/*- * Copyright (c) 1982, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 * $Id: kern_clock.c,v 1.46 1997/12/08 22:56:10 fsmp Exp $ */ /* Portions of this software are covered by the following: */ /****************************************************************************** * * * Copyright (c) David L. Mills 1993, 1994 * * * * Permission to use, copy, modify, and distribute this software and its * * documentation for any purpose and without fee is hereby granted, provided * * that the above copyright notice appears in all copies and that both the * * copyright notice and this permission notice appear in supporting * * documentation, and that the name University of Delaware not be used in * * advertising or publicity pertaining to distribution of the software * * without specific, written prior permission. The University of Delaware * * makes no representations about the suitability this software for any * * purpose. It is provided "as is" without express or implied warranty. * * * *****************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CLOCK_HAIR /* XXX */ #include #include #ifdef GPROF #include #endif #if defined(SMP) && defined(BETTER_CLOCK) #include #endif static void initclocks __P((void *dummy)); SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL) /* Exported to machdep.c. */ struct callout *callout; struct callout_list callfree; int callwheelsize, callwheelbits, callwheelmask; struct callout_tailq *callwheel; /* Some of these don't belong here, but it's easiest to concentrate them. */ #if defined(SMP) && defined(BETTER_CLOCK) long cp_time[CPUSTATES]; #else static long cp_time[CPUSTATES]; #endif long dk_seek[DK_NDRIVE]; static long dk_time[DK_NDRIVE]; /* time busy (in statclock ticks) */ long dk_wds[DK_NDRIVE]; long dk_wpms[DK_NDRIVE]; long dk_xfer[DK_NDRIVE]; int dk_busy; int dk_ndrive = 0; char dk_names[DK_NDRIVE][DK_NAMELEN]; long tk_cancc; long tk_nin; long tk_nout; long tk_rawcc; /* * Clock handling routines. * * This code is written to operate with two timers that run independently of * each other. The main clock, running hz times per second, is used to keep * track of real time. The second timer handles kernel and user profiling, * and does resource use estimation. If the second timer is programmable, * it is randomized to avoid aliasing between the two clocks. For example, * the randomization prevents an adversary from always giving up the cpu * just before its quantum expires. Otherwise, it would never accumulate * cpu ticks. The mean frequency of the second timer is stathz. * * If no second timer exists, stathz will be zero; in this case we drive * profiling and statistics off the main clock. This WILL NOT be accurate; * do not do it unless absolutely necessary. * * The statistics clock may (or may not) be run at a higher rate while * profiling. This profile clock runs at profhz. We require that profhz * be an integral multiple of stathz. * * If the statistics clock is running fast, it must be divided by the ratio * profhz/stathz for statistics. (For profiling, every tick counts.) */ /* * TODO: * allocate more timeout table slots when table overflows. */ /* * Bump a timeval by a small number of usec's. */ #define BUMPTIME(t, usec) { \ register volatile struct timeval *tp = (t); \ register long us; \ \ tp->tv_usec = us = tp->tv_usec + (usec); \ if (us >= 1000000) { \ tp->tv_usec = us - 1000000; \ tp->tv_sec++; \ } \ } int stathz; int profhz; static int profprocs; int ticks; static int softticks; /* Like ticks, but for softclock(). */ static struct callout *nextsoftcheck; /* Next callout to be checked. */ static int psdiv, pscnt; /* prof => stat divider */ int psratio; /* ratio: prof / stat */ volatile struct timeval time; volatile struct timeval mono_time; /* * Phase/frequency-lock loop (PLL/FLL) definitions * * The following variables are read and set by the ntp_adjtime() system * call. * * time_state shows the state of the system clock, with values defined * in the timex.h header file. * * time_status shows the status of the system clock, with bits defined * in the timex.h header file. * * time_offset is used by the PLL/FLL to adjust the system time in small * increments. * * time_constant determines the bandwidth or "stiffness" of the PLL. * * time_tolerance determines maximum frequency error or tolerance of the * CPU clock oscillator and is a property of the architecture; however, * in principle it could change as result of the presence of external * discipline signals, for instance. * * time_precision is usually equal to the kernel tick variable; however, * in cases where a precision clock counter or external clock is * available, the resolution can be much less than this and depend on * whether the external clock is working or not. * * time_maxerror is initialized by a ntp_adjtime() call and increased by * the kernel once each second to reflect the maximum error * bound growth. * * time_esterror is set and read by the ntp_adjtime() call, but * otherwise not used by the kernel. */ int time_status = STA_UNSYNC; /* clock status bits */ int time_state = TIME_OK; /* clock state */ long time_offset = 0; /* time offset (us) */ long time_constant = 0; /* pll time constant */ long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ long time_precision = 1; /* clock precision (us) */ long time_maxerror = MAXPHASE; /* maximum error (us) */ long time_esterror = MAXPHASE; /* estimated error (us) */ /* * The following variables establish the state of the PLL/FLL and the * residual time and frequency offset of the local clock. The scale * factors are defined in the timex.h header file. * * time_phase and time_freq are the phase increment and the frequency * increment, respectively, of the kernel time variable at each tick of * the clock. * * time_freq is set via ntp_adjtime() from a value stored in a file when * the synchronization daemon is first started. Its value is retrieved * via ntp_adjtime() and written to the file about once per hour by the * daemon. * * time_adj is the adjustment added to the value of tick at each timer * interrupt and is recomputed from time_phase and time_freq at each * seconds rollover. * * time_reftime is the second's portion of the system time on the last * call to ntp_adjtime(). It is used to adjust the time_freq variable * and to increase the time_maxerror as the time since last update * increases. */ static long time_phase = 0; /* phase offset (scaled us) */ long time_freq = 0; /* frequency offset (scaled ppm) */ static long time_adj = 0; /* tick adjust (scaled 1 / hz) */ static long time_reftime = 0; /* time at last adjustment (s) */ #ifdef PPS_SYNC /* * The following variables are used only if the kernel PPS discipline * code is configured (PPS_SYNC). The scale factors are defined in the * timex.h header file. * * pps_time contains the time at each calibration interval, as read by * microtime(). pps_count counts the seconds of the calibration * interval, the duration of which is nominally pps_shift in powers of * two. * * pps_offset is the time offset produced by the time median filter * pps_tf[], while pps_jitter is the dispersion (jitter) measured by * this filter. * * pps_freq is the frequency offset produced by the frequency median * filter pps_ff[], while pps_stabil is the dispersion (wander) measured * by this filter. * * pps_usec is latched from a high resolution counter or external clock * at pps_time. Here we want the hardware counter contents only, not the * contents plus the time_tv.usec as usual. * * pps_valid counts the number of seconds since the last PPS update. It * is used as a watchdog timer to disable the PPS discipline should the * PPS signal be lost. * * pps_glitch counts the number of seconds since the beginning of an * offset burst more than tick/2 from current nominal offset. It is used * mainly to suppress error bursts due to priority conflicts between the * PPS interrupt and timer interrupt. * * pps_intcnt counts the calibration intervals for use in the interval- * adaptation algorithm. It's just too complicated for words. */ struct timeval pps_time; /* kernel time at last interval */ long pps_offset = 0; /* pps time offset (us) */ long pps_jitter = MAXTIME; /* pps time dispersion (jitter) (us) */ long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ long pps_freq = 0; /* frequency offset (scaled ppm) */ long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ long pps_ff[] = {0, 0, 0}; /* frequency offset median filter */ long pps_usec = 0; /* microsec counter at last interval */ long pps_valid = PPS_VALID; /* pps signal watchdog counter */ int pps_glitch = 0; /* pps signal glitch counter */ int pps_count = 0; /* calibration interval counter (s) */ int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ int pps_intcnt = 0; /* intervals at current duration */ /* * PPS signal quality monitors * * pps_jitcnt counts the seconds that have been discarded because the * jitter measured by the time median filter exceeds the limit MAXTIME * (100 us). * * pps_calcnt counts the frequency calibration intervals, which are * variable from 4 s to 256 s. * * pps_errcnt counts the calibration intervals which have been discarded * because the wander exceeds the limit MAXFREQ (100 ppm) or where the * calibration interval jitter exceeds two ticks. * * pps_stbcnt counts the calibration intervals that have been discarded * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). */ long pps_jitcnt = 0; /* jitter limit exceeded */ long pps_calcnt = 0; /* calibration intervals */ long pps_errcnt = 0; /* calibration errors */ long pps_stbcnt = 0; /* stability limit exceeded */ #endif /* PPS_SYNC */ /* XXX none of this stuff works under FreeBSD */ #ifdef EXT_CLOCK /* * External clock definitions * * The following definitions and declarations are used only if an * external clock (HIGHBALL or TPRO) is configured on the system. */ #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */ /* * The clock_count variable is set to CLOCK_INTERVAL at each PPS * interrupt and decremented once each second. */ int clock_count = 0; /* CPU clock counter */ #ifdef HIGHBALL /* * The clock_offset and clock_cpu variables are used by the HIGHBALL * interface. The clock_offset variable defines the offset between * system time and the HIGBALL counters. The clock_cpu variable contains * the offset between the system clock and the HIGHBALL clock for use in * disciplining the kernel time variable. */ extern struct timeval clock_offset; /* Highball clock offset */ long clock_cpu = 0; /* CPU clock adjust */ #endif /* HIGHBALL */ #endif /* EXT_CLOCK */ /* * hardupdate() - local clock update * * This routine is called by ntp_adjtime() to update the local clock * phase and frequency. The implementation is of an adaptive-parameter, * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new * time and frequency offset estimates for each call. If the kernel PPS * discipline code is configured (PPS_SYNC), the PPS signal itself * determines the new time offset, instead of the calling argument. * Presumably, calls to ntp_adjtime() occur only when the caller * believes the local clock is valid within some bound (+-128 ms with * NTP). If the caller's time is far different than the PPS time, an * argument will ensue, and it's not clear who will lose. * * For uncompensated quartz crystal oscillatores and nominal update * intervals less than 1024 s, operation should be in phase-lock mode * (STA_FLL = 0), where the loop is disciplined to phase. For update * intervals greater than thiss, operation should be in frequency-lock * mode (STA_FLL = 1), where the loop is disciplined to frequency. * * Note: splclock() is in effect. */ void hardupdate(offset) long offset; { long ltemp, mtemp; if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) return; ltemp = offset; #ifdef PPS_SYNC if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL) ltemp = pps_offset; #endif /* PPS_SYNC */ /* * Scale the phase adjustment and clamp to the operating range. */ if (ltemp > MAXPHASE) time_offset = MAXPHASE << SHIFT_UPDATE; else if (ltemp < -MAXPHASE) time_offset = -(MAXPHASE << SHIFT_UPDATE); else time_offset = ltemp << SHIFT_UPDATE; /* * Select whether the frequency is to be controlled and in which * mode (PLL or FLL). Clamp to the operating range. Ugly * multiply/divide should be replaced someday. */ if (time_status & STA_FREQHOLD || time_reftime == 0) time_reftime = time.tv_sec; mtemp = time.tv_sec - time_reftime; time_reftime = time.tv_sec; if (time_status & STA_FLL) { if (mtemp >= MINSEC) { ltemp = ((time_offset / mtemp) << (SHIFT_USEC - SHIFT_UPDATE)); if (ltemp < 0) time_freq -= -ltemp >> SHIFT_KH; else time_freq += ltemp >> SHIFT_KH; } } else { if (mtemp < MAXSEC) { ltemp *= mtemp; if (ltemp < 0) time_freq -= -ltemp >> (time_constant + time_constant + SHIFT_KF - SHIFT_USEC); else time_freq += ltemp >> (time_constant + time_constant + SHIFT_KF - SHIFT_USEC); } } if (time_freq > time_tolerance) time_freq = time_tolerance; else if (time_freq < -time_tolerance) time_freq = -time_tolerance; } /* * Initialize clock frequencies and start both clocks running. */ /* ARGSUSED*/ static void initclocks(dummy) void *dummy; { register int i; /* * Set divisors to 1 (normal case) and let the machine-specific * code do its bit. */ psdiv = pscnt = 1; cpu_initclocks(); /* * Compute profhz/stathz, and fix profhz if needed. */ i = stathz ? stathz : hz; if (profhz == 0) profhz = i; psratio = profhz / i; } /* * The real-time timer, interrupting hz times per second. */ void hardclock(frame) register struct clockframe *frame; { register struct proc *p; p = curproc; if (p) { register struct pstats *pstats; /* * Run current process's virtual and profile time, as needed. */ pstats = p->p_stats; if (CLKF_USERMODE(frame) && timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) && itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) psignal(p, SIGVTALRM); if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) && itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) psignal(p, SIGPROF); } #if defined(SMP) && defined(BETTER_CLOCK) forward_hardclock(pscnt); #endif /* * If no separate statistics clock is available, run it from here. */ if (stathz == 0) statclock(frame); /* * Increment the time-of-day. */ ticks++; { int time_update; struct timeval newtime = time; long ltemp; if (timedelta == 0) { time_update = CPU_THISTICKLEN(tick); } else { time_update = CPU_THISTICKLEN(tick) + tickdelta; timedelta -= tickdelta; } BUMPTIME(&mono_time, time_update); /* * Compute the phase adjustment. If the low-order bits * (time_phase) of the update overflow, bump the high-order bits * (time_update). */ time_phase += time_adj; if (time_phase <= -FINEUSEC) { ltemp = -time_phase >> SHIFT_SCALE; time_phase += ltemp << SHIFT_SCALE; time_update -= ltemp; } else if (time_phase >= FINEUSEC) { ltemp = time_phase >> SHIFT_SCALE; time_phase -= ltemp << SHIFT_SCALE; time_update += ltemp; } newtime.tv_usec += time_update; /* * On rollover of the second the phase adjustment to be used for * the next second is calculated. Also, the maximum error is * increased by the tolerance. If the PPS frequency discipline * code is present, the phase is increased to compensate for the * CPU clock oscillator frequency error. * * On a 32-bit machine and given parameters in the timex.h * header file, the maximum phase adjustment is +-512 ms and * maximum frequency offset is a tad less than) +-512 ppm. On a * 64-bit machine, you shouldn't need to ask. */ if (newtime.tv_usec >= 1000000) { newtime.tv_usec -= 1000000; newtime.tv_sec++; time_maxerror += time_tolerance >> SHIFT_USEC; /* * Compute the phase adjustment for the next second. In * PLL mode, the offset is reduced by a fixed factor * times the time constant. In FLL mode the offset is * used directly. In either mode, the maximum phase * adjustment for each second is clamped so as to spread * the adjustment over not more than the number of * seconds between updates. */ if (time_offset < 0) { ltemp = -time_offset; if (!(time_status & STA_FLL)) ltemp >>= SHIFT_KG + time_constant; if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE; time_offset += ltemp; time_adj = -ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); } else { ltemp = time_offset; if (!(time_status & STA_FLL)) ltemp >>= SHIFT_KG + time_constant; if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE; time_offset -= ltemp; time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); } /* * Compute the frequency estimate and additional phase * adjustment due to frequency error for the next * second. When the PPS signal is engaged, gnaw on the * watchdog counter and update the frequency computed by * the pll and the PPS signal. */ #ifdef PPS_SYNC pps_valid++; if (pps_valid == PPS_VALID) { pps_jitter = MAXTIME; pps_stabil = MAXFREQ; time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); } ltemp = time_freq + pps_freq; #else ltemp = time_freq; #endif /* PPS_SYNC */ if (ltemp < 0) time_adj -= -ltemp >> (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE); else time_adj += ltemp >> (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE); #if SHIFT_HZ == 7 /* * When the CPU clock oscillator frequency is not a * power of two in Hz, the SHIFT_HZ is only an * approximate scale factor. In the SunOS kernel, this * results in a PLL gain factor of 1/1.28 = 0.78 what it * should be. In the following code the overall gain is * increased by a factor of 1.25, which results in a * residual error less than 3 percent. */ /* Same thing applies for FreeBSD --GAW */ if (hz == 100) { if (time_adj < 0) time_adj -= -time_adj >> 2; else time_adj += time_adj >> 2; } #endif /* SHIFT_HZ */ /* XXX - this is really bogus, but can't be fixed until xntpd's idea of the system clock is fixed to know how the user wants leap seconds handled; in the mean time, we assume that users of NTP are running without proper leap second support (this is now the default anyway) */ /* * Leap second processing. If in leap-insert state at * the end of the day, the system clock is set back one * second; if in leap-delete state, the system clock is * set ahead one second. The microtime() routine or * external clock driver will insure that reported time * is always monotonic. The ugly divides should be * replaced. */ switch (time_state) { case TIME_OK: if (time_status & STA_INS) time_state = TIME_INS; else if (time_status & STA_DEL) time_state = TIME_DEL; break; case TIME_INS: if (newtime.tv_sec % 86400 == 0) { newtime.tv_sec--; time_state = TIME_OOP; } break; case TIME_DEL: if ((newtime.tv_sec + 1) % 86400 == 0) { newtime.tv_sec++; time_state = TIME_WAIT; } break; case TIME_OOP: time_state = TIME_WAIT; break; case TIME_WAIT: if (!(time_status & (STA_INS | STA_DEL))) time_state = TIME_OK; } } CPU_CLOCKUPDATE(&time, &newtime); } /* * Process callouts at a very low cpu priority, so we don't keep the * relatively high clock interrupt priority any longer than necessary. */ if (TAILQ_FIRST(&callwheel[ticks & callwheelmask]) != NULL) { if (CLKF_BASEPRI(frame)) { /* * Save the overhead of a software interrupt; * it will happen as soon as we return, so do it now. */ (void)splsoftclock(); softclock(); } else setsoftclock(); } else if (softticks + 1 == ticks) { ++softticks; } } /* * The callout mechanism is based on the work of Adam M. Costello and * George Varghese, published in a technical report entitled "Redesigning * the BSD Callout and Timer Facilities" and modified slightly for inclusion * in FreeBSD by Justin T. Gibbs. The original work on the data structures * used in this implementation was published by G.Varghese and A. Lauck in * the paper "Hashed and Hierarchical Timing Wheels: Data Structures for * the Efficient Implementation of a Timer Facility" in the Proceedings of * the 11th ACM Annual Symposium on Operating Systems Principles, * Austin, Texas Nov 1987. */ /* * Software (low priority) clock interrupt. * Run periodic events from timeout queue. */ /*ARGSUSED*/ void softclock() { register struct callout *c; register struct callout_tailq *bucket; register int s; register int curticks; register int steps; /* * Number of steps taken since * we last allowed interrupts. */ #ifndef MAX_SOFTCLOCK_STEPS #define MAX_SOFTCLOCK_STEPS 100 /* Maximum allowed value of steps. */ #endif /* MAX_SOFTCLOCK_STEPS */ steps = 0; s = splhigh(); while (softticks != ticks) { softticks++; /* * softticks may be modified by hard clock, so cache * it while we work on a given bucket. */ curticks = softticks; bucket = &callwheel[curticks & callwheelmask]; c = TAILQ_FIRST(bucket); while (c) { if (c->c_time != curticks) { c = TAILQ_NEXT(c, c_links.tqe); ++steps; if (steps >= MAX_SOFTCLOCK_STEPS) { nextsoftcheck = c; /* Give interrupts a chance. */ splx(s); s = splhigh(); c = nextsoftcheck; steps = 0; } } else { void (*c_func)(void *); void *c_arg; nextsoftcheck = TAILQ_NEXT(c, c_links.tqe); TAILQ_REMOVE(bucket, c, c_links.tqe); c_func = c->c_func; c_arg = c->c_arg; c->c_func = NULL; SLIST_INSERT_HEAD(&callfree, c, c_links.sle); splx(s); c_func(c_arg); s = splhigh(); steps = 0; c = nextsoftcheck; } } } nextsoftcheck = NULL; splx(s); } /* * timeout -- * Execute a function after a specified length of time. * * untimeout -- * Cancel previous timeout function call. * * callout_handle_init -- * Initialize a handle so that using it with untimeout is benign. * * See AT&T BCI Driver Reference Manual for specification. This * implementation differs from that one in that although an * identification value is returned from timeout, the original * arguments to timeout as well as the identifier are used to * identify entries for untimeout. */ struct callout_handle timeout(ftn, arg, to_ticks) timeout_t ftn; void *arg; register int to_ticks; { int s; struct callout *new; struct callout_handle handle; if (to_ticks <= 0) to_ticks = 1; /* Lock out the clock. */ s = splhigh(); /* Fill in the next free callout structure. */ new = SLIST_FIRST(&callfree); if (new == NULL) /* XXX Attempt to malloc first */ panic("timeout table full"); SLIST_REMOVE_HEAD(&callfree, c_links.sle); new->c_arg = arg; new->c_func = ftn; new->c_time = ticks + to_ticks; TAILQ_INSERT_TAIL(&callwheel[new->c_time & callwheelmask], new, c_links.tqe); splx(s); handle.callout = new; return (handle); } void untimeout(ftn, arg, handle) timeout_t ftn; void *arg; struct callout_handle handle; { register int s; /* * Check for a handle that was initialized * by callout_handle_init, but never used * for a real timeout. */ if (handle.callout == NULL) return; s = splhigh(); if ((handle.callout->c_func == ftn) && (handle.callout->c_arg == arg)) { if (nextsoftcheck == handle.callout) { nextsoftcheck = TAILQ_NEXT(handle.callout, c_links.tqe); } TAILQ_REMOVE(&callwheel[handle.callout->c_time & callwheelmask], handle.callout, c_links.tqe); handle.callout->c_func = NULL; SLIST_INSERT_HEAD(&callfree, handle.callout, c_links.sle); } splx(s); } void callout_handle_init(struct callout_handle *handle) { handle->callout = NULL; } void gettime(struct timeval *tvp) { int s; s = splclock(); /* XXX should use microtime() iff tv_usec is used. */ *tvp = time; splx(s); } /* * Compute number of hz until specified time. Used to * compute third argument to timeout() from an absolute time. */ int hzto(tv) struct timeval *tv; { register unsigned long ticks; register long sec, usec; int s; /* * If the number of usecs in the whole seconds part of the time * difference fits in a long, then the total number of usecs will * fit in an unsigned long. Compute the total and convert it to * ticks, rounding up and adding 1 to allow for the current tick * to expire. Rounding also depends on unsigned long arithmetic * to avoid overflow. * * Otherwise, if the number of ticks in the whole seconds part of * the time difference fits in a long, then convert the parts to * ticks separately and add, using similar rounding methods and * overflow avoidance. This method would work in the previous * case but it is slightly slower and assumes that hz is integral. * * Otherwise, round the time difference down to the maximum * representable value. * * If ints have 32 bits, then the maximum value for any timeout in * 10ms ticks is 248 days. */ s = splclock(); sec = tv->tv_sec - time.tv_sec; usec = tv->tv_usec - time.tv_usec; splx(s); if (usec < 0) { sec--; usec += 1000000; } if (sec < 0) { #ifdef DIAGNOSTIC printf("hzto: negative time difference %ld sec %ld usec\n", sec, usec); #endif ticks = 1; } else if (sec <= LONG_MAX / 1000000) ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1)) / tick + 1; else if (sec <= LONG_MAX / hz) ticks = sec * hz + ((unsigned long)usec + (tick - 1)) / tick + 1; else ticks = LONG_MAX; if (ticks > INT_MAX) ticks = INT_MAX; return (ticks); } /* * Start profiling on a process. * * Kernel profiling passes proc0 which never exits and hence * keeps the profile clock running constantly. */ void startprofclock(p) register struct proc *p; { int s; if ((p->p_flag & P_PROFIL) == 0) { p->p_flag |= P_PROFIL; if (++profprocs == 1 && stathz != 0) { s = splstatclock(); psdiv = pscnt = psratio; setstatclockrate(profhz); splx(s); } } } /* * Stop profiling on a process. */ void stopprofclock(p) register struct proc *p; { int s; if (p->p_flag & P_PROFIL) { p->p_flag &= ~P_PROFIL; if (--profprocs == 0 && stathz != 0) { s = splstatclock(); psdiv = pscnt = 1; setstatclockrate(stathz); splx(s); } } } /* * Statistics clock. Grab profile sample, and if divider reaches 0, * do process and kernel statistics. */ void statclock(frame) register struct clockframe *frame; { #ifdef GPROF register struct gmonparam *g; #endif register struct proc *p; register int i; struct pstats *pstats; long rss; struct rusage *ru; struct vmspace *vm; if (CLKF_USERMODE(frame)) { p = curproc; if (p->p_flag & P_PROFIL) addupc_intr(p, CLKF_PC(frame), 1); #if defined(SMP) && defined(BETTER_CLOCK) if (stathz != 0) forward_statclock(pscnt); #endif if (--pscnt > 0) return; /* * Came from user mode; CPU was in user state. * If this process is being profiled record the tick. */ p->p_uticks++; if (p->p_nice > NZERO) cp_time[CP_NICE]++; else cp_time[CP_USER]++; } else { #ifdef GPROF /* * Kernel statistics are just like addupc_intr, only easier. */ g = &_gmonparam; if (g->state == GMON_PROF_ON) { i = CLKF_PC(frame) - g->lowpc; if (i < g->textsize) { i /= HISTFRACTION * sizeof(*g->kcount); g->kcount[i]++; } } #endif #if defined(SMP) && defined(BETTER_CLOCK) if (stathz != 0) forward_statclock(pscnt); #endif if (--pscnt > 0) return; /* * Came from kernel mode, so we were: * - handling an interrupt, * - doing syscall or trap work on behalf of the current * user process, or * - spinning in the idle loop. * Whichever it is, charge the time as appropriate. * Note that we charge interrupts to the current process, * regardless of whether they are ``for'' that process, * so that we know how much of its real time was spent * in ``non-process'' (i.e., interrupt) work. */ p = curproc; if (CLKF_INTR(frame)) { if (p != NULL) p->p_iticks++; cp_time[CP_INTR]++; } else if (p != NULL) { p->p_sticks++; cp_time[CP_SYS]++; } else cp_time[CP_IDLE]++; } pscnt = psdiv; /* * We maintain statistics shown by user-level statistics * programs: the amount of time in each cpu state, and * the amount of time each of DK_NDRIVE ``drives'' is busy. * * XXX should either run linked list of drives, or (better) * grab timestamps in the start & done code. */ for (i = 0; i < DK_NDRIVE; i++) if (dk_busy & (1 << i)) dk_time[i]++; /* * We adjust the priority of the current process. The priority of * a process gets worse as it accumulates CPU time. The cpu usage * estimator (p_estcpu) is increased here. The formula for computing * priorities (in kern_synch.c) will compute a different value each * time p_estcpu increases by 4. The cpu usage estimator ramps up * quite quickly when the process is running (linearly), and decays * away exponentially, at a rate which is proportionally slower when * the system is busy. The basic principal is that the system will * 90% forget that the process used a lot of CPU time in 5 * loadav * seconds. This causes the system to favor processes which haven't * run much recently, and to round-robin among other processes. */ if (p != NULL) { p->p_cpticks++; if (++p->p_estcpu == 0) p->p_estcpu--; if ((p->p_estcpu & 3) == 0) { resetpriority(p); if (p->p_priority >= PUSER) p->p_priority = p->p_usrpri; } /* Update resource usage integrals and maximums. */ if ((pstats = p->p_stats) != NULL && (ru = &pstats->p_ru) != NULL && (vm = p->p_vmspace) != NULL) { ru->ru_ixrss += vm->vm_tsize * PAGE_SIZE / 1024; ru->ru_idrss += vm->vm_dsize * PAGE_SIZE / 1024; ru->ru_isrss += vm->vm_ssize * PAGE_SIZE / 1024; rss = vm->vm_pmap.pm_stats.resident_count * PAGE_SIZE / 1024; if (ru->ru_maxrss < rss) ru->ru_maxrss = rss; } } } /* * Return information about system clocks. */ static int sysctl_kern_clockrate SYSCTL_HANDLER_ARGS { struct clockinfo clkinfo; /* * Construct clockinfo structure. */ clkinfo.hz = hz; clkinfo.tick = tick; clkinfo.tickadj = tickadj; clkinfo.profhz = profhz; clkinfo.stathz = stathz ? stathz : hz; return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); } SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0, sysctl_kern_clockrate, "S,clockinfo",""); #ifdef PPS_SYNC /* * hardpps() - discipline CPU clock oscillator to external PPS signal * * This routine is called at each PPS interrupt in order to discipline * the CPU clock oscillator to the PPS signal. It measures the PPS phase * and leaves it in a handy spot for the hardclock() routine. It * integrates successive PPS phase differences and calculates the * frequency offset. This is used in hardclock() to discipline the CPU * clock oscillator so that intrinsic frequency error is cancelled out. * The code requires the caller to capture the time and hardware counter * value at the on-time PPS signal transition. * * Note that, on some Unix systems, this routine runs at an interrupt * priority level higher than the timer interrupt routine hardclock(). * Therefore, the variables used are distinct from the hardclock() * variables, except for certain exceptions: The PPS frequency pps_freq * and phase pps_offset variables are determined by this routine and * updated atomically. The time_tolerance variable can be considered a * constant, since it is infrequently changed, and then only when the * PPS signal is disabled. The watchdog counter pps_valid is updated * once per second by hardclock() and is atomically cleared in this * routine. */ void hardpps(tvp, usec) struct timeval *tvp; /* time at PPS */ long usec; /* hardware counter at PPS */ { long u_usec, v_usec, bigtick; long cal_sec, cal_usec; /* * An occasional glitch can be produced when the PPS interrupt * occurs in the hardclock() routine before the time variable is * updated. Here the offset is discarded when the difference * between it and the last one is greater than tick/2, but not * if the interval since the first discard exceeds 30 s. */ time_status |= STA_PPSSIGNAL; time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); pps_valid = 0; u_usec = -tvp->tv_usec; if (u_usec < -500000) u_usec += 1000000; v_usec = pps_offset - u_usec; if (v_usec < 0) v_usec = -v_usec; if (v_usec > (tick >> 1)) { if (pps_glitch > MAXGLITCH) { pps_glitch = 0; pps_tf[2] = u_usec; pps_tf[1] = u_usec; } else { pps_glitch++; u_usec = pps_offset; } } else pps_glitch = 0; /* * A three-stage median filter is used to help deglitch the pps * time. The median sample becomes the time offset estimate; the * difference between the other two samples becomes the time * dispersion (jitter) estimate. */ pps_tf[2] = pps_tf[1]; pps_tf[1] = pps_tf[0]; pps_tf[0] = u_usec; if (pps_tf[0] > pps_tf[1]) { if (pps_tf[1] > pps_tf[2]) { pps_offset = pps_tf[1]; /* 0 1 2 */ v_usec = pps_tf[0] - pps_tf[2]; } else if (pps_tf[2] > pps_tf[0]) { pps_offset = pps_tf[0]; /* 2 0 1 */ v_usec = pps_tf[2] - pps_tf[1]; } else { pps_offset = pps_tf[2]; /* 0 2 1 */ v_usec = pps_tf[0] - pps_tf[1]; } } else { if (pps_tf[1] < pps_tf[2]) { pps_offset = pps_tf[1]; /* 2 1 0 */ v_usec = pps_tf[2] - pps_tf[0]; } else if (pps_tf[2] < pps_tf[0]) { pps_offset = pps_tf[0]; /* 1 0 2 */ v_usec = pps_tf[1] - pps_tf[2]; } else { pps_offset = pps_tf[2]; /* 1 2 0 */ v_usec = pps_tf[1] - pps_tf[0]; } } if (v_usec > MAXTIME) pps_jitcnt++; v_usec = (v_usec << PPS_AVG) - pps_jitter; if (v_usec < 0) pps_jitter -= -v_usec >> PPS_AVG; else pps_jitter += v_usec >> PPS_AVG; if (pps_jitter > (MAXTIME >> 1)) time_status |= STA_PPSJITTER; /* * During the calibration interval adjust the starting time when * the tick overflows. At the end of the interval compute the * duration of the interval and the difference of the hardware * counters at the beginning and end of the interval. This code * is deliciously complicated by the fact valid differences may * exceed the value of tick when using long calibration * intervals and small ticks. Note that the counter can be * greater than tick if caught at just the wrong instant, but * the values returned and used here are correct. */ bigtick = (long)tick << SHIFT_USEC; pps_usec -= pps_freq; if (pps_usec >= bigtick) pps_usec -= bigtick; if (pps_usec < 0) pps_usec += bigtick; pps_time.tv_sec++; pps_count++; if (pps_count < (1 << pps_shift)) return; pps_count = 0; pps_calcnt++; u_usec = usec << SHIFT_USEC; v_usec = pps_usec - u_usec; if (v_usec >= bigtick >> 1) v_usec -= bigtick; if (v_usec < -(bigtick >> 1)) v_usec += bigtick; if (v_usec < 0) v_usec = -(-v_usec >> pps_shift); else v_usec = v_usec >> pps_shift; pps_usec = u_usec; cal_sec = tvp->tv_sec; cal_usec = tvp->tv_usec; cal_sec -= pps_time.tv_sec; cal_usec -= pps_time.tv_usec; if (cal_usec < 0) { cal_usec += 1000000; cal_sec--; } pps_time = *tvp; /* * Check for lost interrupts, noise, excessive jitter and * excessive frequency error. The number of timer ticks during * the interval may vary +-1 tick. Add to this a margin of one * tick for the PPS signal jitter and maximum frequency * deviation. If the limits are exceeded, the calibration * interval is reset to the minimum and we start over. */ u_usec = (long)tick << 1; if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec)) || (cal_sec == 0 && cal_usec < u_usec)) || v_usec > time_tolerance || v_usec < -time_tolerance) { pps_errcnt++; pps_shift = PPS_SHIFT; pps_intcnt = 0; time_status |= STA_PPSERROR; return; } /* * A three-stage median filter is used to help deglitch the pps * frequency. The median sample becomes the frequency offset * estimate; the difference between the other two samples * becomes the frequency dispersion (stability) estimate. */ pps_ff[2] = pps_ff[1]; pps_ff[1] = pps_ff[0]; pps_ff[0] = v_usec; if (pps_ff[0] > pps_ff[1]) { if (pps_ff[1] > pps_ff[2]) { u_usec = pps_ff[1]; /* 0 1 2 */ v_usec = pps_ff[0] - pps_ff[2]; } else if (pps_ff[2] > pps_ff[0]) { u_usec = pps_ff[0]; /* 2 0 1 */ v_usec = pps_ff[2] - pps_ff[1]; } else { u_usec = pps_ff[2]; /* 0 2 1 */ v_usec = pps_ff[0] - pps_ff[1]; } } else { if (pps_ff[1] < pps_ff[2]) { u_usec = pps_ff[1]; /* 2 1 0 */ v_usec = pps_ff[2] - pps_ff[0]; } else if (pps_ff[2] < pps_ff[0]) { u_usec = pps_ff[0]; /* 1 0 2 */ v_usec = pps_ff[1] - pps_ff[2]; } else { u_usec = pps_ff[2]; /* 1 2 0 */ v_usec = pps_ff[1] - pps_ff[0]; } } /* * Here the frequency dispersion (stability) is updated. If it * is less than one-fourth the maximum (MAXFREQ), the frequency * offset is updated as well, but clamped to the tolerance. It * will be processed later by the hardclock() routine. */ v_usec = (v_usec >> 1) - pps_stabil; if (v_usec < 0) pps_stabil -= -v_usec >> PPS_AVG; else pps_stabil += v_usec >> PPS_AVG; if (pps_stabil > MAXFREQ >> 2) { pps_stbcnt++; time_status |= STA_PPSWANDER; return; } if (time_status & STA_PPSFREQ) { if (u_usec < 0) { pps_freq -= -u_usec >> PPS_AVG; if (pps_freq < -time_tolerance) pps_freq = -time_tolerance; u_usec = -u_usec; } else { pps_freq += u_usec >> PPS_AVG; if (pps_freq > time_tolerance) pps_freq = time_tolerance; } } /* * Here the calibration interval is adjusted. If the maximum * time difference is greater than tick / 4, reduce the interval * by half. If this is not the case for four consecutive * intervals, double the interval. */ if (u_usec << pps_shift > bigtick >> 2) { pps_intcnt = 0; if (pps_shift > PPS_SHIFT) pps_shift--; } else if (pps_intcnt >= 4) { pps_intcnt = 0; if (pps_shift < PPS_SHIFTMAX) pps_shift++; } else pps_intcnt++; } #endif /* PPS_SYNC */ #ifdef APM_FIXUP_CALLTODO /* * Adjust the kernel calltodo timeout list. This routine is used after * an APM resume to recalculate the calltodo timer list values with the * number of hz's we have been sleeping. The next hardclock() will detect * that there are fired timers and run softclock() to execute them. * * Please note, I have not done an exhaustive analysis of what code this * might break. I am motivated to have my select()'s and alarm()'s that * have expired during suspend firing upon resume so that the applications * which set the timer can do the maintanence the timer was for as close * as possible to the originally intended time. Testing this code for a * week showed that resuming from a suspend resulted in 22 to 25 timers * firing, which seemed independant on whether the suspend was 2 hours or * 2 days. Your milage may vary. - Ken Key */ void adjust_timeout_calltodo(time_change) struct timeval *time_change; { register struct callout *p; unsigned long delta_ticks; int s; /* * How many ticks were we asleep? * (stolen from hzto()). */ /* Don't do anything */ if (time_change->tv_sec < 0) return; else if (time_change->tv_sec <= LONG_MAX / 1000000) delta_ticks = (time_change->tv_sec * 1000000 + time_change->tv_usec + (tick - 1)) / tick + 1; else if (time_change->tv_sec <= LONG_MAX / hz) delta_ticks = time_change->tv_sec * hz + (time_change->tv_usec + (tick - 1)) / tick + 1; else delta_ticks = LONG_MAX; if (delta_ticks > INT_MAX) delta_ticks = INT_MAX; /* * Now rip through the timer calltodo list looking for timers * to expire. */ /* don't collide with softclock() */ s = splhigh(); for (p = calltodo.c_next; p != NULL; p = p->c_next) { p->c_time -= delta_ticks; /* Break if the timer had more time on it than delta_ticks */ if (p->c_time > 0) break; /* take back the ticks the timer didn't use (p->c_time <= 0) */ delta_ticks = -p->c_time; } splx(s); return; } #endif /* APM_FIXUP_CALLTODO */