/* * Copyright (c) 1984, 1985, 1986, 1987, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ns_ip.c 8.1 (Berkeley) 6/10/93 */ /* * Software interface driver for encapsulating ns in ip. */ #ifdef NSIP #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct ifnet_en { struct ifnet ifen_ifnet; struct route ifen_route; struct in_addr ifen_src; struct in_addr ifen_dst; struct ifnet_en *ifen_next; }; int nsipoutput(), nsipioctl(), nsipstart(); #define LOMTU (1024+512); struct ifnet nsipif; struct ifnet_en *nsip_list; /* list of all hosts and gateways or broadcast addrs */ struct ifnet_en * nsipattach() { register struct ifnet_en *m; register struct ifnet *ifp; if (nsipif.if_mtu == 0) { ifp = &nsipif; ifp->if_name = "nsip"; ifp->if_mtu = LOMTU; ifp->if_ioctl = nsipioctl; ifp->if_output = nsipoutput; ifp->if_start = nsipstart; ifp->if_flags = IFF_POINTOPOINT; } MALLOC((m), struct ifnet_en *, sizeof(*m), M_PCB, M_NOWAIT); if (m == NULL) return (NULL); m->ifen_next = nsip_list; nsip_list = m; ifp = &m->ifen_ifnet; ifp->if_name = "nsip"; ifp->if_mtu = LOMTU; ifp->if_ioctl = nsipioctl; ifp->if_output = nsipoutput; ifp->if_start = nsipstart; ifp->if_flags = IFF_POINTOPOINT; ifp->if_unit = nsipif.if_unit++; if_attach(ifp); return (m); } /* * Process an ioctl request. */ /* ARGSUSED */ nsipioctl(ifp, cmd, data) register struct ifnet *ifp; int cmd; caddr_t data; { int error = 0; struct ifreq *ifr; switch (cmd) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; /* fall into: */ case SIOCSIFDSTADDR: /* * Everything else is done at a higher level. */ break; case SIOCSIFFLAGS: ifr = (struct ifreq *)data; if ((ifr->ifr_flags & IFF_UP) == 0) error = nsip_free(ifp); default: error = EINVAL; } return (error); } struct mbuf *nsip_badlen; struct mbuf *nsip_lastin; int nsip_hold_input; idpip_input(m, ifp) register struct mbuf *m; struct ifnet *ifp; { register struct ip *ip; register struct idp *idp; register struct ifqueue *ifq = &nsintrq; int len, s; if (nsip_hold_input) { if (nsip_lastin) { m_freem(nsip_lastin); } nsip_lastin = m_copym(m, 0, (int)M_COPYALL, M_DONTWAIT); } /* * Get IP and IDP header together in first mbuf. */ nsipif.if_ipackets++; s = sizeof (struct ip) + sizeof (struct idp); if (((m->m_flags & M_EXT) || m->m_len < s) && (m = m_pullup(m, s)) == 0) { nsipif.if_ierrors++; return; } ip = mtod(m, struct ip *); if (ip->ip_hl > (sizeof (struct ip) >> 2)) { ip_stripoptions(m, (struct mbuf *)0); if (m->m_len < s) { if ((m = m_pullup(m, s)) == 0) { nsipif.if_ierrors++; return; } ip = mtod(m, struct ip *); } } /* * Make mbuf data length reflect IDP length. * If not enough data to reflect IDP length, drop. */ m->m_data += sizeof (struct ip); m->m_len -= sizeof (struct ip); m->m_pkthdr.len -= sizeof (struct ip); idp = mtod(m, struct idp *); len = ntohs(idp->idp_len); if (len & 1) len++; /* Preserve Garbage Byte */ if (ip->ip_len != len) { if (len > ip->ip_len) { nsipif.if_ierrors++; if (nsip_badlen) m_freem(nsip_badlen); nsip_badlen = m; return; } /* Any extra will be trimmed off by the NS routines */ } /* * Place interface pointer before the data * for the receiving protocol. */ m->m_pkthdr.rcvif = ifp; /* * Deliver to NS */ s = splimp(); if (IF_QFULL(ifq)) { IF_DROP(ifq); bad: m_freem(m); splx(s); return; } IF_ENQUEUE(ifq, m); schednetisr(NETISR_NS); splx(s); return; } /* ARGSUSED */ nsipoutput(ifn, m, dst) struct ifnet_en *ifn; register struct mbuf *m; struct sockaddr *dst; { register struct ip *ip; register struct route *ro = &(ifn->ifen_route); register int len = 0; register struct idp *idp = mtod(m, struct idp *); int error; ifn->ifen_ifnet.if_opackets++; nsipif.if_opackets++; /* * Calculate data length and make space * for IP header. */ len = ntohs(idp->idp_len); if (len & 1) len++; /* Preserve Garbage Byte */ /* following clause not necessary on vax */ if (3 & (int)m->m_data) { /* force longword alignment of ip hdr */ struct mbuf *m0 = m_gethdr(MT_HEADER, M_DONTWAIT); if (m0 == 0) { m_freem(m); return (ENOBUFS); } MH_ALIGN(m0, sizeof (struct ip)); m0->m_flags = m->m_flags & M_COPYFLAGS; m0->m_next = m; m0->m_len = sizeof (struct ip); m0->m_pkthdr.len = m0->m_len + m->m_len; m->m_flags &= ~M_PKTHDR; } else { M_PREPEND(m, sizeof (struct ip), M_DONTWAIT); if (m == 0) return (ENOBUFS); } /* * Fill in IP header. */ ip = mtod(m, struct ip *); *(long *)ip = 0; ip->ip_p = IPPROTO_IDP; ip->ip_src = ifn->ifen_src; ip->ip_dst = ifn->ifen_dst; ip->ip_len = (u_short)len + sizeof (struct ip); ip->ip_ttl = MAXTTL; /* * Output final datagram. */ error = (ip_output(m, (struct mbuf *)0, ro, SO_BROADCAST, NULL)); if (error) { ifn->ifen_ifnet.if_oerrors++; ifn->ifen_ifnet.if_ierrors = error; } return (error); bad: m_freem(m); return (ENETUNREACH); } nsipstart(ifp) struct ifnet *ifp; { panic("nsip_start called\n"); } struct ifreq ifr = {"nsip0"}; nsip_route(m) register struct mbuf *m; { register struct nsip_req *rq = mtod(m, struct nsip_req *); struct sockaddr_ns *ns_dst = (struct sockaddr_ns *)&rq->rq_ns; struct sockaddr_in *ip_dst = (struct sockaddr_in *)&rq->rq_ip; struct route ro; struct ifnet_en *ifn; struct sockaddr_in *src; /* * First, make sure we already have an ns address: */ if (ns_hosteqnh(ns_thishost, ns_zerohost)) return (EADDRNOTAVAIL); /* * Now, determine if we can get to the destination */ bzero((caddr_t)&ro, sizeof (ro)); ro.ro_dst = *(struct sockaddr *)ip_dst; rtalloc(&ro); if (ro.ro_rt == 0 || ro.ro_rt->rt_ifp == 0) { return (ENETUNREACH); } /* * And see how he's going to get back to us: * i.e., what return ip address do we use? */ { register struct in_ifaddr *ia; struct ifnet *ifp = ro.ro_rt->rt_ifp; for (ia = in_ifaddr; ia; ia = ia->ia_next) if (ia->ia_ifp == ifp) break; if (ia == 0) ia = in_ifaddr; if (ia == 0) { RTFREE(ro.ro_rt); return (EADDRNOTAVAIL); } src = (struct sockaddr_in *)&ia->ia_addr; } /* * Is there a free (pseudo-)interface or space? */ for (ifn = nsip_list; ifn; ifn = ifn->ifen_next) { if ((ifn->ifen_ifnet.if_flags & IFF_UP) == 0) break; } if (ifn == NULL) ifn = nsipattach(); if (ifn == NULL) { RTFREE(ro.ro_rt); return (ENOBUFS); } ifn->ifen_route = ro; ifn->ifen_dst = ip_dst->sin_addr; ifn->ifen_src = src->sin_addr; /* * now configure this as a point to point link */ ifr.ifr_name[4] = '0' + nsipif.if_unit - 1; ifr.ifr_dstaddr = * (struct sockaddr *) ns_dst; (void)ns_control((struct socket *)0, (int)SIOCSIFDSTADDR, (caddr_t)&ifr, (struct ifnet *)ifn); satons_addr(ifr.ifr_addr).x_host = ns_thishost; return (ns_control((struct socket *)0, (int)SIOCSIFADDR, (caddr_t)&ifr, (struct ifnet *)ifn)); } nsip_free(ifp) struct ifnet *ifp; { register struct ifnet_en *ifn = (struct ifnet_en *)ifp; struct route *ro = & ifn->ifen_route; if (ro->ro_rt) { RTFREE(ro->ro_rt); ro->ro_rt = 0; } ifp->if_flags &= ~IFF_UP; return (0); } nsip_ctlinput(cmd, sa) int cmd; struct sockaddr *sa; { extern u_char inetctlerrmap[]; struct sockaddr_in *sin; int in_rtchange(); if ((unsigned)cmd >= PRC_NCMDS) return; if (sa->sa_family != AF_INET && sa->sa_family != AF_IMPLINK) return; sin = (struct sockaddr_in *)sa; if (sin->sin_addr.s_addr == INADDR_ANY) return; switch (cmd) { case PRC_ROUTEDEAD: case PRC_REDIRECT_NET: case PRC_REDIRECT_HOST: case PRC_REDIRECT_TOSNET: case PRC_REDIRECT_TOSHOST: nsip_rtchange(&sin->sin_addr); break; } } nsip_rtchange(dst) register struct in_addr *dst; { register struct ifnet_en *ifn; for (ifn = nsip_list; ifn; ifn = ifn->ifen_next) { if (ifn->ifen_dst.s_addr == dst->s_addr && ifn->ifen_route.ro_rt) { RTFREE(ifn->ifen_route.ro_rt); ifn->ifen_route.ro_rt = 0; } } } #endif