/*- * Copyright (c) 1982, 1986, 1988, 1993 * The Regents of the University of California. * Copyright (c) 2006-2007 Robert N. M. Watson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * From: @(#)tcp_usrreq.c 8.2 (Berkeley) 1/3/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include "opt_inet.h" #include "opt_inet6.h" #include "opt_tcpdebug.h" #include #include #include #include #include #include #ifdef INET6 #include #endif /* INET6 */ #include #include #include #include #include #ifdef DDB #include #endif #include #include #include #include #ifdef INET6 #include #endif #include #ifdef INET6 #include #endif #include #include #ifdef INET6 #include #include #endif #include #include #include #include #include #include #ifdef TCPDEBUG #include #endif #include /* * TCP protocol interface to socket abstraction. */ static int tcp_attach(struct socket *); static int tcp_connect(struct tcpcb *, struct sockaddr *, struct thread *td); #ifdef INET6 static int tcp6_connect(struct tcpcb *, struct sockaddr *, struct thread *td); #endif /* INET6 */ static void tcp_disconnect(struct tcpcb *); static void tcp_usrclosed(struct tcpcb *); static void tcp_fill_info(struct tcpcb *, struct tcp_info *); #ifdef TCPDEBUG #define TCPDEBUG0 int ostate = 0 #define TCPDEBUG1() ostate = tp ? tp->t_state : 0 #define TCPDEBUG2(req) if (tp && (so->so_options & SO_DEBUG)) \ tcp_trace(TA_USER, ostate, tp, 0, 0, req) #else #define TCPDEBUG0 #define TCPDEBUG1() #define TCPDEBUG2(req) #endif /* * TCP attaches to socket via pru_attach(), reserving space, * and an internet control block. */ static int tcp_usr_attach(struct socket *so, int proto, struct thread *td) { struct inpcb *inp; struct tcpcb *tp = NULL; int error; TCPDEBUG0; inp = sotoinpcb(so); KASSERT(inp == NULL, ("tcp_usr_attach: inp != NULL")); TCPDEBUG1(); error = tcp_attach(so); if (error) goto out; if ((so->so_options & SO_LINGER) && so->so_linger == 0) so->so_linger = TCP_LINGERTIME; inp = sotoinpcb(so); tp = intotcpcb(inp); out: TCPDEBUG2(PRU_ATTACH); return error; } /* * tcp_detach is called when the socket layer loses its final reference * to the socket, be it a file descriptor reference, a reference from TCP, * etc. At this point, there is only one case in which we will keep around * inpcb state: time wait. * * This function can probably be re-absorbed back into tcp_usr_detach() now * that there is a single detach path. */ static void tcp_detach(struct socket *so, struct inpcb *inp) { struct tcpcb *tp; #ifdef INET6 int isipv6 = INP_CHECK_SOCKAF(so, AF_INET6) != 0; #endif INP_INFO_WLOCK_ASSERT(&tcbinfo); INP_LOCK_ASSERT(inp); KASSERT(so->so_pcb == inp, ("tcp_detach: so_pcb != inp")); KASSERT(inp->inp_socket == so, ("tcp_detach: inp_socket != so")); tp = intotcpcb(inp); if (inp->inp_vflag & INP_TIMEWAIT) { /* * There are two cases to handle: one in which the time wait * state is being discarded (INP_DROPPED), and one in which * this connection will remain in timewait. In the former, * it is time to discard all state (except tcptw, which has * already been discarded by the timewait close code, which * should be further up the call stack somewhere). In the * latter case, we detach from the socket, but leave the pcb * present until timewait ends. * * XXXRW: Would it be cleaner to free the tcptw here? */ if (inp->inp_vflag & INP_DROPPED) { KASSERT(tp == NULL, ("tcp_detach: INP_TIMEWAIT && " "INP_DROPPED && tp != NULL")); #ifdef INET6 if (isipv6) { in6_pcbdetach(inp); in6_pcbfree(inp); } else { #endif in_pcbdetach(inp); in_pcbfree(inp); #ifdef INET6 } #endif } else { #ifdef INET6 if (isipv6) in6_pcbdetach(inp); else #endif in_pcbdetach(inp); INP_UNLOCK(inp); } } else { /* * If the connection is not in timewait, we consider two * two conditions: one in which no further processing is * necessary (dropped || embryonic), and one in which TCP is * not yet done, but no longer requires the socket, so the * pcb will persist for the time being. * * XXXRW: Does the second case still occur? */ if (inp->inp_vflag & INP_DROPPED || tp->t_state < TCPS_SYN_SENT) { tcp_discardcb(tp); #ifdef INET6 if (isipv6) { in6_pcbdetach(inp); in6_pcbfree(inp); } else { #endif in_pcbdetach(inp); in_pcbfree(inp); #ifdef INET6 } #endif } else { #ifdef INET6 if (isipv6) in6_pcbdetach(inp); else #endif in_pcbdetach(inp); } } } /* * pru_detach() detaches the TCP protocol from the socket. * If the protocol state is non-embryonic, then can't * do this directly: have to initiate a pru_disconnect(), * which may finish later; embryonic TCB's can just * be discarded here. */ static void tcp_usr_detach(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_usr_detach: inp == NULL")); INP_INFO_WLOCK(&tcbinfo); INP_LOCK(inp); KASSERT(inp->inp_socket != NULL, ("tcp_usr_detach: inp_socket == NULL")); tcp_detach(so, inp); INP_INFO_WUNLOCK(&tcbinfo); } /* * Give the socket an address. */ static int tcp_usr_bind(struct socket *so, struct sockaddr *nam, struct thread *td) { int error = 0; struct inpcb *inp; struct tcpcb *tp = NULL; struct sockaddr_in *sinp; sinp = (struct sockaddr_in *)nam; if (nam->sa_len != sizeof (*sinp)) return (EINVAL); /* * Must check for multicast addresses and disallow binding * to them. */ if (sinp->sin_family == AF_INET && IN_MULTICAST(ntohl(sinp->sin_addr.s_addr))) return (EAFNOSUPPORT); TCPDEBUG0; INP_INFO_WLOCK(&tcbinfo); inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_usr_bind: inp == NULL")); INP_LOCK(inp); if (inp->inp_vflag & (INP_TIMEWAIT | INP_DROPPED)) { error = EINVAL; goto out; } tp = intotcpcb(inp); TCPDEBUG1(); error = in_pcbbind(inp, nam, td->td_ucred); out: TCPDEBUG2(PRU_BIND); INP_UNLOCK(inp); INP_INFO_WUNLOCK(&tcbinfo); return (error); } #ifdef INET6 static int tcp6_usr_bind(struct socket *so, struct sockaddr *nam, struct thread *td) { int error = 0; struct inpcb *inp; struct tcpcb *tp = NULL; struct sockaddr_in6 *sin6p; sin6p = (struct sockaddr_in6 *)nam; if (nam->sa_len != sizeof (*sin6p)) return (EINVAL); /* * Must check for multicast addresses and disallow binding * to them. */ if (sin6p->sin6_family == AF_INET6 && IN6_IS_ADDR_MULTICAST(&sin6p->sin6_addr)) return (EAFNOSUPPORT); TCPDEBUG0; INP_INFO_WLOCK(&tcbinfo); inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp6_usr_bind: inp == NULL")); INP_LOCK(inp); if (inp->inp_vflag & (INP_TIMEWAIT | INP_DROPPED)) { error = EINVAL; goto out; } tp = intotcpcb(inp); TCPDEBUG1(); inp->inp_vflag &= ~INP_IPV4; inp->inp_vflag |= INP_IPV6; if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) { if (IN6_IS_ADDR_UNSPECIFIED(&sin6p->sin6_addr)) inp->inp_vflag |= INP_IPV4; else if (IN6_IS_ADDR_V4MAPPED(&sin6p->sin6_addr)) { struct sockaddr_in sin; in6_sin6_2_sin(&sin, sin6p); inp->inp_vflag |= INP_IPV4; inp->inp_vflag &= ~INP_IPV6; error = in_pcbbind(inp, (struct sockaddr *)&sin, td->td_ucred); goto out; } } error = in6_pcbbind(inp, nam, td->td_ucred); out: TCPDEBUG2(PRU_BIND); INP_UNLOCK(inp); INP_INFO_WUNLOCK(&tcbinfo); return (error); } #endif /* INET6 */ /* * Prepare to accept connections. */ static int tcp_usr_listen(struct socket *so, int backlog, struct thread *td) { int error = 0; struct inpcb *inp; struct tcpcb *tp = NULL; TCPDEBUG0; INP_INFO_WLOCK(&tcbinfo); inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_usr_listen: inp == NULL")); INP_LOCK(inp); if (inp->inp_vflag & (INP_TIMEWAIT | INP_DROPPED)) { error = EINVAL; goto out; } tp = intotcpcb(inp); TCPDEBUG1(); SOCK_LOCK(so); error = solisten_proto_check(so); if (error == 0 && inp->inp_lport == 0) error = in_pcbbind(inp, (struct sockaddr *)0, td->td_ucred); if (error == 0) { tp->t_state = TCPS_LISTEN; solisten_proto(so, backlog); tcp_offload_listen_open(tp); } SOCK_UNLOCK(so); out: TCPDEBUG2(PRU_LISTEN); INP_UNLOCK(inp); INP_INFO_WUNLOCK(&tcbinfo); return (error); } #ifdef INET6 static int tcp6_usr_listen(struct socket *so, int backlog, struct thread *td) { int error = 0; struct inpcb *inp; struct tcpcb *tp = NULL; TCPDEBUG0; INP_INFO_WLOCK(&tcbinfo); inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp6_usr_listen: inp == NULL")); INP_LOCK(inp); if (inp->inp_vflag & (INP_TIMEWAIT | INP_DROPPED)) { error = EINVAL; goto out; } tp = intotcpcb(inp); TCPDEBUG1(); SOCK_LOCK(so); error = solisten_proto_check(so); if (error == 0 && inp->inp_lport == 0) { inp->inp_vflag &= ~INP_IPV4; if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) inp->inp_vflag |= INP_IPV4; error = in6_pcbbind(inp, (struct sockaddr *)0, td->td_ucred); } if (error == 0) { tp->t_state = TCPS_LISTEN; solisten_proto(so, backlog); } SOCK_UNLOCK(so); out: TCPDEBUG2(PRU_LISTEN); INP_UNLOCK(inp); INP_INFO_WUNLOCK(&tcbinfo); return (error); } #endif /* INET6 */ /* * Initiate connection to peer. * Create a template for use in transmissions on this connection. * Enter SYN_SENT state, and mark socket as connecting. * Start keep-alive timer, and seed output sequence space. * Send initial segment on connection. */ static int tcp_usr_connect(struct socket *so, struct sockaddr *nam, struct thread *td) { int error = 0; struct inpcb *inp; struct tcpcb *tp = NULL; struct sockaddr_in *sinp; sinp = (struct sockaddr_in *)nam; if (nam->sa_len != sizeof (*sinp)) return (EINVAL); /* * Must disallow TCP ``connections'' to multicast addresses. */ if (sinp->sin_family == AF_INET && IN_MULTICAST(ntohl(sinp->sin_addr.s_addr))) return (EAFNOSUPPORT); if (jailed(td->td_ucred)) prison_remote_ip(td->td_ucred, 0, &sinp->sin_addr.s_addr); TCPDEBUG0; INP_INFO_WLOCK(&tcbinfo); inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_usr_connect: inp == NULL")); INP_LOCK(inp); if (inp->inp_vflag & (INP_TIMEWAIT | INP_DROPPED)) { error = EINVAL; goto out; } tp = intotcpcb(inp); TCPDEBUG1(); if ((error = tcp_connect(tp, nam, td)) != 0) goto out; error = tcp_output_connect(so, nam); out: TCPDEBUG2(PRU_CONNECT); INP_UNLOCK(inp); INP_INFO_WUNLOCK(&tcbinfo); return (error); } #ifdef INET6 static int tcp6_usr_connect(struct socket *so, struct sockaddr *nam, struct thread *td) { int error = 0; struct inpcb *inp; struct tcpcb *tp = NULL; struct sockaddr_in6 *sin6p; TCPDEBUG0; sin6p = (struct sockaddr_in6 *)nam; if (nam->sa_len != sizeof (*sin6p)) return (EINVAL); /* * Must disallow TCP ``connections'' to multicast addresses. */ if (sin6p->sin6_family == AF_INET6 && IN6_IS_ADDR_MULTICAST(&sin6p->sin6_addr)) return (EAFNOSUPPORT); INP_INFO_WLOCK(&tcbinfo); inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp6_usr_connect: inp == NULL")); INP_LOCK(inp); if (inp->inp_vflag & (INP_TIMEWAIT | INP_DROPPED)) { error = EINVAL; goto out; } tp = intotcpcb(inp); TCPDEBUG1(); if (IN6_IS_ADDR_V4MAPPED(&sin6p->sin6_addr)) { struct sockaddr_in sin; if ((inp->inp_flags & IN6P_IPV6_V6ONLY) != 0) { error = EINVAL; goto out; } in6_sin6_2_sin(&sin, sin6p); inp->inp_vflag |= INP_IPV4; inp->inp_vflag &= ~INP_IPV6; if ((error = tcp_connect(tp, (struct sockaddr *)&sin, td)) != 0) goto out; error = tcp_output_connect(so, nam); goto out; } inp->inp_vflag &= ~INP_IPV4; inp->inp_vflag |= INP_IPV6; inp->inp_inc.inc_isipv6 = 1; if ((error = tcp6_connect(tp, nam, td)) != 0) goto out; error = tcp_output_connect(so, nam); out: TCPDEBUG2(PRU_CONNECT); INP_UNLOCK(inp); INP_INFO_WUNLOCK(&tcbinfo); return (error); } #endif /* INET6 */ /* * Initiate disconnect from peer. * If connection never passed embryonic stage, just drop; * else if don't need to let data drain, then can just drop anyways, * else have to begin TCP shutdown process: mark socket disconnecting, * drain unread data, state switch to reflect user close, and * send segment (e.g. FIN) to peer. Socket will be really disconnected * when peer sends FIN and acks ours. * * SHOULD IMPLEMENT LATER PRU_CONNECT VIA REALLOC TCPCB. */ static int tcp_usr_disconnect(struct socket *so) { struct inpcb *inp; struct tcpcb *tp = NULL; int error = 0; TCPDEBUG0; INP_INFO_WLOCK(&tcbinfo); inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_usr_disconnect: inp == NULL")); INP_LOCK(inp); if (inp->inp_vflag & (INP_TIMEWAIT | INP_DROPPED)) { error = ECONNRESET; goto out; } tp = intotcpcb(inp); TCPDEBUG1(); tcp_disconnect(tp); out: TCPDEBUG2(PRU_DISCONNECT); INP_UNLOCK(inp); INP_INFO_WUNLOCK(&tcbinfo); return (error); } /* * Accept a connection. Essentially all the work is * done at higher levels; just return the address * of the peer, storing through addr. */ static int tcp_usr_accept(struct socket *so, struct sockaddr **nam) { int error = 0; struct inpcb *inp = NULL; struct tcpcb *tp = NULL; struct in_addr addr; in_port_t port = 0; TCPDEBUG0; if (so->so_state & SS_ISDISCONNECTED) return (ECONNABORTED); inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_usr_accept: inp == NULL")); INP_LOCK(inp); if (inp->inp_vflag & (INP_TIMEWAIT | INP_DROPPED)) { error = ECONNABORTED; goto out; } tp = intotcpcb(inp); TCPDEBUG1(); /* * We inline in_getpeeraddr and COMMON_END here, so that we can * copy the data of interest and defer the malloc until after we * release the lock. */ port = inp->inp_fport; addr = inp->inp_faddr; out: TCPDEBUG2(PRU_ACCEPT); INP_UNLOCK(inp); if (error == 0) *nam = in_sockaddr(port, &addr); return error; } #ifdef INET6 static int tcp6_usr_accept(struct socket *so, struct sockaddr **nam) { struct inpcb *inp = NULL; int error = 0; struct tcpcb *tp = NULL; struct in_addr addr; struct in6_addr addr6; in_port_t port = 0; int v4 = 0; TCPDEBUG0; if (so->so_state & SS_ISDISCONNECTED) return (ECONNABORTED); inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp6_usr_accept: inp == NULL")); INP_LOCK(inp); if (inp->inp_vflag & (INP_TIMEWAIT | INP_DROPPED)) { error = ECONNABORTED; goto out; } tp = intotcpcb(inp); TCPDEBUG1(); /* * We inline in6_mapped_peeraddr and COMMON_END here, so that we can * copy the data of interest and defer the malloc until after we * release the lock. */ if (inp->inp_vflag & INP_IPV4) { v4 = 1; port = inp->inp_fport; addr = inp->inp_faddr; } else { port = inp->inp_fport; addr6 = inp->in6p_faddr; } out: TCPDEBUG2(PRU_ACCEPT); INP_UNLOCK(inp); if (error == 0) { if (v4) *nam = in6_v4mapsin6_sockaddr(port, &addr); else *nam = in6_sockaddr(port, &addr6); } return error; } #endif /* INET6 */ /* * Mark the connection as being incapable of further output. */ static int tcp_usr_shutdown(struct socket *so) { int error = 0; struct inpcb *inp; struct tcpcb *tp = NULL; TCPDEBUG0; INP_INFO_WLOCK(&tcbinfo); inp = sotoinpcb(so); KASSERT(inp != NULL, ("inp == NULL")); INP_LOCK(inp); if (inp->inp_vflag & (INP_TIMEWAIT | INP_DROPPED)) { error = ECONNRESET; goto out; } tp = intotcpcb(inp); TCPDEBUG1(); socantsendmore(so); tcp_usrclosed(tp); error = tcp_output_disconnect(tp); out: TCPDEBUG2(PRU_SHUTDOWN); INP_UNLOCK(inp); INP_INFO_WUNLOCK(&tcbinfo); return (error); } /* * After a receive, possibly send window update to peer. */ static int tcp_usr_rcvd(struct socket *so, int flags) { struct inpcb *inp; struct tcpcb *tp = NULL; int error = 0; TCPDEBUG0; inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_usr_rcvd: inp == NULL")); INP_LOCK(inp); if (inp->inp_vflag & (INP_TIMEWAIT | INP_DROPPED)) { error = ECONNRESET; goto out; } tp = intotcpcb(inp); TCPDEBUG1(); tcp_output_rcvd(tp); out: TCPDEBUG2(PRU_RCVD); INP_UNLOCK(inp); return (error); } /* * Do a send by putting data in output queue and updating urgent * marker if URG set. Possibly send more data. Unlike the other * pru_*() routines, the mbuf chains are our responsibility. We * must either enqueue them or free them. The other pru_* routines * generally are caller-frees. */ static int tcp_usr_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, struct mbuf *control, struct thread *td) { int error = 0; struct inpcb *inp; struct tcpcb *tp = NULL; int headlocked = 0; #ifdef INET6 int isipv6; #endif TCPDEBUG0; /* * We require the pcbinfo lock in two cases: * * (1) An implied connect is taking place, which can result in * binding IPs and ports and hence modification of the pcb hash * chains. * * (2) PRUS_EOF is set, resulting in explicit close on the send. */ if ((nam != NULL) || (flags & PRUS_EOF)) { INP_INFO_WLOCK(&tcbinfo); headlocked = 1; } inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_usr_send: inp == NULL")); INP_LOCK(inp); if (inp->inp_vflag & (INP_TIMEWAIT | INP_DROPPED)) { if (control) m_freem(control); if (m) m_freem(m); error = ECONNRESET; goto out; } #ifdef INET6 isipv6 = nam && nam->sa_family == AF_INET6; #endif /* INET6 */ tp = intotcpcb(inp); TCPDEBUG1(); if (control) { /* TCP doesn't do control messages (rights, creds, etc) */ if (control->m_len) { m_freem(control); if (m) m_freem(m); error = EINVAL; goto out; } m_freem(control); /* empty control, just free it */ } if (!(flags & PRUS_OOB)) { sbappendstream(&so->so_snd, m); if (nam && tp->t_state < TCPS_SYN_SENT) { /* * Do implied connect if not yet connected, * initialize window to default value, and * initialize maxseg/maxopd using peer's cached * MSS. */ INP_INFO_WLOCK_ASSERT(&tcbinfo); #ifdef INET6 if (isipv6) error = tcp6_connect(tp, nam, td); else #endif /* INET6 */ error = tcp_connect(tp, nam, td); if (error) goto out; tp->snd_wnd = TTCP_CLIENT_SND_WND; tcp_mss(tp, -1); } if (flags & PRUS_EOF) { /* * Close the send side of the connection after * the data is sent. */ INP_INFO_WLOCK_ASSERT(&tcbinfo); socantsendmore(so); tcp_usrclosed(tp); } if (headlocked) { INP_INFO_WUNLOCK(&tcbinfo); headlocked = 0; } if (tp != NULL) { if (flags & PRUS_MORETOCOME) tp->t_flags |= TF_MORETOCOME; error = tcp_output_send(tp); if (flags & PRUS_MORETOCOME) tp->t_flags &= ~TF_MORETOCOME; } } else { /* * XXXRW: PRUS_EOF not implemented with PRUS_OOB? */ SOCKBUF_LOCK(&so->so_snd); if (sbspace(&so->so_snd) < -512) { SOCKBUF_UNLOCK(&so->so_snd); m_freem(m); error = ENOBUFS; goto out; } /* * According to RFC961 (Assigned Protocols), * the urgent pointer points to the last octet * of urgent data. We continue, however, * to consider it to indicate the first octet * of data past the urgent section. * Otherwise, snd_up should be one lower. */ sbappendstream_locked(&so->so_snd, m); SOCKBUF_UNLOCK(&so->so_snd); if (nam && tp->t_state < TCPS_SYN_SENT) { /* * Do implied connect if not yet connected, * initialize window to default value, and * initialize maxseg/maxopd using peer's cached * MSS. */ INP_INFO_WLOCK_ASSERT(&tcbinfo); #ifdef INET6 if (isipv6) error = tcp6_connect(tp, nam, td); else #endif /* INET6 */ error = tcp_connect(tp, nam, td); if (error) goto out; tp->snd_wnd = TTCP_CLIENT_SND_WND; tcp_mss(tp, -1); INP_INFO_WUNLOCK(&tcbinfo); headlocked = 0; } else if (nam) { INP_INFO_WUNLOCK(&tcbinfo); headlocked = 0; } tp->snd_up = tp->snd_una + so->so_snd.sb_cc; tp->t_flags |= TF_FORCEDATA; error = tcp_output_send(tp); tp->t_flags &= ~TF_FORCEDATA; } out: TCPDEBUG2((flags & PRUS_OOB) ? PRU_SENDOOB : ((flags & PRUS_EOF) ? PRU_SEND_EOF : PRU_SEND)); INP_UNLOCK(inp); if (headlocked) INP_INFO_WUNLOCK(&tcbinfo); return (error); } /* * Abort the TCP. Drop the connection abruptly. */ static void tcp_usr_abort(struct socket *so) { struct inpcb *inp; struct tcpcb *tp = NULL; TCPDEBUG0; inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_usr_abort: inp == NULL")); INP_INFO_WLOCK(&tcbinfo); INP_LOCK(inp); KASSERT(inp->inp_socket != NULL, ("tcp_usr_abort: inp_socket == NULL")); /* * If we still have full TCP state, and we're not dropped, drop. */ if (!(inp->inp_vflag & INP_TIMEWAIT) && !(inp->inp_vflag & INP_DROPPED)) { tp = intotcpcb(inp); TCPDEBUG1(); tcp_drop(tp, ECONNABORTED); TCPDEBUG2(PRU_ABORT); } if (!(inp->inp_vflag & INP_DROPPED)) { SOCK_LOCK(so); so->so_state |= SS_PROTOREF; SOCK_UNLOCK(so); inp->inp_vflag |= INP_SOCKREF; } INP_UNLOCK(inp); INP_INFO_WUNLOCK(&tcbinfo); } /* * TCP socket is closed. Start friendly disconnect. */ static void tcp_usr_close(struct socket *so) { struct inpcb *inp; struct tcpcb *tp = NULL; TCPDEBUG0; inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_usr_close: inp == NULL")); INP_INFO_WLOCK(&tcbinfo); INP_LOCK(inp); KASSERT(inp->inp_socket != NULL, ("tcp_usr_close: inp_socket == NULL")); /* * If we still have full TCP state, and we're not dropped, initiate * a disconnect. */ if (!(inp->inp_vflag & INP_TIMEWAIT) && !(inp->inp_vflag & INP_DROPPED)) { tp = intotcpcb(inp); TCPDEBUG1(); tcp_disconnect(tp); TCPDEBUG2(PRU_CLOSE); } if (!(inp->inp_vflag & INP_DROPPED)) { SOCK_LOCK(so); so->so_state |= SS_PROTOREF; SOCK_UNLOCK(so); inp->inp_vflag |= INP_SOCKREF; } INP_UNLOCK(inp); INP_INFO_WUNLOCK(&tcbinfo); } /* * Receive out-of-band data. */ static int tcp_usr_rcvoob(struct socket *so, struct mbuf *m, int flags) { int error = 0; struct inpcb *inp; struct tcpcb *tp = NULL; TCPDEBUG0; inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_usr_rcvoob: inp == NULL")); INP_LOCK(inp); if (inp->inp_vflag & (INP_TIMEWAIT | INP_DROPPED)) { error = ECONNRESET; goto out; } tp = intotcpcb(inp); TCPDEBUG1(); if ((so->so_oobmark == 0 && (so->so_rcv.sb_state & SBS_RCVATMARK) == 0) || so->so_options & SO_OOBINLINE || tp->t_oobflags & TCPOOB_HADDATA) { error = EINVAL; goto out; } if ((tp->t_oobflags & TCPOOB_HAVEDATA) == 0) { error = EWOULDBLOCK; goto out; } m->m_len = 1; *mtod(m, caddr_t) = tp->t_iobc; if ((flags & MSG_PEEK) == 0) tp->t_oobflags ^= (TCPOOB_HAVEDATA | TCPOOB_HADDATA); out: TCPDEBUG2(PRU_RCVOOB); INP_UNLOCK(inp); return (error); } struct pr_usrreqs tcp_usrreqs = { .pru_abort = tcp_usr_abort, .pru_accept = tcp_usr_accept, .pru_attach = tcp_usr_attach, .pru_bind = tcp_usr_bind, .pru_connect = tcp_usr_connect, .pru_control = in_control, .pru_detach = tcp_usr_detach, .pru_disconnect = tcp_usr_disconnect, .pru_listen = tcp_usr_listen, .pru_peeraddr = in_getpeeraddr, .pru_rcvd = tcp_usr_rcvd, .pru_rcvoob = tcp_usr_rcvoob, .pru_send = tcp_usr_send, .pru_shutdown = tcp_usr_shutdown, .pru_sockaddr = in_getsockaddr, .pru_sosetlabel = in_pcbsosetlabel, .pru_close = tcp_usr_close, }; #ifdef INET6 struct pr_usrreqs tcp6_usrreqs = { .pru_abort = tcp_usr_abort, .pru_accept = tcp6_usr_accept, .pru_attach = tcp_usr_attach, .pru_bind = tcp6_usr_bind, .pru_connect = tcp6_usr_connect, .pru_control = in6_control, .pru_detach = tcp_usr_detach, .pru_disconnect = tcp_usr_disconnect, .pru_listen = tcp6_usr_listen, .pru_peeraddr = in6_mapped_peeraddr, .pru_rcvd = tcp_usr_rcvd, .pru_rcvoob = tcp_usr_rcvoob, .pru_send = tcp_usr_send, .pru_shutdown = tcp_usr_shutdown, .pru_sockaddr = in6_mapped_sockaddr, .pru_sosetlabel = in_pcbsosetlabel, .pru_close = tcp_usr_close, }; #endif /* INET6 */ /* * Common subroutine to open a TCP connection to remote host specified * by struct sockaddr_in in mbuf *nam. Call in_pcbbind to assign a local * port number if needed. Call in_pcbconnect_setup to do the routing and * to choose a local host address (interface). If there is an existing * incarnation of the same connection in TIME-WAIT state and if the remote * host was sending CC options and if the connection duration was < MSL, then * truncate the previous TIME-WAIT state and proceed. * Initialize connection parameters and enter SYN-SENT state. */ static int tcp_connect(struct tcpcb *tp, struct sockaddr *nam, struct thread *td) { struct inpcb *inp = tp->t_inpcb, *oinp; struct socket *so = inp->inp_socket; struct in_addr laddr; u_short lport; int error; INP_INFO_WLOCK_ASSERT(&tcbinfo); INP_LOCK_ASSERT(inp); if (inp->inp_lport == 0) { error = in_pcbbind(inp, (struct sockaddr *)0, td->td_ucred); if (error) return error; } /* * Cannot simply call in_pcbconnect, because there might be an * earlier incarnation of this same connection still in * TIME_WAIT state, creating an ADDRINUSE error. */ laddr = inp->inp_laddr; lport = inp->inp_lport; error = in_pcbconnect_setup(inp, nam, &laddr.s_addr, &lport, &inp->inp_faddr.s_addr, &inp->inp_fport, &oinp, td->td_ucred); if (error && oinp == NULL) return error; if (oinp) return EADDRINUSE; inp->inp_laddr = laddr; in_pcbrehash(inp); /* * Compute window scaling to request: * Scale to fit into sweet spot. See tcp_syncache.c. * XXX: This should move to tcp_output(). */ while (tp->request_r_scale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << tp->request_r_scale) < sb_max) tp->request_r_scale++; soisconnecting(so); tcpstat.tcps_connattempt++; tp->t_state = TCPS_SYN_SENT; tcp_timer_activate(tp, TT_KEEP, tcp_keepinit); tp->iss = tcp_new_isn(tp); tp->t_bw_rtseq = tp->iss; tcp_sendseqinit(tp); return 0; } #ifdef INET6 static int tcp6_connect(struct tcpcb *tp, struct sockaddr *nam, struct thread *td) { struct inpcb *inp = tp->t_inpcb, *oinp; struct socket *so = inp->inp_socket; struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)nam; struct in6_addr *addr6; int error; INP_INFO_WLOCK_ASSERT(&tcbinfo); INP_LOCK_ASSERT(inp); if (inp->inp_lport == 0) { error = in6_pcbbind(inp, (struct sockaddr *)0, td->td_ucred); if (error) return error; } /* * Cannot simply call in_pcbconnect, because there might be an * earlier incarnation of this same connection still in * TIME_WAIT state, creating an ADDRINUSE error. * in6_pcbladdr() also handles scope zone IDs. */ error = in6_pcbladdr(inp, nam, &addr6); if (error) return error; oinp = in6_pcblookup_hash(inp->inp_pcbinfo, &sin6->sin6_addr, sin6->sin6_port, IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr) ? addr6 : &inp->in6p_laddr, inp->inp_lport, 0, NULL); if (oinp) return EADDRINUSE; if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) inp->in6p_laddr = *addr6; inp->in6p_faddr = sin6->sin6_addr; inp->inp_fport = sin6->sin6_port; /* update flowinfo - draft-itojun-ipv6-flowlabel-api-00 */ inp->in6p_flowinfo &= ~IPV6_FLOWLABEL_MASK; if (inp->in6p_flags & IN6P_AUTOFLOWLABEL) inp->in6p_flowinfo |= (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK); in_pcbrehash(inp); /* Compute window scaling to request. */ while (tp->request_r_scale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << tp->request_r_scale) < so->so_rcv.sb_hiwat) tp->request_r_scale++; soisconnecting(so); tcpstat.tcps_connattempt++; tp->t_state = TCPS_SYN_SENT; tcp_timer_activate(tp, TT_KEEP, tcp_keepinit); tp->iss = tcp_new_isn(tp); tp->t_bw_rtseq = tp->iss; tcp_sendseqinit(tp); return 0; } #endif /* INET6 */ /* * Export TCP internal state information via a struct tcp_info, based on the * Linux 2.6 API. Not ABI compatible as our constants are mapped differently * (TCP state machine, etc). We export all information using FreeBSD-native * constants -- for example, the numeric values for tcpi_state will differ * from Linux. */ static void tcp_fill_info(struct tcpcb *tp, struct tcp_info *ti) { INP_LOCK_ASSERT(tp->t_inpcb); bzero(ti, sizeof(*ti)); ti->tcpi_state = tp->t_state; if ((tp->t_flags & TF_REQ_TSTMP) && (tp->t_flags & TF_RCVD_TSTMP)) ti->tcpi_options |= TCPI_OPT_TIMESTAMPS; if (tp->t_flags & TF_SACK_PERMIT) ti->tcpi_options |= TCPI_OPT_SACK; if ((tp->t_flags & TF_REQ_SCALE) && (tp->t_flags & TF_RCVD_SCALE)) { ti->tcpi_options |= TCPI_OPT_WSCALE; ti->tcpi_snd_wscale = tp->snd_scale; ti->tcpi_rcv_wscale = tp->rcv_scale; } ti->tcpi_rtt = ((u_int64_t)tp->t_srtt * tick) >> TCP_RTT_SHIFT; ti->tcpi_rttvar = ((u_int64_t)tp->t_rttvar * tick) >> TCP_RTTVAR_SHIFT; ti->tcpi_snd_ssthresh = tp->snd_ssthresh; ti->tcpi_snd_cwnd = tp->snd_cwnd; /* * FreeBSD-specific extension fields for tcp_info. */ ti->tcpi_rcv_space = tp->rcv_wnd; ti->tcpi_snd_wnd = tp->snd_wnd; ti->tcpi_snd_bwnd = tp->snd_bwnd; } /* * tcp_ctloutput() must drop the inpcb lock before performing copyin on * socket option arguments. When it re-acquires the lock after the copy, it * has to revalidate that the connection is still valid for the socket * option. */ #define INP_LOCK_RECHECK(inp) do { \ INP_LOCK(inp); \ if (inp->inp_vflag & (INP_TIMEWAIT | INP_DROPPED)) { \ INP_UNLOCK(inp); \ return (ECONNRESET); \ } \ tp = intotcpcb(inp); \ } while(0) int tcp_ctloutput(struct socket *so, struct sockopt *sopt) { int error, opt, optval; struct inpcb *inp; struct tcpcb *tp; struct tcp_info ti; error = 0; inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_ctloutput: inp == NULL")); INP_LOCK(inp); if (sopt->sopt_level != IPPROTO_TCP) { #ifdef INET6 if (INP_CHECK_SOCKAF(so, AF_INET6)) { INP_UNLOCK(inp); error = ip6_ctloutput(so, sopt); } else { #endif /* INET6 */ INP_UNLOCK(inp); error = ip_ctloutput(so, sopt); #ifdef INET6 } #endif return (error); } if (inp->inp_vflag & (INP_TIMEWAIT | INP_DROPPED)) { INP_UNLOCK(inp); return (ECONNRESET); } switch (sopt->sopt_dir) { case SOPT_SET: switch (sopt->sopt_name) { #ifdef TCP_SIGNATURE case TCP_MD5SIG: INP_UNLOCK(inp); error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) return (error); INP_LOCK_RECHECK(inp); if (optval > 0) tp->t_flags |= TF_SIGNATURE; else tp->t_flags &= ~TF_SIGNATURE; INP_UNLOCK(inp); break; #endif /* TCP_SIGNATURE */ case TCP_NODELAY: case TCP_NOOPT: INP_UNLOCK(inp); error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) return (error); INP_LOCK_RECHECK(inp); switch (sopt->sopt_name) { case TCP_NODELAY: opt = TF_NODELAY; break; case TCP_NOOPT: opt = TF_NOOPT; break; default: opt = 0; /* dead code to fool gcc */ break; } if (optval) tp->t_flags |= opt; else tp->t_flags &= ~opt; INP_UNLOCK(inp); break; case TCP_NOPUSH: INP_UNLOCK(inp); error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) return (error); INP_LOCK_RECHECK(inp); if (optval) tp->t_flags |= TF_NOPUSH; else { tp->t_flags &= ~TF_NOPUSH; error = tcp_output(tp); } INP_UNLOCK(inp); break; case TCP_MAXSEG: INP_UNLOCK(inp); error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) return (error); INP_LOCK_RECHECK(inp); if (optval > 0 && optval <= tp->t_maxseg && optval + 40 >= tcp_minmss) tp->t_maxseg = optval; else error = EINVAL; INP_UNLOCK(inp); break; case TCP_INFO: INP_UNLOCK(inp); error = EINVAL; break; default: INP_UNLOCK(inp); error = ENOPROTOOPT; break; } break; case SOPT_GET: tp = intotcpcb(inp); switch (sopt->sopt_name) { #ifdef TCP_SIGNATURE case TCP_MD5SIG: optval = (tp->t_flags & TF_SIGNATURE) ? 1 : 0; INP_UNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof optval); break; #endif case TCP_NODELAY: optval = tp->t_flags & TF_NODELAY; INP_UNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof optval); break; case TCP_MAXSEG: optval = tp->t_maxseg; INP_UNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof optval); break; case TCP_NOOPT: optval = tp->t_flags & TF_NOOPT; INP_UNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof optval); break; case TCP_NOPUSH: optval = tp->t_flags & TF_NOPUSH; INP_UNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof optval); break; case TCP_INFO: tcp_fill_info(tp, &ti); INP_UNLOCK(inp); error = sooptcopyout(sopt, &ti, sizeof ti); break; default: INP_UNLOCK(inp); error = ENOPROTOOPT; break; } break; } return (error); } #undef INP_LOCK_RECHECK /* * tcp_sendspace and tcp_recvspace are the default send and receive window * sizes, respectively. These are obsolescent (this information should * be set by the route). */ u_long tcp_sendspace = 1024*32; SYSCTL_ULONG(_net_inet_tcp, TCPCTL_SENDSPACE, sendspace, CTLFLAG_RW, &tcp_sendspace , 0, "Maximum outgoing TCP datagram size"); u_long tcp_recvspace = 1024*64; SYSCTL_ULONG(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_RW, &tcp_recvspace , 0, "Maximum incoming TCP datagram size"); /* * Attach TCP protocol to socket, allocating * internet protocol control block, tcp control block, * bufer space, and entering LISTEN state if to accept connections. */ static int tcp_attach(struct socket *so) { struct tcpcb *tp; struct inpcb *inp; int error; #ifdef INET6 int isipv6 = INP_CHECK_SOCKAF(so, AF_INET6) != 0; #endif if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { error = soreserve(so, tcp_sendspace, tcp_recvspace); if (error) return (error); } so->so_rcv.sb_flags |= SB_AUTOSIZE; so->so_snd.sb_flags |= SB_AUTOSIZE; INP_INFO_WLOCK(&tcbinfo); error = in_pcballoc(so, &tcbinfo); if (error) { INP_INFO_WUNLOCK(&tcbinfo); return (error); } inp = sotoinpcb(so); #ifdef INET6 if (isipv6) { inp->inp_vflag |= INP_IPV6; inp->in6p_hops = -1; /* use kernel default */ } else #endif inp->inp_vflag |= INP_IPV4; tp = tcp_newtcpcb(inp); if (tp == NULL) { #ifdef INET6 if (isipv6) { in6_pcbdetach(inp); in6_pcbfree(inp); } else { #endif in_pcbdetach(inp); in_pcbfree(inp); #ifdef INET6 } #endif INP_INFO_WUNLOCK(&tcbinfo); return (ENOBUFS); } tp->t_state = TCPS_CLOSED; INP_UNLOCK(inp); INP_INFO_WUNLOCK(&tcbinfo); return (0); } /* * Initiate (or continue) disconnect. * If embryonic state, just send reset (once). * If in ``let data drain'' option and linger null, just drop. * Otherwise (hard), mark socket disconnecting and drop * current input data; switch states based on user close, and * send segment to peer (with FIN). */ static void tcp_disconnect(struct tcpcb *tp) { struct inpcb *inp = tp->t_inpcb; struct socket *so = inp->inp_socket; INP_INFO_WLOCK_ASSERT(&tcbinfo); INP_LOCK_ASSERT(inp); /* * Neither tcp_close() nor tcp_drop() should return NULL, as the * socket is still open. */ if (tp->t_state < TCPS_ESTABLISHED) { tp = tcp_close(tp); KASSERT(tp != NULL, ("tcp_disconnect: tcp_close() returned NULL")); } else if ((so->so_options & SO_LINGER) && so->so_linger == 0) { tp = tcp_drop(tp, 0); KASSERT(tp != NULL, ("tcp_disconnect: tcp_drop() returned NULL")); } else { soisdisconnecting(so); sbflush(&so->so_rcv); tcp_usrclosed(tp); if (!(inp->inp_vflag & INP_DROPPED)) tcp_output_disconnect(tp); } } /* * User issued close, and wish to trail through shutdown states: * if never received SYN, just forget it. If got a SYN from peer, * but haven't sent FIN, then go to FIN_WAIT_1 state to send peer a FIN. * If already got a FIN from peer, then almost done; go to LAST_ACK * state. In all other cases, have already sent FIN to peer (e.g. * after PRU_SHUTDOWN), and just have to play tedious game waiting * for peer to send FIN or not respond to keep-alives, etc. * We can let the user exit from the close as soon as the FIN is acked. */ static void tcp_usrclosed(struct tcpcb *tp) { INP_INFO_WLOCK_ASSERT(&tcbinfo); INP_LOCK_ASSERT(tp->t_inpcb); switch (tp->t_state) { case TCPS_LISTEN: tcp_offload_listen_close(tp); /* FALLTHROUGH */ case TCPS_CLOSED: tp->t_state = TCPS_CLOSED; tp = tcp_close(tp); /* * tcp_close() should never return NULL here as the socket is * still open. */ KASSERT(tp != NULL, ("tcp_usrclosed: tcp_close() returned NULL")); break; case TCPS_SYN_SENT: case TCPS_SYN_RECEIVED: tp->t_flags |= TF_NEEDFIN; break; case TCPS_ESTABLISHED: tp->t_state = TCPS_FIN_WAIT_1; break; case TCPS_CLOSE_WAIT: tp->t_state = TCPS_LAST_ACK; break; } if (tp->t_state >= TCPS_FIN_WAIT_2) { soisdisconnected(tp->t_inpcb->inp_socket); /* Prevent the connection hanging in FIN_WAIT_2 forever. */ if (tp->t_state == TCPS_FIN_WAIT_2) { int timeout; timeout = (tcp_fast_finwait2_recycle) ? tcp_finwait2_timeout : tcp_maxidle; tcp_timer_activate(tp, TT_2MSL, timeout); } } } #ifdef DDB static void db_print_indent(int indent) { int i; for (i = 0; i < indent; i++) db_printf(" "); } static void db_print_tstate(int t_state) { switch (t_state) { case TCPS_CLOSED: db_printf("TCPS_CLOSED"); return; case TCPS_LISTEN: db_printf("TCPS_LISTEN"); return; case TCPS_SYN_SENT: db_printf("TCPS_SYN_SENT"); return; case TCPS_SYN_RECEIVED: db_printf("TCPS_SYN_RECEIVED"); return; case TCPS_ESTABLISHED: db_printf("TCPS_ESTABLISHED"); return; case TCPS_CLOSE_WAIT: db_printf("TCPS_CLOSE_WAIT"); return; case TCPS_FIN_WAIT_1: db_printf("TCPS_FIN_WAIT_1"); return; case TCPS_CLOSING: db_printf("TCPS_CLOSING"); return; case TCPS_LAST_ACK: db_printf("TCPS_LAST_ACK"); return; case TCPS_FIN_WAIT_2: db_printf("TCPS_FIN_WAIT_2"); return; case TCPS_TIME_WAIT: db_printf("TCPS_TIME_WAIT"); return; default: db_printf("unknown"); return; } } static void db_print_tflags(u_int t_flags) { int comma; comma = 0; if (t_flags & TF_ACKNOW) { db_printf("%sTF_ACKNOW", comma ? ", " : ""); comma = 1; } if (t_flags & TF_DELACK) { db_printf("%sTF_DELACK", comma ? ", " : ""); comma = 1; } if (t_flags & TF_NODELAY) { db_printf("%sTF_NODELAY", comma ? ", " : ""); comma = 1; } if (t_flags & TF_NOOPT) { db_printf("%sTF_NOOPT", comma ? ", " : ""); comma = 1; } if (t_flags & TF_SENTFIN) { db_printf("%sTF_SENTFIN", comma ? ", " : ""); comma = 1; } if (t_flags & TF_REQ_SCALE) { db_printf("%sTF_REQ_SCALE", comma ? ", " : ""); comma = 1; } if (t_flags & TF_RCVD_SCALE) { db_printf("%sTF_RECVD_SCALE", comma ? ", " : ""); comma = 1; } if (t_flags & TF_REQ_TSTMP) { db_printf("%sTF_REQ_TSTMP", comma ? ", " : ""); comma = 1; } if (t_flags & TF_RCVD_TSTMP) { db_printf("%sTF_RCVD_TSTMP", comma ? ", " : ""); comma = 1; } if (t_flags & TF_SACK_PERMIT) { db_printf("%sTF_SACK_PERMIT", comma ? ", " : ""); comma = 1; } if (t_flags & TF_NEEDSYN) { db_printf("%sTF_NEEDSYN", comma ? ", " : ""); comma = 1; } if (t_flags & TF_NEEDFIN) { db_printf("%sTF_NEEDFIN", comma ? ", " : ""); comma = 1; } if (t_flags & TF_NOPUSH) { db_printf("%sTF_NOPUSH", comma ? ", " : ""); comma = 1; } if (t_flags & TF_NOPUSH) { db_printf("%sTF_NOPUSH", comma ? ", " : ""); comma = 1; } if (t_flags & TF_MORETOCOME) { db_printf("%sTF_MORETOCOME", comma ? ", " : ""); comma = 1; } if (t_flags & TF_LQ_OVERFLOW) { db_printf("%sTF_LQ_OVERFLOW", comma ? ", " : ""); comma = 1; } if (t_flags & TF_LASTIDLE) { db_printf("%sTF_LASTIDLE", comma ? ", " : ""); comma = 1; } if (t_flags & TF_RXWIN0SENT) { db_printf("%sTF_RXWIN0SENT", comma ? ", " : ""); comma = 1; } if (t_flags & TF_FASTRECOVERY) { db_printf("%sTF_FASTRECOVERY", comma ? ", " : ""); comma = 1; } if (t_flags & TF_WASFRECOVERY) { db_printf("%sTF_WASFRECOVERY", comma ? ", " : ""); comma = 1; } if (t_flags & TF_SIGNATURE) { db_printf("%sTF_SIGNATURE", comma ? ", " : ""); comma = 1; } if (t_flags & TF_FORCEDATA) { db_printf("%sTF_FORCEDATA", comma ? ", " : ""); comma = 1; } if (t_flags & TF_TSO) { db_printf("%sTF_TSO", comma ? ", " : ""); comma = 1; } } static void db_print_toobflags(char t_oobflags) { int comma; comma = 0; if (t_oobflags & TCPOOB_HAVEDATA) { db_printf("%sTCPOOB_HAVEDATA", comma ? ", " : ""); comma = 1; } if (t_oobflags & TCPOOB_HADDATA) { db_printf("%sTCPOOB_HADDATA", comma ? ", " : ""); comma = 1; } } static void db_print_tcpcb(struct tcpcb *tp, const char *name, int indent) { db_print_indent(indent); db_printf("%s at %p\n", name, tp); indent += 2; db_print_indent(indent); db_printf("t_segq first: %p t_segqlen: %d t_dupacks: %d\n", LIST_FIRST(&tp->t_segq), tp->t_segqlen, tp->t_dupacks); db_print_indent(indent); db_printf("tt_rexmt: %p tt_persist: %p tt_keep: %p\n", &tp->t_timers->tt_rexmt, &tp->t_timers->tt_persist, &tp->t_timers->tt_keep); db_print_indent(indent); db_printf("tt_2msl: %p tt_delack: %p t_inpcb: %p\n", &tp->t_timers->tt_2msl, &tp->t_timers->tt_delack, tp->t_inpcb); db_print_indent(indent); db_printf("t_state: %d (", tp->t_state); db_print_tstate(tp->t_state); db_printf(")\n"); db_print_indent(indent); db_printf("t_flags: 0x%x (", tp->t_flags); db_print_tflags(tp->t_flags); db_printf(")\n"); db_print_indent(indent); db_printf("snd_una: 0x%08x snd_max: 0x%08x snd_nxt: x0%08x\n", tp->snd_una, tp->snd_max, tp->snd_nxt); db_print_indent(indent); db_printf("snd_up: 0x%08x snd_wl1: 0x%08x snd_wl2: 0x%08x\n", tp->snd_up, tp->snd_wl1, tp->snd_wl2); db_print_indent(indent); db_printf("iss: 0x%08x irs: 0x%08x rcv_nxt: 0x%08x\n", tp->iss, tp->irs, tp->rcv_nxt); db_print_indent(indent); db_printf("rcv_adv: 0x%08x rcv_wnd: %lu rcv_up: 0x%08x\n", tp->rcv_adv, tp->rcv_wnd, tp->rcv_up); db_print_indent(indent); db_printf("snd_wnd: %lu snd_cwnd: %lu snd_bwnd: %lu\n", tp->snd_wnd, tp->snd_cwnd, tp->snd_bwnd); db_print_indent(indent); db_printf("snd_ssthresh: %lu snd_bandwidth: %lu snd_recover: " "0x%08x\n", tp->snd_ssthresh, tp->snd_bandwidth, tp->snd_recover); db_print_indent(indent); db_printf("t_maxopd: %u t_rcvtime: %lu t_startime: %lu\n", tp->t_maxopd, tp->t_rcvtime, tp->t_starttime); db_print_indent(indent); db_printf("t_rttime: %d t_rtsq: 0x%08x t_bw_rtttime: %d\n", tp->t_rtttime, tp->t_rtseq, tp->t_bw_rtttime); db_print_indent(indent); db_printf("t_bw_rtseq: 0x%08x t_rxtcur: %d t_maxseg: %u " "t_srtt: %d\n", tp->t_bw_rtseq, tp->t_rxtcur, tp->t_maxseg, tp->t_srtt); db_print_indent(indent); db_printf("t_rttvar: %d t_rxtshift: %d t_rttmin: %u " "t_rttbest: %u\n", tp->t_rttvar, tp->t_rxtshift, tp->t_rttmin, tp->t_rttbest); db_print_indent(indent); db_printf("t_rttupdated: %lu max_sndwnd: %lu t_softerror: %d\n", tp->t_rttupdated, tp->max_sndwnd, tp->t_softerror); db_print_indent(indent); db_printf("t_oobflags: 0x%x (", tp->t_oobflags); db_print_toobflags(tp->t_oobflags); db_printf(") t_iobc: 0x%02x\n", tp->t_iobc); db_print_indent(indent); db_printf("snd_scale: %u rcv_scale: %u request_r_scale: %u\n", tp->snd_scale, tp->rcv_scale, tp->request_r_scale); db_print_indent(indent); db_printf("ts_recent: %u ts_recent_age: %lu\n", tp->ts_recent, tp->ts_recent_age); db_print_indent(indent); db_printf("ts_offset: %u last_ack_sent: 0x%08x snd_cwnd_prev: " "%lu\n", tp->ts_offset, tp->last_ack_sent, tp->snd_cwnd_prev); db_print_indent(indent); db_printf("snd_ssthresh_prev: %lu snd_recover_prev: 0x%08x " "t_badrxtwin: %lu\n", tp->snd_ssthresh_prev, tp->snd_recover_prev, tp->t_badrxtwin); db_print_indent(indent); db_printf("snd_numholes: %d snd_holes first: %p\n", tp->snd_numholes, TAILQ_FIRST(&tp->snd_holes)); db_print_indent(indent); db_printf("snd_fack: 0x%08x rcv_numsacks: %d sack_newdata: " "0x%08x\n", tp->snd_fack, tp->rcv_numsacks, tp->sack_newdata); /* Skip sackblks, sackhint. */ db_print_indent(indent); db_printf("t_rttlow: %d rfbuf_ts: %u rfbuf_cnt: %d\n", tp->t_rttlow, tp->rfbuf_ts, tp->rfbuf_cnt); } DB_SHOW_COMMAND(tcpcb, db_show_tcpcb) { struct tcpcb *tp; if (!have_addr) { db_printf("usage: show tcpcb \n"); return; } tp = (struct tcpcb *)addr; db_print_tcpcb(tp, "tcpcb", 0); } #endif