/* * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz * Copyright (c) 1980, 1989, 1993 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgment: * This product includes software developed by the University of * California, Berkeley and its contributors, as well as Christoph * Herrmann and Thomas-Henning von Kamptz. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $ * $FreeBSD$ * */ #ifndef lint static const char copyright[] = "@(#) Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz\n\ Copyright (c) 1980, 1989, 1993 The Regents of the University of California.\n\ All rights reserved.\n"; #endif /* not lint */ #ifndef lint static const char rcsid[] = "$FreeBSD$"; #endif /* not lint */ /* ********************************************************** INCLUDES ***** */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "debug.h" /* *************************************************** GLOBALS & TYPES ***** */ #ifdef FS_DEBUG int _dbg_lvl_ = (DL_INFO); /* DL_TRC */ #endif /* FS_DEBUG */ static union { struct fs fs; char pad[SBSIZE]; } fsun1, fsun2; #define sblock fsun1.fs /* the new superblock */ #define osblock fsun2.fs /* the old superblock */ static union { struct cg cg; char pad[MAXBSIZE]; } cgun1, cgun2; #define acg cgun1.cg /* a cylinder cgroup (new) */ #define aocg cgun2.cg /* an old cylinder group */ static char ablk[MAXBSIZE]; /* a block */ static char i1blk[MAXBSIZE]; /* some indirect blocks */ static char i2blk[MAXBSIZE]; static char i3blk[MAXBSIZE]; /* where to write back updated blocks */ static daddr_t in_src, i1_src, i2_src, i3_src; /* what object contains the reference */ enum pointer_source { GFS_PS_INODE, GFS_PS_IND_BLK_LVL1, GFS_PS_IND_BLK_LVL2, GFS_PS_IND_BLK_LVL3 }; static struct csum *fscs; /* cylinder summary */ static struct dinode zino[MAXBSIZE/sizeof(struct dinode)]; /* some inodes */ /* * An array of elements of type struct gfs_bpp describes all blocks to * be relocated in order to free the space needed for the cylinder group * summary for all cylinder groups located in the first cylinder group. */ struct gfs_bpp { daddr_t old; /* old block number */ daddr_t new; /* new block number */ #define GFS_FL_FIRST 1 #define GFS_FL_LAST 2 unsigned int flags; /* special handling required */ int found; /* how many references were updated */ }; /* ******************************************************** PROTOTYPES ***** */ static void growfs(int, int, unsigned int); static void rdfs(daddr_t, size_t, void *, int); static void wtfs(daddr_t, size_t, void *, int, unsigned int); static daddr_t alloc(void); static int charsperline(void); static void usage(void); static int isblock(struct fs *, unsigned char *, int); static void clrblock(struct fs *, unsigned char *, int); static void setblock(struct fs *, unsigned char *, int); static void initcg(int, time_t, int, unsigned int); static void updjcg(int, time_t, int, int, unsigned int); static void updcsloc(time_t, int, int, unsigned int); static struct disklabel *get_disklabel(int); static void return_disklabel(int, struct disklabel *, unsigned int); static struct dinode *ginode(ino_t, int, int); static void frag_adjust(daddr_t, int); static void cond_bl_upd(ufs_daddr_t *, struct gfs_bpp *, enum pointer_source, int, unsigned int); static void updclst(int); static void updrefs(int, ino_t, struct gfs_bpp *, int, int, unsigned int); /* ************************************************************ growfs ***** */ /* * Here we actually start growing the filesystem. We basically read the * cylinder summary from the first cylinder group as we want to update * this on the fly during our various operations. First we handle the * changes in the former last cylinder group. Afterwards we create all new * cylinder groups. Now we handle the cylinder group containing the * cylinder summary which might result in a relocation of the whole * structure. In the end we write back the updated cylinder summary, the * new superblock, and slightly patched versions of the super block * copies. */ static void growfs(int fsi, int fso, unsigned int Nflag) { DBG_FUNC("growfs") int i; int cylno, j; time_t utime; int width; char tmpbuf[100]; #ifdef FSIRAND static int randinit=0; DBG_ENTER; if (!randinit) { randinit = 1; srandomdev(); } #else /* not FSIRAND */ DBG_ENTER; #endif /* FSIRAND */ time(&utime); /* * Get the cylinder summary into the memory. */ fscs = (struct csum *)calloc((size_t)1, (size_t)sblock.fs_cssize); if(fscs == NULL) { errx(1, "calloc failed"); } for (i = 0; i < osblock.fs_cssize; i += osblock.fs_bsize) { rdfs(fsbtodb(&osblock, osblock.fs_csaddr + numfrags(&osblock, i)), (size_t)MIN(osblock.fs_cssize - i, osblock.fs_bsize), (void *)(((char *)fscs)+i), fsi); } #ifdef FS_DEBUG { struct csum *dbg_csp; int dbg_csc; char dbg_line[80]; dbg_csp=fscs; for(dbg_csc=0; dbg_csc= width) { printf("\n"); i = 0; } i += j; printf("%s", tmpbuf); fflush(stdout); } printf("\n"); /* * Do all needed changes in the first cylinder group. * allocate blocks in new location */ updcsloc(utime, fsi, fso, Nflag); /* * Now write the cylinder summary back to disk. */ for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) { wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), (size_t)MIN(sblock.fs_cssize - i, sblock.fs_bsize), (void *)(((char *)fscs) + i), fso, Nflag); } DBG_PRINT0("fscs written\n"); #ifdef FS_DEBUG { struct csum *dbg_csp; int dbg_csc; char dbg_line[80]; dbg_csp=fscs; for(dbg_csc=0; dbg_csc sblock.fs_size) { dmax = sblock.fs_size; } dlower = cgsblock(&sblock, cylno) - cbase; dupper = cgdmin(&sblock, cylno) - cbase; if (cylno == 0) { /* XXX fscs may be relocated */ dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); } cs = fscs + cylno; memset(&acg, 0, (size_t)sblock.fs_cgsize); acg.cg_time = utime; acg.cg_magic = CG_MAGIC; acg.cg_cgx = cylno; if (cylno == sblock.fs_ncg - 1) { acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg; } else { acg.cg_ncyl = sblock.fs_cpg; } acg.cg_niblk = sblock.fs_ipg; acg.cg_ndblk = dmax - cbase; if (sblock.fs_contigsumsize > 0) { acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; } acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t); acg.cg_iusedoff = acg.cg_boff + sblock.fs_cpg * sblock.fs_nrpos * sizeof(u_int16_t); acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY); if (sblock.fs_contigsumsize <= 0) { acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_cpg* sblock.fs_spc/ NSPF(&sblock), NBBY); } else { acg.cg_clustersumoff = acg.cg_freeoff + howmany (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) - sizeof(u_int32_t); acg.cg_clustersumoff = roundup(acg.cg_clustersumoff, sizeof(u_int32_t)); acg.cg_clusteroff = acg.cg_clustersumoff + (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); acg.cg_nextfreeoff = acg.cg_clusteroff + howmany (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY); } if (acg.cg_nextfreeoff-(int)(&acg.cg_firstfield) > sblock.fs_cgsize) { /* * XXX This should never happen as we would have had that panic * already on filesystem creation */ errx(37, "panic: cylinder group too big"); } acg.cg_cs.cs_nifree += sblock.fs_ipg; if (cylno == 0) for (i = 0; (size_t)i < ROOTINO; i++) { setbit(cg_inosused(&acg), i); acg.cg_cs.cs_nifree--; } for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) { #ifdef FSIRAND for (j = 0; j < sblock.fs_bsize / sizeof(struct dinode); j++) { zino[j].di_gen = random(); } #endif wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), (size_t)sblock.fs_bsize, (void *)zino, fso, Nflag); } for (d = 0; d < dlower; d += sblock.fs_frag) { blkno = d / sblock.fs_frag; setblock(&sblock, cg_blksfree(&acg), blkno); if (sblock.fs_contigsumsize > 0) { setbit(cg_clustersfree(&acg), blkno); } acg.cg_cs.cs_nbfree++; cg_blktot(&acg)[cbtocylno(&sblock, d)]++; cg_blks(&sblock, &acg, cbtocylno(&sblock, d)) [cbtorpos(&sblock, d)]++; } sblock.fs_dsize += dlower; sblock.fs_dsize += acg.cg_ndblk - dupper; if ((i = dupper % sblock.fs_frag)) { acg.cg_frsum[sblock.fs_frag - i]++; for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { setbit(cg_blksfree(&acg), dupper); acg.cg_cs.cs_nffree++; } } for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) { blkno = d / sblock.fs_frag; setblock(&sblock, cg_blksfree(&acg), blkno); if (sblock.fs_contigsumsize > 0) { setbit(cg_clustersfree(&acg), blkno); } acg.cg_cs.cs_nbfree++; cg_blktot(&acg)[cbtocylno(&sblock, d)]++; cg_blks(&sblock, &acg, cbtocylno(&sblock, d)) [cbtorpos(&sblock, d)]++; d += sblock.fs_frag; } if (d < dmax - cbase) { acg.cg_frsum[dmax - cbase - d]++; for (; d < dmax - cbase; d++) { setbit(cg_blksfree(&acg), d); acg.cg_cs.cs_nffree++; } } if (sblock.fs_contigsumsize > 0) { int32_t *sump = cg_clustersum(&acg); u_char *mapp = cg_clustersfree(&acg); int map = *mapp++; int bit = 1; int run = 0; for (i = 0; i < acg.cg_nclusterblks; i++) { if ((map & bit) != 0) { run++; } else if (run != 0) { if (run > sblock.fs_contigsumsize) { run = sblock.fs_contigsumsize; } sump[run]++; run = 0; } if ((i & (NBBY - 1)) != (NBBY - 1)) { bit <<= 1; } else { map = *mapp++; bit = 1; } } if (run != 0) { if (run > sblock.fs_contigsumsize) { run = sblock.fs_contigsumsize; } sump[run]++; } } sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir; sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree; sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree; sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree; *cs = acg.cg_cs; wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), (size_t)sblock.fs_bsize, (void *)&acg, fso, Nflag); DBG_DUMP_CG(&sblock, "new cg", &acg); DBG_LEAVE; return; } /* ******************************************************* frag_adjust ***** */ /* * Here we add or subtract (sign +1/-1) the available fragments in a given * block to or from the fragment statistics. By subtracting before and adding * after an operation on the free frag map we can easy update the fragment * statistic, which seems to be otherwise an rather complex operation. */ static void frag_adjust(daddr_t frag, int sign) { DBG_FUNC("frag_adjust") int fragsize; int f; DBG_ENTER; fragsize=0; /* * Here frag only needs to point to any fragment in the block we want * to examine. */ for(f=rounddown(frag, sblock.fs_frag); fold) { /* for all old blocks */ if(*block/sblock.fs_frag == f->old) { /* * The fragment is part of the block, so update. */ *block=(f->new*sblock.fs_frag+(*block%sblock.fs_frag)); f->found++; DBG_PRINT3("scg (%d->%d)[%d] reference updated\n", f->old, f->new, *block%sblock.fs_frag); /* Write the block back to disk immediately */ switch (source) { case GFS_PS_INODE: src=ablk; dst=in_src; break; case GFS_PS_IND_BLK_LVL1: src=i1blk; dst=i1_src; break; case GFS_PS_IND_BLK_LVL2: src=i2blk; dst=i2_src; break; case GFS_PS_IND_BLK_LVL3: src=i3blk; dst=i3_src; break; default: /* error */ src=NULL; break; } if(src) { /* * XXX If src is not of type inode we have to * implement copy on write here in case * of active snapshots. */ wtfs(dst, (size_t)sblock.fs_bsize, (void *)src, fso, Nflag); } /* * The same block can't be found again in this loop. */ break; } f++; } DBG_LEAVE; return; } /* ************************************************************ updjcg ***** */ /* * Here we do all needed work for the former last cylinder group. It has to be * changed in any case, even if the filesystem ended exactly on the end of * this group, as there is some slightly inconsistent handling of the number * of cylinders in the cylinder group. We start again by reading the cylinder * group from disk. If the last block was not fully available, we first handle * the missing fragments, then we handle all new full blocks in that file * system and finally we handle the new last fragmented block in the file * system. We again have to handle the fragment statistics rotational layout * tables and cluster summary during all those operations. */ static void updjcg(int cylno, time_t utime, int fsi, int fso, unsigned int Nflag) { DBG_FUNC("updjcg") daddr_t cbase, dmax, dupper; struct csum *cs; int i,k; int j=0; DBG_ENTER; /* * Read the former last (joining) cylinder group from disk, and make * a copy. */ rdfs(fsbtodb(&osblock, cgtod(&osblock, cylno)), (size_t)osblock.fs_cgsize, (void *)&aocg, fsi); DBG_PRINT0("jcg read\n"); DBG_DUMP_CG(&sblock, "old joining cg", &aocg); memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2)); /* * If the cylinder group had already it's new final size almost * nothing is to be done ... except: * For some reason the value of cg_ncyl in the last cylinder group has * to be zero instead of fs_cpg. As this is now no longer the last * cylinder group we have to change that value now to fs_cpg. */ if(cgbase(&osblock, cylno+1) == osblock.fs_size) { acg.cg_ncyl=sblock.fs_cpg; wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag); DBG_PRINT0("jcg written\n"); DBG_DUMP_CG(&sblock, "new joining cg", &acg); DBG_LEAVE; return; } /* * Set up some variables needed later. */ cbase = cgbase(&sblock, cylno); dmax = cbase + sblock.fs_fpg; if (dmax > sblock.fs_size) dmax = sblock.fs_size; dupper = cgdmin(&sblock, cylno) - cbase; if (cylno == 0) { /* XXX fscs may be relocated */ dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); } /* * Set pointer to the cylinder summary for our cylinder group. */ cs = fscs + cylno; /* * Touch the cylinder group, update all fields in the cylinder group as * needed, update the free space in the superblock. */ acg.cg_time = utime; if (cylno == sblock.fs_ncg - 1) { /* * This is still the last cylinder group. */ acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg; } else { acg.cg_ncyl = sblock.fs_cpg; } DBG_PRINT4("jcg dbg: %d %u %d %u\n", cylno, sblock.fs_ncg, acg.cg_ncyl, sblock.fs_cpg); acg.cg_ndblk = dmax - cbase; sblock.fs_dsize += acg.cg_ndblk-aocg.cg_ndblk; if (sblock.fs_contigsumsize > 0) { acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; } /* * Now we have to update the free fragment bitmap for our new free * space. There again we have to handle the fragmentation and also * the rotational layout tables and the cluster summary. This is * also done per fragment for the first new block if the old file * system end was not on a block boundary, per fragment for the new * last block if the new file system end is not on a block boundary, * and per block for all space in between. * * Handle the first new block here if it was partially available * before. */ if(osblock.fs_size % sblock.fs_frag) { if(roundup(osblock.fs_size, sblock.fs_frag)<=sblock.fs_size) { /* * The new space is enough to fill at least this * block */ j=0; for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag)-1; i>=osblock.fs_size-cbase; i--) { setbit(cg_blksfree(&acg), i); acg.cg_cs.cs_nffree++; j++; } /* * Check if the fragment just created could join an * already existing fragment at the former end of the * file system. */ if(isblock(&sblock, cg_blksfree(&acg), ((osblock.fs_size - cgbase(&sblock, cylno))/ sblock.fs_frag))) { /* * The block is now completely available */ DBG_PRINT0("block was\n"); acg.cg_frsum[osblock.fs_size%sblock.fs_frag]--; acg.cg_cs.cs_nbfree++; acg.cg_cs.cs_nffree-=sblock.fs_frag; k=rounddown(osblock.fs_size-cbase, sblock.fs_frag); cg_blktot(&acg)[cbtocylno(&sblock, k)]++; cg_blks(&sblock, &acg, cbtocylno(&sblock, k)) [cbtorpos(&sblock, k)]++; updclst((osblock.fs_size-cbase)/sblock.fs_frag); } else { /* * Lets rejoin a possible partially growed * fragment. */ k=0; while(isset(cg_blksfree(&acg), i) && (i>=rounddown(osblock.fs_size-cbase, sblock.fs_frag))) { i--; k++; } if(k) { acg.cg_frsum[k]--; } acg.cg_frsum[k+j]++; } } else { /* * We only grow by some fragments within this last * block. */ for(i=sblock.fs_size-cbase-1; i>=osblock.fs_size-cbase; i--) { setbit(cg_blksfree(&acg), i); acg.cg_cs.cs_nffree++; j++; } /* * Lets rejoin a possible partially growed fragment. */ k=0; while(isset(cg_blksfree(&acg), i) && (i>=rounddown(osblock.fs_size-cbase, sblock.fs_frag))) { i--; k++; } if(k) { acg.cg_frsum[k]--; } acg.cg_frsum[k+j]++; } } /* * Handle all new complete blocks here. */ for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag); i+sblock.fs_frag<=dmax-cbase; /* XXX <= or only < ? */ i+=sblock.fs_frag) { j = i / sblock.fs_frag; setblock(&sblock, cg_blksfree(&acg), j); updclst(j); acg.cg_cs.cs_nbfree++; cg_blktot(&acg)[cbtocylno(&sblock, i)]++; cg_blks(&sblock, &acg, cbtocylno(&sblock, i)) [cbtorpos(&sblock, i)]++; } /* * Handle the last new block if there are stll some new fragments left. * Here we don't have to bother about the cluster summary or the even * the rotational layout table. */ if (i < (dmax - cbase)) { acg.cg_frsum[dmax - cbase - i]++; for (; i < dmax - cbase; i++) { setbit(cg_blksfree(&acg), i); acg.cg_cs.cs_nffree++; } } sblock.fs_cstotal.cs_nffree += (acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree); sblock.fs_cstotal.cs_nbfree += (acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree); /* * The following statistics are not changed here: * sblock.fs_cstotal.cs_ndir * sblock.fs_cstotal.cs_nifree * As the statistics for this cylinder group are ready, copy it to * the summary information array. */ *cs = acg.cg_cs; /* * Write the updated "joining" cylinder group back to disk. */ wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag); DBG_PRINT0("jcg written\n"); DBG_DUMP_CG(&sblock, "new joining cg", &acg); DBG_LEAVE; return; } /* ********************************************************** updcsloc ***** */ /* * Here we update the location of the cylinder summary. We have two possible * ways of growing the cylinder summary. * (1) We can try to grow the summary in the current location, and relocate * possibly used blocks within the current cylinder group. * (2) Alternatively we can relocate the whole cylinder summary to the first * new completely empty cylinder group. Once the cylinder summary is no * longer in the beginning of the first cylinder group you should never * use a version of fsck which is not aware of the possibility to have * this structure in a non standard place. * Option (1) is considered to be less intrusive to the structure of the file- * system. So we try to stick to that whenever possible. If there is not enough * space in the cylinder group containing the cylinder summary we have to use * method (2). In case of active snapshots in the filesystem we probably can * completely avoid implementing copy on write if we stick to method (2) only. */ static void updcsloc(time_t utime, int fsi, int fso, unsigned int Nflag) { DBG_FUNC("updcsloc") struct csum *cs; int ocscg, ncscg; int blocks; daddr_t cbase, dupper, odupper, d, f, g; int ind; int cylno, inc; struct gfs_bpp *bp; int i, l; int lcs=0; int block; DBG_ENTER; if(howmany(sblock.fs_cssize, sblock.fs_fsize) == howmany(osblock.fs_cssize, osblock.fs_fsize)) { /* * No new fragment needed. */ DBG_LEAVE; return; } ocscg=dtog(&osblock, osblock.fs_csaddr); cs=fscs+ocscg; blocks = 1+howmany(sblock.fs_cssize, sblock.fs_bsize)- howmany(osblock.fs_cssize, osblock.fs_bsize); /* * Read original cylinder group from disk, and make a copy. * XXX If Nflag is set in some very rare cases we now miss * some changes done in updjcg by reading the unmodified * block from disk. */ rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)), (size_t)osblock.fs_cgsize, (void *)&aocg, fsi); DBG_PRINT0("oscg read\n"); DBG_DUMP_CG(&sblock, "old summary cg", &aocg); memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2)); /* * Touch the cylinder group, set up local variables needed later * and update the superblock. */ acg.cg_time = utime; /* * XXX In the case of having active snapshots we may need much more * blocks for the copy on write. We need each block twice, and * also up to 8*3 blocks for indirect blocks for all possible * references. */ if(/*((int)sblock.fs_time&0x3)>0||*/ cs->cs_nbfree < blocks) { /* * There is not enough space in the old cylinder group to * relocate all blocks as needed, so we relocate the whole * cylinder group summary to a new group. We try to use the * first complete new cylinder group just created. Within the * cylinder group we allign the area immediately after the * cylinder group information location in order to be as * close as possible to the original implementation of ffs. * * First we have to make sure we'll find enough space in the * new cylinder group. If not, then we currently give up. * We start with freeing everything which was used by the * fragments of the old cylinder summary in the current group. * Now we write back the group meta data, read in the needed * meta data from the new cylinder group, and start allocating * within that group. Here we can assume, the group to be * completely empty. Which makes the handling of fragments and * clusters a lot easier. */ DBG_TRC; if(sblock.fs_ncg-osblock.fs_ncg < 2) { errx(2, "panic: not enough space"); } /* * Point "d" to the first fragment not used by the cylinder * summary. */ d=osblock.fs_csaddr+(osblock.fs_cssize/osblock.fs_fsize); /* * Set up last cluster size ("lcs") already here. Calculate * the size for the trailing cluster just behind where "d" * points to. */ if(sblock.fs_contigsumsize > 0) { for(block=howmany(d%sblock.fs_fpg, sblock.fs_frag), lcs=0; lcs 0) { setbit(cg_clustersfree(&acg), (d%sblock.fs_fpg)/sblock.fs_frag); if(lcs < sblock.fs_contigsumsize) { if(lcs) { cg_clustersum(&acg) [lcs]--; } lcs++; cg_clustersum(&acg)[lcs]++; } } } /* * Point "d" to the first fragment of the block before * the last incomplete block. */ d--; } DBG_PRINT1("d=%d\n", d); for(d=rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr; d-=sblock.fs_frag) { DBG_TRC; DBG_PRINT1("d=%d\n", d); setblock(&sblock, cg_blksfree(&acg), (d%sblock.fs_fpg)/sblock.fs_frag); acg.cg_cs.cs_nbfree++; sblock.fs_cstotal.cs_nbfree++; cg_blktot(&acg)[cbtocylno(&sblock, d%sblock.fs_fpg)]++; cg_blks(&sblock, &acg, cbtocylno(&sblock, d%sblock.fs_fpg))[cbtorpos(&sblock, d%sblock.fs_fpg)]++; if(sblock.fs_contigsumsize > 0) { setbit(cg_clustersfree(&acg), (d%sblock.fs_fpg)/sblock.fs_frag); /* * The last cluster size is already set up. */ if(lcs < sblock.fs_contigsumsize) { if(lcs) { cg_clustersum(&acg)[lcs]--; } lcs++; cg_clustersum(&acg)[lcs]++; } } } *cs = acg.cg_cs; /* * Now write the former cylinder group containing the cylinder * summary back to disk. */ wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)), (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag); DBG_PRINT0("oscg written\n"); DBG_DUMP_CG(&sblock, "old summary cg", &acg); /* * Find the beginning of the new cylinder group containing the * cylinder summary. */ sblock.fs_csaddr=cgdmin(&sblock, osblock.fs_ncg); ncscg=dtog(&sblock, sblock.fs_csaddr); cs=fscs+ncscg; /* * If Nflag is specified, we would now read random data instead * of an empty cg structure from disk. So we can't simulate that * part for now. */ if(Nflag) { DBG_PRINT0("nscg update skipped\n"); DBG_LEAVE; return; } /* * Read the future cylinder group containing the cylinder * summary from disk, and make a copy. */ rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)), (size_t)sblock.fs_cgsize, (void *)&aocg, fsi); DBG_PRINT0("nscg read\n"); DBG_DUMP_CG(&sblock, "new summary cg", &aocg); memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2)); /* * Allocate all complete blocks used by the new cylinder * summary. */ for(d=sblock.fs_csaddr; d+sblock.fs_frag <= sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize); d+=sblock.fs_frag) { clrblock(&sblock, cg_blksfree(&acg), (d%sblock.fs_fpg)/sblock.fs_frag); acg.cg_cs.cs_nbfree--; sblock.fs_cstotal.cs_nbfree--; cg_blktot(&acg)[cbtocylno(&sblock, d%sblock.fs_fpg)]--; cg_blks(&sblock, &acg, cbtocylno(&sblock, d%sblock.fs_fpg))[cbtorpos(&sblock, d%sblock.fs_fpg)]--; if(sblock.fs_contigsumsize > 0) { clrbit(cg_clustersfree(&acg), (d%sblock.fs_fpg)/sblock.fs_frag); } } /* * Allocate all fragments used by the cylinder summary in the * last block. */ if(d 0) { clrbit(cg_clustersfree(&acg), (d%sblock.fs_fpg)/sblock.fs_frag); } frag_adjust(d%sblock.fs_fpg, +1); } /* * XXX Handle the cluster statistics here in the case this * cylinder group is now almost full, and the remaining * space is less then the maximum cluster size. This is * probably not needed, as you would hardly find a file * system which has only MAXCSBUFS+FS_MAXCONTIG of free * space right behind the cylinder group information in * any new cylinder group. */ /* * Update our statistics in the cylinder summary. */ *cs = acg.cg_cs; /* * Write the new cylinder group containing the cylinder summary * back to disk. */ wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)), (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag); DBG_PRINT0("nscg written\n"); DBG_DUMP_CG(&sblock, "new summary cg", &acg); DBG_LEAVE; return; } /* * We have got enough of space in the current cylinder group, so we * can relocate just a few blocks, and let the summary information * grow in place where it is right now. */ DBG_TRC; cbase = cgbase(&osblock, ocscg); /* old and new are equal */ dupper = sblock.fs_csaddr - cbase + howmany(sblock.fs_cssize, sblock.fs_fsize); odupper = osblock.fs_csaddr - cbase + howmany(osblock.fs_cssize, osblock.fs_fsize); sblock.fs_dsize -= dupper-odupper; /* * Allocate the space for the array of blocks to be relocated. */ bp=(struct gfs_bpp *)malloc(((dupper-odupper)/sblock.fs_frag+2)* sizeof(struct gfs_bpp)); if(bp == NULL) { errx(1, "malloc failed"); } memset((char *)bp, 0, ((dupper-odupper)/sblock.fs_frag+2)* sizeof(struct gfs_bpp)); /* * Lock all new frags needed for the cylinder group summary. This is * done per fragment in the first and last block of the new required * area, and per block for all other blocks. * * Handle the first new block here (but only if some fragments where * already used for the cylinder summary). */ ind=0; frag_adjust(odupper, -1); for(d=odupper; ((d= dupper) { bp[ind].flags|=GFS_FL_LAST; } ind++; } } else { clrbit(cg_blksfree(&acg), d); acg.cg_cs.cs_nffree--; sblock.fs_cstotal.cs_nffree--; } /* * No cluster handling is needed here, as there was at least * one fragment in use by the cylinder summary in the old * file system. * No block-free counter handling here as this block was not * a free block. */ } frag_adjust(odupper, 1); /* * Handle all needed complete blocks here. */ for(; d+sblock.fs_frag<=dupper; d+=sblock.fs_frag) { DBG_PRINT1("scg block check loop d=%d\n", d); if(!isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) { for(f=d; f 0) { clrbit(cg_clustersfree(&acg), d/sblock.fs_frag); for(lcs=0, l=(d/sblock.fs_frag)+1; lcs 0) { clrbit(cg_clustersfree(&acg), d/sblock.fs_frag); for(lcs=0, l=(d/sblock.fs_frag)+1; lcs%d) block relocated\n", bp[i].old, bp[i].new); } /* * Now we have to update all references to any fragment which * belongs to any block relocated. We iterate now over all * cylinder groups, within those over all non zero length * inodes. */ for(cylno=0; cylno=0 ; inc--) { updrefs(cylno, (ino_t)inc, bp, fsi, fso, Nflag); } } /* * All inodes are checked, now make sure the number of * references found make sense. */ for(i=0; isblock.fs_frag)) { warnx("error: %d refs found for block %d.", bp[i].found, bp[i].old); } } } /* * The following statistics are not changed here: * sblock.fs_cstotal.cs_ndir * sblock.fs_cstotal.cs_nifree * The following statistics were already updated on the fly: * sblock.fs_cstotal.cs_nffree * sblock.fs_cstotal.cs_nbfree * As the statistics for this cylinder group are ready, copy it to * the summary information array. */ *cs = acg.cg_cs; /* * Write summary cylinder group back to disk. */ wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)), (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag); DBG_PRINT0("scg written\n"); DBG_DUMP_CG(&sblock, "new summary cg", &acg); DBG_LEAVE; return; } /* ************************************************************** rdfs ***** */ /* * Here we read some block(s) from disk. */ static void rdfs(daddr_t bno, size_t size, void *bf, int fsi) { DBG_FUNC("rdfs") ssize_t n; DBG_ENTER; if (lseek(fsi, (off_t)bno * DEV_BSIZE, 0) < 0) { err(33, "rdfs: seek error: %ld", (long)bno); } n = read(fsi, bf, size); if (n != (ssize_t)size) { err(34, "rdfs: read error: %ld", (long)bno); } DBG_LEAVE; return; } /* ************************************************************** wtfs ***** */ /* * Here we write some block(s) to disk. */ static void wtfs(daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag) { DBG_FUNC("wtfs") ssize_t n; DBG_ENTER; if (Nflag) { DBG_LEAVE; return; } if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) < 0) { err(35, "wtfs: seek error: %ld", (long)bno); } n = write(fso, bf, size); if (n != (ssize_t)size) { err(36, "wtfs: write error: %ld", (long)bno); } DBG_LEAVE; return; } /* ************************************************************* alloc ***** */ /* * Here we allocate a free block in the current cylinder group. It is assumed, * that acg contains the current cylinder group. As we may take a block from * somewhere in the filesystem we have to handle cluster summary here. */ static daddr_t alloc(void) { DBG_FUNC("alloc") daddr_t d, blkno; int lcs1, lcs2; int l; int csmin, csmax; int dlower, dupper, dmax; DBG_ENTER; if (acg.cg_magic != CG_MAGIC) { warnx("acg: bad magic number"); DBG_LEAVE; return (0); } if (acg.cg_cs.cs_nbfree == 0) { warnx("error: cylinder group ran out of space"); DBG_LEAVE; return (0); } /* * We start seeking for free blocks only from the space available after * the end of the new grown cylinder summary. Otherwise we allocate a * block here which we have to relocate a couple of seconds later again * again, and we are not prepared to to this anyway. */ blkno=-1; dlower=cgsblock(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx); dupper=cgdmin(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx); dmax=cgbase(&sblock, acg.cg_cgx)+sblock.fs_fpg; if (dmax > sblock.fs_size) { dmax = sblock.fs_size; } dmax-=cgbase(&sblock, acg.cg_cgx); /* retransform into cg */ csmin=sblock.fs_csaddr-cgbase(&sblock, acg.cg_cgx); csmax=csmin+howmany(sblock.fs_cssize, sblock.fs_fsize); DBG_PRINT3("seek range: dl=%d, du=%d, dm=%d\n", dlower, dupper, dmax); DBG_PRINT2("range cont: csmin=%d, csmax=%d\n", csmin, csmax); for(d=0; (d=csmin && d<=csmax) { continue; } if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock, d))) { blkno = fragstoblks(&sblock, d);/* Yeah found a block */ break; } } for(d=dupper; (d=csmin && d<=csmax) { continue; } if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock, d))) { blkno = fragstoblks(&sblock, d);/* Yeah found a block */ break; } } if(blkno==-1) { warnx("internal error: couldn't find promised block in cg"); DBG_LEAVE; return (0); } /* * This is needed if the block was found already in the first loop. */ d=blkstofrags(&sblock, blkno); clrblock(&sblock, cg_blksfree(&acg), blkno); if (sblock.fs_contigsumsize > 0) { /* * Handle the cluster allocation bitmap. */ clrbit(cg_clustersfree(&acg), blkno); /* * We possibly have split a cluster here, so we have to do * recalculate the sizes of the remaining cluster halves now, * and use them for updating the cluster summary information. * * Lets start with the blocks before our allocated block ... */ for(lcs1=0, l=blkno-1; lcs1fs_frag) { case 8: DBG_LEAVE; return (cp[h] == 0xff); case 4: mask = 0x0f << ((h & 0x1) << 2); DBG_LEAVE; return ((cp[h >> 1] & mask) == mask); case 2: mask = 0x03 << ((h & 0x3) << 1); DBG_LEAVE; return ((cp[h >> 2] & mask) == mask); case 1: mask = 0x01 << (h & 0x7); DBG_LEAVE; return ((cp[h >> 3] & mask) == mask); default: fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); DBG_LEAVE; return (0); } } /* ********************************************************** clrblock ***** */ /* * Here we allocate a complete block in the block map. For more details again * please see the source of newfs(8), as this function is taken over almost * unchanged. */ static void clrblock(struct fs *fs, unsigned char *cp, int h) { DBG_FUNC("clrblock") DBG_ENTER; switch ((fs)->fs_frag) { case 8: cp[h] = 0; break; case 4: cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); break; case 2: cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); break; case 1: cp[h >> 3] &= ~(0x01 << (h & 0x7)); break; default: warnx("clrblock bad fs_frag %d", fs->fs_frag); break; } DBG_LEAVE; return; } /* ********************************************************** setblock ***** */ /* * Here we free a complete block in the free block map. For more details again * please see the source of newfs(8), as this function is taken over almost * unchanged. */ static void setblock(struct fs *fs, unsigned char *cp, int h) { DBG_FUNC("setblock") DBG_ENTER; switch (fs->fs_frag) { case 8: cp[h] = 0xff; break; case 4: cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); break; case 2: cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); break; case 1: cp[h >> 3] |= (0x01 << (h & 0x7)); break; default: warnx("setblock bad fs_frag %d", fs->fs_frag); break; } DBG_LEAVE; return; } /* ************************************************************ ginode ***** */ /* * This function provides access to an individual inode. We find out in which * block the requested inode is located, read it from disk if needed, and * return the pointer into that block. We maintain a cache of one block to * not read the same block again and again if we iterate linearly over all * inodes. */ static struct dinode * ginode(ino_t inumber, int fsi, int cg) { DBG_FUNC("ginode") ufs_daddr_t iblk; static ino_t startinum=0; /* first inode in cached block */ struct dinode *pi; DBG_ENTER; pi=(struct dinode *)(void *)ablk; inumber+=(cg * sblock.fs_ipg); if (startinum == 0 || inumber < startinum || inumber >= startinum + INOPB(&sblock)) { /* * The block needed is not cached, so we have to read it from * disk now. */ iblk = ino_to_fsba(&sblock, inumber); in_src=fsbtodb(&sblock, iblk); rdfs(in_src, (size_t)sblock.fs_bsize, (void *)&ablk, fsi); startinum = (inumber / INOPB(&sblock)) * INOPB(&sblock); } DBG_LEAVE; return (&(pi[inumber % INOPB(&sblock)])); } /* ****************************************************** charsperline ***** */ /* * Figure out how many lines our current terminal has. For more details again * please see the source of newfs(8), as this function is taken over almost * unchanged. */ static int charsperline(void) { DBG_FUNC("charsperline") int columns; char *cp; struct winsize ws; DBG_ENTER; columns = 0; if (ioctl(0, TIOCGWINSZ, &ws) != -1) { columns = ws.ws_col; } if (columns == 0 && (cp = getenv("COLUMNS"))) { columns = atoi(cp); } if (columns == 0) { columns = 80; /* last resort */ } DBG_LEAVE; return columns; } /* ************************************************************** main ***** */ /* * growfs(8) is a utility which allows to increase the size of an existing * ufs filesystem. Currently this can only be done on unmounted file system. * It recognizes some command line options to specify the new desired size, * and it does some basic checkings. The old file system size is determined * and after some more checks like we can really access the new last block * on the disk etc. we calculate the new parameters for the superblock. After * having done this we just call growfs() which will do the work. Before * we finish the only thing left is to update the disklabel. * We still have to provide support for snapshots. Therefore we first have to * understand what data structures are always replicated in the snapshot on * creation, for all other blocks we touch during our procedure, we have to * keep the old blocks unchanged somewhere available for the snapshots. If we * are lucky, then we only have to handle our blocks to be relocated in that * way. * Also we have to consider in what order we actually update the critical * data structures of the filesystem to make sure, that in case of a disaster * fsck(8) is still able to restore any lost data. * The foreseen last step then will be to provide for growing even mounted * file systems. There we have to extend the mount() system call to provide * userland access to the file system locking facility. */ int main(int argc, char **argv) { DBG_FUNC("main") char *device, *special, *cp; char ch; unsigned int size=0; size_t len; unsigned int Nflag=0; int ExpertFlag=0; struct stat st; struct disklabel *lp; struct partition *pp; int fsi,fso; char reply[5]; #ifdef FSMAXSNAP int j; #endif /* FSMAXSNAP */ DBG_ENTER; while((ch=getopt(argc, argv, "Ns:vy")) != -1) { switch(ch) { case 'N': Nflag=1; break; case 's': size=(size_t)atol(optarg); if(size<1) { usage(); } break; case 'v': /* for compatibility to newfs */ break; case 'y': ExpertFlag=1; break; case '?': /* FALLTHROUGH */ default: usage(); } } argc -= optind; argv += optind; if(argc != 1) { usage(); } device=*argv; /* * Now try to guess the (raw)device name. */ if (0 == strrchr(device, '/')) { /* * No path prefix was given, so try in that order: * /dev/r%s * /dev/%s * /dev/vinum/r%s * /dev/vinum/%s. * * FreeBSD now doesn't distinguish between raw and block * devices any longer, but it should still work this way. */ len=strlen(device)+strlen(_PATH_DEV)+2+strlen("vinum/"); special=(char *)malloc(len); if(special == NULL) { errx(1, "malloc failed"); } snprintf(special, len, "%sr%s", _PATH_DEV, device); if (stat(special, &st) == -1) { snprintf(special, len, "%s%s", _PATH_DEV, device); if (stat(special, &st) == -1) { snprintf(special, len, "%svinum/r%s", _PATH_DEV, device); if (stat(special, &st) == -1) { /* For now this is the 'last resort' */ snprintf(special, len, "%svinum/%s", _PATH_DEV, device); } } } device = special; } /* * Try to access our devices for writing ... */ if (Nflag) { fso = -1; } else { fso = open(device, O_WRONLY); if (fso < 0) { err(1, "%s", device); } } /* * ... and reading. */ fsi = open(device, O_RDONLY); if (fsi < 0) { err(1, "%s", device); } /* * Try to read a label and gess the slice if not specified. This * code should guess the right thing and avaid to bother the user * user with the task of specifying the option -v on vinum volumes. */ cp=device+strlen(device)-1; lp = get_disklabel(fsi); if(lp->d_type == DTYPE_VINUM) { pp = &lp->d_partitions[0]; } else if (isdigit(*cp)) { pp = &lp->d_partitions[2]; } else if (*cp>='a' && *cp<='h') { pp = &lp->d_partitions[*cp - 'a']; } else { errx(1, "unknown device"); } /* * Check if that partition looks suited for growing a file system. */ if (pp->p_size < 1) { errx(1, "partition is unavailable"); } if (pp->p_fstype != FS_BSDFFS) { errx(1, "partition not 4.2BSD"); } /* * Read the current superblock, and take a backup. */ rdfs((daddr_t)(SBOFF/DEV_BSIZE), (size_t)SBSIZE, (void *)&(osblock), fsi); if (osblock.fs_magic != FS_MAGIC) { errx(1, "superblock not recognized"); } memcpy((void *)&fsun1, (void *)&fsun2, sizeof(fsun2)); DBG_OPEN("/tmp/growfs.debug"); /* already here we need a superblock */ DBG_DUMP_FS(&sblock, "old sblock"); /* * Determine size to grow to. Default to the full size specified in * the disk label. */ sblock.fs_size = dbtofsb(&osblock, pp->p_size); if (size != 0) { if (size > pp->p_size){ errx(1, "There is not enough space (%d < %d)", pp->p_size, size); } sblock.fs_size = dbtofsb(&osblock, size); } /* * Are we really growing ? */ if(osblock.fs_size >= sblock.fs_size) { errx(1, "we are not growing (%d->%d)", osblock.fs_size, sblock.fs_size); } #ifdef FSMAXSNAP /* * Check if we find an active snapshot. */ if(ExpertFlag == 0) { for(j=0; jp_size-1, (size_t)DEV_BSIZE, (void *)&sblock, fso, Nflag); /* * Now calculate new superblock values and check for reasonable * bound for new file system size: * fs_size: is derived from label or user input * fs_dsize: should get updated in the routines creating or * updating the cylinder groups on the fly * fs_cstotal: should get updated in the routines creating or * updating the cylinder groups */ /* * Update the number of cylinders in the filesystem. */ sblock.fs_ncyl = sblock.fs_size * NSPF(&sblock) / sblock.fs_spc; if (sblock.fs_size * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) { sblock.fs_ncyl++; } /* * Update the number of cylinder groups in the filesystem. */ sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg; if (sblock.fs_ncyl % sblock.fs_cpg) { sblock.fs_ncg++; } if ((sblock.fs_size - (sblock.fs_ncg-1) * sblock.fs_fpg) < sblock.fs_fpg && cgdmin(&sblock, (sblock.fs_ncg-1))- cgbase(&sblock, (sblock.fs_ncg-1)) > (sblock.fs_size - (sblock.fs_ncg-1) * sblock.fs_fpg )) { /* * The space in the new last cylinder group is too small, * so revert back. */ sblock.fs_ncg--; #if 1 /* this is a bit more safe */ sblock.fs_ncyl = sblock.fs_ncg * sblock.fs_cpg; #else sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg; #endif sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg; printf( "Warning: %d sector(s) cannot be allocated.\n", (sblock.fs_size-(sblock.fs_ncg)*sblock.fs_fpg) * NSPF(&sblock)); sblock.fs_size = sblock.fs_ncyl * sblock.fs_spc / NSPF(&sblock); } /* * Update the space for the cylinder group summary information in the * respective cylinder group data area. */ sblock.fs_cssize = fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); if(osblock.fs_size >= sblock.fs_size) { errx(1, "not enough new space"); } DBG_PRINT0("sblock calculated\n"); /* * Ok, everything prepared, so now let's do the tricks. */ growfs(fsi, fso, Nflag); /* * Update the disk label. */ pp->p_fsize = sblock.fs_fsize; pp->p_frag = sblock.fs_frag; pp->p_cpg = sblock.fs_cpg; return_disklabel(fso, lp, Nflag); DBG_PRINT0("label rewritten\n"); close(fsi); if(fso>-1) close(fso); DBG_CLOSE; DBG_LEAVE; return 0; } /* ************************************************** return_disklabel ***** */ /* * Write the updated disklabel back to disk. */ static void return_disklabel(int fd, struct disklabel *lp, unsigned int Nflag) { DBG_FUNC("return_disklabel") u_short sum; u_short *ptr; DBG_ENTER; if(!lp) { DBG_LEAVE; return; } if(!Nflag) { lp->d_checksum=0; sum = 0; ptr=(u_short *)lp; /* * recalculate checksum */ while(ptr < (u_short *)&lp->d_partitions[lp->d_npartitions]) { sum ^= *ptr++; } lp->d_checksum=sum; if (ioctl(fd, DIOCWDINFO, (char *)lp) < 0) { errx(1, "DIOCWDINFO failed"); } } free(lp); DBG_LEAVE; return ; } /* ***************************************************** get_disklabel ***** */ /* * Read the disklabel from disk. */ static struct disklabel * get_disklabel(int fd) { DBG_FUNC("get_disklabel") static struct disklabel *lab; DBG_ENTER; lab=(struct disklabel *)malloc(sizeof(struct disklabel)); if (!lab) { errx(1, "malloc failed"); } if (ioctl(fd, DIOCGDINFO, (char *)lab) < 0) { errx(1, "DIOCGDINFO failed"); } DBG_LEAVE; return (lab); } /* ************************************************************* usage ***** */ /* * Dump a line of usage. */ static void usage(void) { DBG_FUNC("usage") DBG_ENTER; fprintf(stderr, "usage: growfs [-Ny] [-s size] special\n"); DBG_LEAVE; exit(1); } /* *********************************************************** updclst ***** */ /* * This updates most paramters and the bitmap related to cluster. We have to * assume, that sblock, osblock, acg are set up. */ static void updclst(int block) { DBG_FUNC("updclst") static int lcs=0; DBG_ENTER; if(sblock.fs_contigsumsize < 1) { /* no clustering */ return; } /* * update cluster allocation map */ setbit(cg_clustersfree(&acg), block); /* * update cluster summary table */ if(!lcs) { /* * calculate size for the trailing cluster */ for(block--; lcsdi_mode & IFMT)==IFDIR || (ino->di_mode & IFMT)==IFREG || (ino->di_mode & IFMT)==IFLNK)) { DBG_LEAVE; return; /* only check DIR, FILE, LINK */ } if(((ino->di_mode & IFMT)==IFLNK) && (ino->di_sizedi_size) { DBG_LEAVE; return; /* skip empty file */ } if(!ino->di_blocks) { DBG_LEAVE; return; /* skip empty swiss cheesy file or old fastlink */ } DBG_PRINT2("scg checking inode (%d in %d)\n", in, cg); /* * Start checking all direct blocks. */ remaining_blocks=howmany(ino->di_size, sblock.fs_bsize); for(ictr=0; ictr < MIN(NDADDR, (unsigned int)remaining_blocks); ictr++) { iptr=&(ino->di_db[ictr]); if(*iptr) { cond_bl_upd(iptr, bp, GFS_PS_INODE, fso, Nflag); } } DBG_PRINT0("~~scg direct blocks checked\n"); remaining_blocks-=NDADDR; if(remaining_blocks<0) { DBG_LEAVE; return; } if(ino->di_ib[0]) { /* * Start checking first indirect block */ cond_bl_upd(&(ino->di_ib[0]), bp, GFS_PS_INODE, fso, Nflag); i1_src=fsbtodb(&sblock, ino->di_ib[0]); rdfs(i1_src, (size_t)sblock.fs_bsize, (void *)&i1blk, fsi); for(ictr=0; ictr < MIN(howmany(sblock.fs_bsize, sizeof(ufs_daddr_t)), (unsigned int)remaining_blocks); ictr++) { iptr=&((ufs_daddr_t *)(void *)&i1blk)[ictr]; if(*iptr) { cond_bl_upd(iptr, bp, GFS_PS_IND_BLK_LVL1, fso, Nflag); } } } DBG_PRINT0("scg indirect_1 blocks checked\n"); remaining_blocks-= howmany(sblock.fs_bsize, sizeof(ufs_daddr_t)); if(remaining_blocks<0) { DBG_LEAVE; return; } if(ino->di_ib[1]) { /* * Start checking second indirect block */ cond_bl_upd(&(ino->di_ib[1]), bp, GFS_PS_INODE, fso, Nflag); i2_src=fsbtodb(&sblock, ino->di_ib[1]); rdfs(i2_src, (size_t)sblock.fs_bsize, (void *)&i2blk, fsi); for(ind2ctr=0; ind2ctr < howmany(sblock.fs_bsize, sizeof(ufs_daddr_t)); ind2ctr++) { ind2ptr=&((ufs_daddr_t *)(void *)&i2blk)[ind2ctr]; if(!*ind2ptr) { continue; } cond_bl_upd(ind2ptr, bp, GFS_PS_IND_BLK_LVL2, fso, Nflag); i1_src=fsbtodb(&sblock, *ind2ptr); rdfs(i1_src, (size_t)sblock.fs_bsize, (void *)&i1blk, fsi); for(ictr=0; ictrdi_ib[2]) { /* * Start checking third indirect block */ cond_bl_upd(&(ino->di_ib[2]), bp, GFS_PS_INODE, fso, Nflag); i3_src=fsbtodb(&sblock, ino->di_ib[2]); rdfs(i3_src, (size_t)sblock.fs_bsize, (void *)&i3blk, fsi); for(ind3ctr=0; ind3ctr < howmany(sblock.fs_bsize, sizeof(ufs_daddr_t)); ind3ctr ++) { ind3ptr=&((ufs_daddr_t *)(void *)&i3blk)[ind3ctr]; if(!*ind3ptr) { continue; } cond_bl_upd(ind3ptr, bp, GFS_PS_IND_BLK_LVL3, fso, Nflag); i2_src=fsbtodb(&sblock, *ind3ptr); rdfs(i2_src, (size_t)sblock.fs_bsize, (void *)&i2blk, fsi); for(ind2ctr=0; ind2ctr < howmany(sblock.fs_bsize, sizeof(ufs_daddr_t)); ind2ctr ++) { ind2ptr=&((ufs_daddr_t *)(void *)&i2blk) [ind2ctr]; if(!*ind2ptr) { continue; } cond_bl_upd(ind2ptr, bp, GFS_PS_IND_BLK_LVL2, fso, Nflag); i1_src=fsbtodb(&sblock, *ind2ptr); rdfs(i1_src, (size_t)sblock.fs_bsize, (void *)&i1blk, fsi); for(ictr=0; ictr < MIN(howmany(sblock.fs_bsize, sizeof(ufs_daddr_t)), (unsigned int)remaining_blocks); ictr++) { iptr=&((ufs_daddr_t *)(void *)&i1blk) [ictr]; if(*iptr) { cond_bl_upd(iptr, bp, GFS_PS_IND_BLK_LVL1, fso, Nflag); } } } } } DBG_PRINT0("scg indirect_3 blocks checked\n"); DBG_LEAVE; return; }