path and we don't care about ambiguities; // return immediately. return FoundPath; } } // C++ [class.member.lookup]p2: // A member name f in one sub-object B hides a member name f in // a sub-object A if A is a base class sub-object of B. Any // declarations that are so hidden are eliminated from // consideration. else if (VisitBase && LookupInBases(BaseRecord, Criteria, Paths)) { // There is a path to a base class that meets the criteria. If we're not // collecting paths or finding ambiguities, we're done. FoundPath = true; if (!Paths.isFindingAmbiguities()) return FoundPath; } // Pop this base specifier off the current path (if we're // collecting paths). if (Paths.isRecordingPaths()) Paths.ScratchPath.pop_back(); // If we set a virtual earlier, and this isn't a path, forget it again. if (SetVirtual && !FoundPath) { Paths.DetectedVirtual = 0; } } return FoundPath; } /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base /// conversion (where Derived and Base are class types) is /// well-formed, meaning that the conversion is unambiguous (and /// that all of the base classes are accessible). Returns true /// and emits a diagnostic if the code is ill-formed, returns false /// otherwise. Loc is the location where this routine should point to /// if there is an error, and Range is the source range to highlight /// if there is an error. bool Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, unsigned InaccessibleBaseID, unsigned AmbigiousBaseConvID, SourceLocation Loc, SourceRange Range, DeclarationName Name) { // First, determine whether the path from Derived to Base is // ambiguous. This is slightly more expensive than checking whether // the Derived to Base conversion exists, because here we need to // explore multiple paths to determine if there is an ambiguity. BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, /*DetectVirtual=*/false); bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths); assert(DerivationOkay && "Can only be used with a derived-to-base conversion"); (void)DerivationOkay; if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) { // Check that the base class can be accessed. return CheckBaseClassAccess(Derived, Base, InaccessibleBaseID, Paths, Loc, Name); } // We know that the derived-to-base conversion is ambiguous, and // we're going to produce a diagnostic. Perform the derived-to-base // search just one more time to compute all of the possible paths so // that we can print them out. This is more expensive than any of // the previous derived-to-base checks we've done, but at this point // performance isn't as much of an issue. Paths.clear(); Paths.setRecordingPaths(true); bool StillOkay = IsDerivedFrom(Derived, Base, Paths); assert(StillOkay && "Can only be used with a derived-to-base conversion"); (void)StillOkay; // Build up a textual representation of the ambiguous paths, e.g., // D -> B -> A, that will be used to illustrate the ambiguous // conversions in the diagnostic. We only print one of the paths // to each base class subobject. std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); Diag(Loc, AmbigiousBaseConvID) << Derived << Base << PathDisplayStr << Range << Name; return true; } bool Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, SourceLocation Loc, SourceRange Range) { return CheckDerivedToBaseConversion(Derived, Base, diag::err_conv_to_inaccessible_base, diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName()); } /// @brief Builds a string representing ambiguous paths from a /// specific derived class to different subobjects of the same base /// class. /// /// This function builds a string that can be used in error messages /// to show the different paths that one can take through the /// inheritance hierarchy to go from the derived class to different /// subobjects of a base class. The result looks something like this: /// @code /// struct D -> struct B -> struct A /// struct D -> struct C -> struct A /// @endcode std::string Sema::getAmbiguousPathsDisplayString(BasePaths &Paths) { std::string PathDisplayStr; std::set DisplayedPaths; for (BasePaths::paths_iterator Path = Paths.begin(); Path != Paths.end(); ++Path) { if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) { // We haven't displayed a path to this particular base // class subobject yet. PathDisplayStr += "\n "; PathDisplayStr += Paths.getOrigin().getAsString(); for (BasePath::const_iterator Element = Path->begin(); Element != Path->end(); ++Element) PathDisplayStr += " -> " + Element->Base->getType().getAsString(); } } return PathDisplayStr; }