/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2002-2019 Jeffrey Roberson * Copyright (c) 2004, 2005 Bosko Milekic * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ * */ #include #include #include #include /* * This file includes definitions, structures, prototypes, and inlines that * should not be used outside of the actual implementation of UMA. */ /* * The brief summary; Zones describe unique allocation types. Zones are * organized into per-CPU caches which are filled by buckets. Buckets are * organized according to memory domains. Buckets are filled from kegs which * are also organized according to memory domains. Kegs describe a unique * allocation type, backend memory provider, and layout. Kegs are associated * with one or more zones and zones reference one or more kegs. Kegs provide * slabs which are virtually contiguous collections of pages. Each slab is * broken down int one or more items that will satisfy an individual allocation. * * Allocation is satisfied in the following order: * 1) Per-CPU cache * 2) Per-domain cache of buckets * 3) Slab from any of N kegs * 4) Backend page provider * * More detail on individual objects is contained below: * * Kegs contain lists of slabs which are stored in either the full bin, empty * bin, or partially allocated bin, to reduce fragmentation. They also contain * the user supplied value for size, which is adjusted for alignment purposes * and rsize is the result of that. The Keg also stores information for * managing a hash of page addresses that maps pages to uma_slab_t structures * for pages that don't have embedded uma_slab_t's. * * Keg slab lists are organized by memory domain to support NUMA allocation * policies. By default allocations are spread across domains to reduce the * potential for hotspots. Special keg creation flags may be specified to * prefer location allocation. However there is no strict enforcement as frees * may happen on any CPU and these are returned to the CPU-local cache * regardless of the originating domain. * * The uma_slab_t may be embedded in a UMA_SLAB_SIZE chunk of memory or it may * be allocated off the page from a special slab zone. The free list within a * slab is managed with a bitmask. For item sizes that would yield more than * 10% memory waste we potentially allocate a separate uma_slab_t if this will * improve the number of items per slab that will fit. * * The only really gross cases, with regards to memory waste, are for those * items that are just over half the page size. You can get nearly 50% waste, * so you fall back to the memory footprint of the power of two allocator. I * have looked at memory allocation sizes on many of the machines available to * me, and there does not seem to be an abundance of allocations at this range * so at this time it may not make sense to optimize for it. This can, of * course, be solved with dynamic slab sizes. * * Kegs may serve multiple Zones but by far most of the time they only serve * one. When a Zone is created, a Keg is allocated and setup for it. While * the backing Keg stores slabs, the Zone caches Buckets of items allocated * from the slabs. Each Zone is equipped with an init/fini and ctor/dtor * pair, as well as with its own set of small per-CPU caches, layered above * the Zone's general Bucket cache. * * The PCPU caches are protected by critical sections, and may be accessed * safely only from their associated CPU, while the Zones backed by the same * Keg all share a common Keg lock (to coalesce contention on the backing * slabs). The backing Keg typically only serves one Zone but in the case of * multiple Zones, one of the Zones is considered the Master Zone and all * Zone-related stats from the Keg are done in the Master Zone. For an * example of a Multi-Zone setup, refer to the Mbuf allocation code. */ /* * This is the representation for normal (Non OFFPAGE slab) * * i == item * s == slab pointer * * <---------------- Page (UMA_SLAB_SIZE) ------------------> * ___________________________________________________________ * | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___________ | * ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |slab header|| * ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |___________|| * |___________________________________________________________| * * * This is an OFFPAGE slab. These can be larger than UMA_SLAB_SIZE. * * ___________________________________________________________ * | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | * ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| | * ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| | * |___________________________________________________________| * ___________ ^ * |slab header| | * |___________|---* * */ #ifndef VM_UMA_INT_H #define VM_UMA_INT_H #define UMA_SLAB_SIZE PAGE_SIZE /* How big are our slabs? */ #define UMA_SLAB_MASK (PAGE_SIZE - 1) /* Mask to get back to the page */ #define UMA_SLAB_SHIFT PAGE_SHIFT /* Number of bits PAGE_MASK */ /* Max waste percentage before going to off page slab management */ #define UMA_MAX_WASTE 10 /* Max size of a CACHESPREAD slab. */ #define UMA_CACHESPREAD_MAX_SIZE (128 * 1024) /* * These flags must not overlap with the UMA_ZONE flags specified in uma.h. */ #define UMA_ZFLAG_OFFPAGE 0x00200000 /* * Force the slab structure * allocation off of the real * memory. */ #define UMA_ZFLAG_HASH 0x00400000 /* * Use a hash table instead of * caching information in the * vm_page. */ #define UMA_ZFLAG_VTOSLAB 0x00800000 /* * Zone uses vtoslab for * lookup. */ #define UMA_ZFLAG_CTORDTOR 0x01000000 /* Zone has ctor/dtor set. */ #define UMA_ZFLAG_LIMIT 0x02000000 /* Zone has limit set. */ #define UMA_ZFLAG_CACHE 0x04000000 /* uma_zcache_create()d it */ #define UMA_ZFLAG_RECLAIMING 0x08000000 /* Running zone_reclaim(). */ #define UMA_ZFLAG_BUCKET 0x10000000 /* Bucket zone. */ #define UMA_ZFLAG_INTERNAL 0x20000000 /* No offpage no PCPU. */ #define UMA_ZFLAG_TRASH 0x40000000 /* Add trash ctor/dtor. */ #define UMA_ZFLAG_CACHEONLY 0x80000000 /* Don't ask VM for buckets. */ #define UMA_ZFLAG_INHERIT \ (UMA_ZFLAG_OFFPAGE | UMA_ZFLAG_HASH | UMA_ZFLAG_VTOSLAB | \ UMA_ZFLAG_BUCKET | UMA_ZFLAG_INTERNAL | UMA_ZFLAG_CACHEONLY) #define PRINT_UMA_ZFLAGS "\20" \ "\40CACHEONLY" \ "\37TRASH" \ "\36INTERNAL" \ "\35BUCKET" \ "\34RECLAIMING" \ "\33CACHE" \ "\32LIMIT" \ "\31CTORDTOR" \ "\30VTOSLAB" \ "\27HASH" \ "\26OFFPAGE" \ "\23SMR" \ "\22ROUNDROBIN" \ "\21FIRSTTOUCH" \ "\20PCPU" \ "\17NODUMP" \ "\16CACHESPREAD" \ "\15MINBUCKET" \ "\14MAXBUCKET" \ "\13NOBUCKET" \ "\12SECONDARY" \ "\11NOTPAGE" \ "\10VM" \ "\7MTXCLASS" \ "\6NOFREE" \ "\5MALLOC" \ "\4NOTOUCH" \ "\2ZINIT" /* * Hash table for freed address -> slab translation. * * Only zones with memory not touchable by the allocator use the * hash table. Otherwise slabs are found with vtoslab(). */ #define UMA_HASH_SIZE_INIT 32 #define UMA_HASH(h, s) ((((uintptr_t)s) >> UMA_SLAB_SHIFT) & (h)->uh_hashmask) #define UMA_HASH_INSERT(h, s, mem) \ LIST_INSERT_HEAD(&(h)->uh_slab_hash[UMA_HASH((h), \ (mem))], slab_tohashslab(s), uhs_hlink) #define UMA_HASH_REMOVE(h, s) \ LIST_REMOVE(slab_tohashslab(s), uhs_hlink) LIST_HEAD(slabhashhead, uma_hash_slab); struct uma_hash { struct slabhashhead *uh_slab_hash; /* Hash table for slabs */ u_int uh_hashsize; /* Current size of the hash table */ u_int uh_hashmask; /* Mask used during hashing */ }; /* * Align field or structure to cache 'sector' in intel terminology. This * is more efficient with adjacent line prefetch. */ #if defined(__amd64__) || defined(__powerpc64__) #define UMA_SUPER_ALIGN (CACHE_LINE_SIZE * 2) #else #define UMA_SUPER_ALIGN CACHE_LINE_SIZE #endif #define UMA_ALIGN __aligned(UMA_SUPER_ALIGN) /* * The uma_bucket structure is used to queue and manage buckets divorced * from per-cpu caches. They are loaded into uma_cache_bucket structures * for use. */ struct uma_bucket { STAILQ_ENTRY(uma_bucket) ub_link; /* Link into the zone */ int16_t ub_cnt; /* Count of items in bucket. */ int16_t ub_entries; /* Max items. */ smr_seq_t ub_seq; /* SMR sequence number. */ void *ub_bucket[]; /* actual allocation storage */ }; typedef struct uma_bucket * uma_bucket_t; /* * The uma_cache_bucket structure is statically allocated on each per-cpu * cache. Its use reduces branches and cache misses in the fast path. */ struct uma_cache_bucket { uma_bucket_t ucb_bucket; int16_t ucb_cnt; int16_t ucb_entries; uint32_t ucb_spare; }; typedef struct uma_cache_bucket * uma_cache_bucket_t; /* * The uma_cache structure is allocated for each cpu for every zone * type. This optimizes synchronization out of the allocator fast path. */ struct uma_cache { struct uma_cache_bucket uc_freebucket; /* Bucket we're freeing to */ struct uma_cache_bucket uc_allocbucket; /* Bucket to allocate from */ struct uma_cache_bucket uc_crossbucket; /* cross domain bucket */ uint64_t uc_allocs; /* Count of allocations */ uint64_t uc_frees; /* Count of frees */ } UMA_ALIGN; typedef struct uma_cache * uma_cache_t; LIST_HEAD(slabhead, uma_slab); /* * The cache structure pads perfectly into 64 bytes so we use spare * bits from the embedded cache buckets to store information from the zone * and keep all fast-path allocations accessing a single per-cpu line. */ static inline void cache_set_uz_flags(uma_cache_t cache, uint32_t flags) { cache->uc_freebucket.ucb_spare = flags; } static inline void cache_set_uz_size(uma_cache_t cache, uint32_t size) { cache->uc_allocbucket.ucb_spare = size; } static inline uint32_t cache_uz_flags(uma_cache_t cache) { return (cache->uc_freebucket.ucb_spare); } static inline uint32_t cache_uz_size(uma_cache_t cache) { return (cache->uc_allocbucket.ucb_spare); } /* * Per-domain slab lists. Embedded in the kegs. */ struct uma_domain { struct mtx_padalign ud_lock; /* Lock for the domain lists. */ struct slabhead ud_part_slab; /* partially allocated slabs */ struct slabhead ud_free_slab; /* completely unallocated slabs */ struct slabhead ud_full_slab; /* fully allocated slabs */ uint32_t ud_pages; /* Total page count */ uint32_t ud_free; /* Count of items free in slabs */ } __aligned(CACHE_LINE_SIZE); typedef struct uma_domain * uma_domain_t; /* * Keg management structure * * TODO: Optimize for cache line size * */ struct uma_keg { struct uma_hash uk_hash; LIST_HEAD(,uma_zone) uk_zones; /* Keg's zones */ struct domainset_ref uk_dr; /* Domain selection policy. */ uint32_t uk_align; /* Alignment mask */ uint32_t uk_reserve; /* Number of reserved items. */ uint32_t uk_size; /* Requested size of each item */ uint32_t uk_rsize; /* Real size of each item */ uma_init uk_init; /* Keg's init routine */ uma_fini uk_fini; /* Keg's fini routine */ uma_alloc uk_allocf; /* Allocation function */ uma_free uk_freef; /* Free routine */ u_long uk_offset; /* Next free offset from base KVA */ vm_offset_t uk_kva; /* Zone base KVA */ uint32_t uk_pgoff; /* Offset to uma_slab struct */ uint16_t uk_ppera; /* pages per allocation from backend */ uint16_t uk_ipers; /* Items per slab */ uint32_t uk_flags; /* Internal flags */ /* Least used fields go to the last cache line. */ const char *uk_name; /* Name of creating zone. */ LIST_ENTRY(uma_keg) uk_link; /* List of all kegs */ /* Must be last, variable sized. */ struct uma_domain uk_domain[]; /* Keg's slab lists. */ }; typedef struct uma_keg * uma_keg_t; #ifdef _KERNEL #define KEG_ASSERT_COLD(k) \ KASSERT(uma_keg_get_allocs((k)) == 0, \ ("keg %s initialization after use.", (k)->uk_name)) /* * Free bits per-slab. */ #define SLAB_MAX_SETSIZE (PAGE_SIZE / UMA_SMALLEST_UNIT) #define SLAB_MIN_SETSIZE _BITSET_BITS BITSET_DEFINE(noslabbits, 0); /* * The slab structure manages a single contiguous allocation from backing * store and subdivides it into individually allocatable items. */ struct uma_slab { LIST_ENTRY(uma_slab) us_link; /* slabs in zone */ uint16_t us_freecount; /* How many are free? */ uint8_t us_flags; /* Page flags see uma.h */ uint8_t us_domain; /* Backing NUMA domain. */ struct noslabbits us_free; /* Free bitmask, flexible. */ }; _Static_assert(sizeof(struct uma_slab) == offsetof(struct uma_slab, us_free), "us_free field must be last"); #if MAXMEMDOM >= 255 #error "Slab domain type insufficient" #endif typedef struct uma_slab * uma_slab_t; /* * On INVARIANTS builds, the slab contains a second bitset of the same size, * "dbg_bits", which is laid out immediately after us_free. */ #ifdef INVARIANTS #define SLAB_BITSETS 2 #else #define SLAB_BITSETS 1 #endif /* These three functions are for embedded (!OFFPAGE) use only. */ size_t slab_sizeof(int nitems); size_t slab_space(int nitems); int slab_ipers(size_t size, int align); /* * Slab structure with a full sized bitset and hash link for both * HASH and OFFPAGE zones. */ struct uma_hash_slab { LIST_ENTRY(uma_hash_slab) uhs_hlink; /* Link for hash table */ uint8_t *uhs_data; /* First item */ struct uma_slab uhs_slab; /* Must be last. */ }; typedef struct uma_hash_slab * uma_hash_slab_t; static inline uma_hash_slab_t slab_tohashslab(uma_slab_t slab) { return (__containerof(slab, struct uma_hash_slab, uhs_slab)); } static inline void * slab_data(uma_slab_t slab, uma_keg_t keg) { if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) == 0) return ((void *)((uintptr_t)slab - keg->uk_pgoff)); else return (slab_tohashslab(slab)->uhs_data); } static inline void * slab_item(uma_slab_t slab, uma_keg_t keg, int index) { uintptr_t data; data = (uintptr_t)slab_data(slab, keg); return ((void *)(data + keg->uk_rsize * index)); } static inline int slab_item_index(uma_slab_t slab, uma_keg_t keg, void *item) { uintptr_t data; data = (uintptr_t)slab_data(slab, keg); return (((uintptr_t)item - data) / keg->uk_rsize); } #endif /* _KERNEL */ STAILQ_HEAD(uma_bucketlist, uma_bucket); struct uma_zone_domain { struct uma_bucketlist uzd_buckets; /* full buckets */ uma_bucket_t uzd_cross; /* Fills from cross buckets. */ long uzd_nitems; /* total item count */ long uzd_imax; /* maximum item count this period */ long uzd_imin; /* minimum item count this period */ long uzd_wss; /* working set size estimate */ } __aligned(CACHE_LINE_SIZE); typedef struct uma_zone_domain * uma_zone_domain_t; /* * Zone structure - per memory type. */ struct uma_zone { /* Offset 0, used in alloc/free fast/medium fast path and const. */ uma_keg_t uz_keg; /* This zone's keg if !CACHE */ struct uma_zone_domain *uz_domain; /* per-domain buckets */ uint32_t uz_flags; /* Flags inherited from kegs */ uint32_t uz_size; /* Size inherited from kegs */ uma_ctor uz_ctor; /* Constructor for each allocation */ uma_dtor uz_dtor; /* Destructor */ smr_t uz_smr; /* Safe memory reclaim context. */ uint64_t uz_max_items; /* Maximum number of items to alloc */ uint32_t uz_sleepers; /* Threads sleeping on limit */ uint16_t uz_bucket_size; /* Number of items in full bucket */ uint16_t uz_bucket_size_max; /* Maximum number of bucket items */ /* Offset 64, used in bucket replenish. */ uma_import uz_import; /* Import new memory to cache. */ uma_release uz_release; /* Release memory from cache. */ void *uz_arg; /* Import/release argument. */ uma_init uz_init; /* Initializer for each item */ uma_fini uz_fini; /* Finalizer for each item. */ void *uz_spare1; uint64_t uz_bkt_count; /* Items in bucket cache */ uint64_t uz_bkt_max; /* Maximum bucket cache size */ /* Offset 128 Rare. */ /* * The lock is placed here to avoid adjacent line prefetcher * in fast paths and to take up space near infrequently accessed * members to reduce alignment overhead. */ struct mtx uz_lock; /* Lock for the zone */ LIST_ENTRY(uma_zone) uz_link; /* List of all zones in keg */ const char *uz_name; /* Text name of the zone */ /* The next two fields are used to print a rate-limited warnings. */ const char *uz_warning; /* Warning to print on failure */ struct timeval uz_ratecheck; /* Warnings rate-limiting */ struct task uz_maxaction; /* Task to run when at limit */ uint16_t uz_bucket_size_min; /* Min number of items in bucket */ struct mtx_padalign uz_cross_lock; /* Cross domain free lock */ /* Offset 256+, stats and misc. */ counter_u64_t uz_allocs; /* Total number of allocations */ counter_u64_t uz_frees; /* Total number of frees */ counter_u64_t uz_fails; /* Total number of alloc failures */ uint64_t uz_sleeps; /* Total number of alloc sleeps */ uint64_t uz_xdomain; /* Total number of cross-domain frees */ volatile uint64_t uz_items; /* Total items count & sleepers */ char *uz_ctlname; /* sysctl safe name string. */ struct sysctl_oid *uz_oid; /* sysctl oid pointer. */ int uz_namecnt; /* duplicate name count. */ /* * This HAS to be the last item because we adjust the zone size * based on NCPU and then allocate the space for the zones. */ struct uma_cache uz_cpu[]; /* Per cpu caches */ /* uz_domain follows here. */ }; /* * Macros for interpreting the uz_items field. 20 bits of sleeper count * and 44 bit of item count. */ #define UZ_ITEMS_SLEEPER_SHIFT 44LL #define UZ_ITEMS_SLEEPERS_MAX ((1 << (64 - UZ_ITEMS_SLEEPER_SHIFT)) - 1) #define UZ_ITEMS_COUNT_MASK ((1LL << UZ_ITEMS_SLEEPER_SHIFT) - 1) #define UZ_ITEMS_COUNT(x) ((x) & UZ_ITEMS_COUNT_MASK) #define UZ_ITEMS_SLEEPERS(x) ((x) >> UZ_ITEMS_SLEEPER_SHIFT) #define UZ_ITEMS_SLEEPER (1LL << UZ_ITEMS_SLEEPER_SHIFT) #define ZONE_ASSERT_COLD(z) \ KASSERT(uma_zone_get_allocs((z)) == 0, \ ("zone %s initialization after use.", (z)->uz_name)) #undef UMA_ALIGN #ifdef _KERNEL /* Internal prototypes */ static __inline uma_slab_t hash_sfind(struct uma_hash *hash, uint8_t *data); /* Lock Macros */ #define KEG_LOCKPTR(k, d) (struct mtx *)&(k)->uk_domain[(d)].ud_lock #define KEG_LOCK_INIT(k, d, lc) \ do { \ if ((lc)) \ mtx_init(KEG_LOCKPTR(k, d), (k)->uk_name, \ (k)->uk_name, MTX_DEF | MTX_DUPOK); \ else \ mtx_init(KEG_LOCKPTR(k, d), (k)->uk_name, \ "UMA zone", MTX_DEF | MTX_DUPOK); \ } while (0) #define KEG_LOCK_FINI(k, d) mtx_destroy(KEG_LOCKPTR(k, d)) #define KEG_LOCK(k, d) \ ({ mtx_lock(KEG_LOCKPTR(k, d)); KEG_LOCKPTR(k, d); }) #define KEG_UNLOCK(k, d) mtx_unlock(KEG_LOCKPTR(k, d)) #define KEG_LOCK_ASSERT(k, d) mtx_assert(KEG_LOCKPTR(k, d), MA_OWNED) #define KEG_GET(zone, keg) do { \ (keg) = (zone)->uz_keg; \ KASSERT((void *)(keg) != (void *)&(zone)->uz_lock, \ ("%s: Invalid zone %p type", __func__, (zone))); \ } while (0) #define ZONE_LOCK_INIT(z, lc) \ do { \ if ((lc)) \ mtx_init(&(z)->uz_lock, (z)->uz_name, \ (z)->uz_name, MTX_DEF | MTX_DUPOK); \ else \ mtx_init(&(z)->uz_lock, (z)->uz_name, \ "UMA zone", MTX_DEF | MTX_DUPOK); \ } while (0) #define ZONE_LOCK(z) mtx_lock(&(z)->uz_lock) #define ZONE_TRYLOCK(z) mtx_trylock(&(z)->uz_lock) #define ZONE_UNLOCK(z) mtx_unlock(&(z)->uz_lock) #define ZONE_LOCK_FINI(z) mtx_destroy(&(z)->uz_lock) #define ZONE_LOCK_ASSERT(z) mtx_assert(&(z)->uz_lock, MA_OWNED) #define ZONE_CROSS_LOCK_INIT(z) \ mtx_init(&(z)->uz_cross_lock, "UMA Cross", NULL, MTX_DEF) #define ZONE_CROSS_LOCK(z) mtx_lock(&(z)->uz_cross_lock) #define ZONE_CROSS_UNLOCK(z) mtx_unlock(&(z)->uz_cross_lock) #define ZONE_CROSS_LOCK_FINI(z) mtx_destroy(&(z)->uz_cross_lock) /* * Find a slab within a hash table. This is used for OFFPAGE zones to lookup * the slab structure. * * Arguments: * hash The hash table to search. * data The base page of the item. * * Returns: * A pointer to a slab if successful, else NULL. */ static __inline uma_slab_t hash_sfind(struct uma_hash *hash, uint8_t *data) { uma_hash_slab_t slab; u_int hval; hval = UMA_HASH(hash, data); LIST_FOREACH(slab, &hash->uh_slab_hash[hval], uhs_hlink) { if ((uint8_t *)slab->uhs_data == data) return (&slab->uhs_slab); } return (NULL); } static __inline uma_slab_t vtoslab(vm_offset_t va) { vm_page_t p; p = PHYS_TO_VM_PAGE(pmap_kextract(va)); return (p->plinks.uma.slab); } static __inline void vtozoneslab(vm_offset_t va, uma_zone_t *zone, uma_slab_t *slab) { vm_page_t p; p = PHYS_TO_VM_PAGE(pmap_kextract(va)); *slab = p->plinks.uma.slab; *zone = p->plinks.uma.zone; } static __inline void vsetzoneslab(vm_offset_t va, uma_zone_t zone, uma_slab_t slab) { vm_page_t p; p = PHYS_TO_VM_PAGE(pmap_kextract(va)); p->plinks.uma.slab = slab; p->plinks.uma.zone = zone; } extern unsigned long uma_kmem_limit; extern unsigned long uma_kmem_total; /* Adjust bytes under management by UMA. */ static inline void uma_total_dec(unsigned long size) { atomic_subtract_long(&uma_kmem_total, size); } static inline void uma_total_inc(unsigned long size) { if (atomic_fetchadd_long(&uma_kmem_total, size) > uma_kmem_limit) uma_reclaim_wakeup(); } /* * The following two functions may be defined by architecture specific code * if they can provide more efficient allocation functions. This is useful * for using direct mapped addresses. */ void *uma_small_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, int wait); void uma_small_free(void *mem, vm_size_t size, uint8_t flags); /* Set a global soft limit on UMA managed memory. */ void uma_set_limit(unsigned long limit); #endif /* _KERNEL */ #endif /* VM_UMA_INT_H */