/*- * Copyright (c) 2015 The FreeBSD Foundation * All rights reserved. * * This software was developed by Konstantin Belousov * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static struct dmar_unit *dmar_ir_find(device_t src, uint16_t *rid, int *is_dmar); static void dmar_ir_program_irte(struct dmar_unit *unit, u_int idx, uint64_t low, uint16_t rid); static int dmar_ir_free_irte(struct dmar_unit *unit, u_int cookie); int iommu_alloc_msi_intr(device_t src, u_int *cookies, u_int count) { struct dmar_unit *unit; vmem_addr_t vmem_res; u_int idx, i; int error; unit = dmar_ir_find(src, NULL, NULL); if (unit == NULL || !unit->ir_enabled) { for (i = 0; i < count; i++) cookies[i] = -1; return (EOPNOTSUPP); } error = vmem_alloc(unit->irtids, count, M_FIRSTFIT | M_NOWAIT, &vmem_res); if (error != 0) { KASSERT(error != EOPNOTSUPP, ("impossible EOPNOTSUPP from vmem")); return (error); } idx = vmem_res; for (i = 0; i < count; i++) cookies[i] = idx + i; return (0); } int iommu_map_msi_intr(device_t src, u_int cpu, u_int vector, u_int cookie, uint64_t *addr, uint32_t *data) { struct dmar_unit *unit; uint64_t low; uint16_t rid; int is_dmar; unit = dmar_ir_find(src, &rid, &is_dmar); if (is_dmar) { KASSERT(unit == NULL, ("DMAR cannot translate itself")); /* * See VT-d specification, 5.1.6 Remapping Hardware - * Interrupt Programming. */ *data = vector; *addr = MSI_INTEL_ADDR_BASE | ((cpu & 0xff) << 12); if (x2apic_mode) *addr |= ((uint64_t)cpu & 0xffffff00) << 32; else KASSERT(cpu <= 0xff, ("cpu id too big %d", cpu)); return (0); } if (unit == NULL || !unit->ir_enabled || cookie == -1) return (EOPNOTSUPP); low = (DMAR_X2APIC(unit) ? DMAR_IRTE1_DST_x2APIC(cpu) : DMAR_IRTE1_DST_xAPIC(cpu)) | DMAR_IRTE1_V(vector) | DMAR_IRTE1_DLM_FM | DMAR_IRTE1_TM_EDGE | DMAR_IRTE1_RH_DIRECT | DMAR_IRTE1_DM_PHYSICAL | DMAR_IRTE1_P; dmar_ir_program_irte(unit, cookie, low, rid); if (addr != NULL) { /* * See VT-d specification, 5.1.5.2 MSI and MSI-X * Register Programming. */ *addr = MSI_INTEL_ADDR_BASE | ((cookie & 0x7fff) << 5) | ((cookie & 0x8000) << 2) | 0x18; *data = 0; } return (0); } int iommu_unmap_msi_intr(device_t src, u_int cookie) { struct dmar_unit *unit; if (cookie == -1) return (0); unit = dmar_ir_find(src, NULL, NULL); return (dmar_ir_free_irte(unit, cookie)); } int iommu_map_ioapic_intr(u_int ioapic_id, u_int cpu, u_int vector, bool edge, bool activehi, int irq, u_int *cookie, uint32_t *hi, uint32_t *lo) { struct dmar_unit *unit; vmem_addr_t vmem_res; uint64_t low, iorte; u_int idx; int error; uint16_t rid; unit = dmar_find_ioapic(ioapic_id, &rid); if (unit == NULL || !unit->ir_enabled) { *cookie = -1; return (EOPNOTSUPP); } error = vmem_alloc(unit->irtids, 1, M_FIRSTFIT | M_NOWAIT, &vmem_res); if (error != 0) { KASSERT(error != EOPNOTSUPP, ("impossible EOPNOTSUPP from vmem")); return (error); } idx = vmem_res; low = 0; switch (irq) { case IRQ_EXTINT: low |= DMAR_IRTE1_DLM_ExtINT; break; case IRQ_NMI: low |= DMAR_IRTE1_DLM_NMI; break; case IRQ_SMI: low |= DMAR_IRTE1_DLM_SMI; break; default: KASSERT(vector != 0, ("No vector for IRQ %u", irq)); low |= DMAR_IRTE1_DLM_FM | DMAR_IRTE1_V(vector); break; } low |= (DMAR_X2APIC(unit) ? DMAR_IRTE1_DST_x2APIC(cpu) : DMAR_IRTE1_DST_xAPIC(cpu)) | (edge ? DMAR_IRTE1_TM_EDGE : DMAR_IRTE1_TM_LEVEL) | DMAR_IRTE1_RH_DIRECT | DMAR_IRTE1_DM_PHYSICAL | DMAR_IRTE1_P; dmar_ir_program_irte(unit, idx, low, rid); if (hi != NULL) { /* * See VT-d specification, 5.1.5.1 I/OxAPIC * Programming. */ iorte = (1ULL << 48) | ((uint64_t)(idx & 0x7fff) << 49) | ((idx & 0x8000) != 0 ? (1 << 11) : 0) | (edge ? IOART_TRGREDG : IOART_TRGRLVL) | (activehi ? IOART_INTAHI : IOART_INTALO) | IOART_DELFIXED | vector; *hi = iorte >> 32; *lo = iorte; } *cookie = idx; return (0); } int iommu_unmap_ioapic_intr(u_int ioapic_id, u_int *cookie) { struct dmar_unit *unit; u_int idx; idx = *cookie; if (idx == -1) return (0); *cookie = -1; unit = dmar_find_ioapic(ioapic_id, NULL); KASSERT(unit != NULL && unit->ir_enabled, ("unmap: cookie %d unit %p", idx, unit)); return (dmar_ir_free_irte(unit, idx)); } static struct dmar_unit * dmar_ir_find(device_t src, uint16_t *rid, int *is_dmar) { devclass_t src_class; struct dmar_unit *unit; /* * We need to determine if the interrupt source generates FSB * interrupts. If yes, it is either DMAR, in which case * interrupts are not remapped. Or it is HPET, and interrupts * are remapped. For HPET, source id is reported by HPET * record in DMAR ACPI table. */ if (is_dmar != NULL) *is_dmar = FALSE; src_class = device_get_devclass(src); if (src_class == devclass_find("dmar")) { unit = NULL; if (is_dmar != NULL) *is_dmar = TRUE; } else if (src_class == devclass_find("hpet")) { unit = dmar_find_hpet(src, rid); } else { unit = dmar_find(src, bootverbose); if (unit != NULL && rid != NULL) dmar_get_requester(src, rid); } return (unit); } static void dmar_ir_program_irte(struct dmar_unit *unit, u_int idx, uint64_t low, uint16_t rid) { dmar_irte_t *irte; uint64_t high; KASSERT(idx < unit->irte_cnt, ("bad cookie %d %d", idx, unit->irte_cnt)); irte = &(unit->irt[idx]); high = DMAR_IRTE2_SVT_RID | DMAR_IRTE2_SQ_RID | DMAR_IRTE2_SID_RID(rid); if (bootverbose) { device_printf(unit->dev, "programming irte[%d] rid %#x high %#jx low %#jx\n", idx, rid, (uintmax_t)high, (uintmax_t)low); } DMAR_LOCK(unit); if ((irte->irte1 & DMAR_IRTE1_P) != 0) { /* * The rte is already valid. Assume that the request * is to remap the interrupt for balancing. Only low * word of rte needs to be changed. Assert that the * high word contains expected value. */ KASSERT(irte->irte2 == high, ("irte2 mismatch, %jx %jx", (uintmax_t)irte->irte2, (uintmax_t)high)); dmar_pte_update(&irte->irte1, low); } else { dmar_pte_store(&irte->irte2, high); dmar_pte_store(&irte->irte1, low); } dmar_qi_invalidate_iec(unit, idx, 1); DMAR_UNLOCK(unit); } static int dmar_ir_free_irte(struct dmar_unit *unit, u_int cookie) { dmar_irte_t *irte; KASSERT(unit != NULL && unit->ir_enabled, ("unmap: cookie %d unit %p", cookie, unit)); KASSERT(cookie < unit->irte_cnt, ("bad cookie %u %u", cookie, unit->irte_cnt)); irte = &(unit->irt[cookie]); dmar_pte_clear(&irte->irte1); dmar_pte_clear(&irte->irte2); DMAR_LOCK(unit); dmar_qi_invalidate_iec(unit, cookie, 1); DMAR_UNLOCK(unit); vmem_free(unit->irtids, cookie, 1); return (0); } static u_int clp2(u_int v) { return (powerof2(v) ? v : 1 << fls(v)); } int dmar_init_irt(struct dmar_unit *unit) { if ((unit->hw_ecap & DMAR_ECAP_IR) == 0) return (0); unit->ir_enabled = 1; TUNABLE_INT_FETCH("hw.dmar.ir", &unit->ir_enabled); if (!unit->ir_enabled) return (0); if (!unit->qi_enabled) { unit->ir_enabled = 0; if (bootverbose) device_printf(unit->dev, "QI disabled, disabling interrupt remapping\n"); return (0); } unit->irte_cnt = clp2(num_io_irqs); unit->irt = (dmar_irte_t *)(uintptr_t)kmem_alloc_contig( unit->irte_cnt * sizeof(dmar_irte_t), M_ZERO | M_WAITOK, 0, dmar_high, PAGE_SIZE, 0, DMAR_IS_COHERENT(unit) ? VM_MEMATTR_DEFAULT : VM_MEMATTR_UNCACHEABLE); if (unit->irt == NULL) return (ENOMEM); unit->irt_phys = pmap_kextract((vm_offset_t)unit->irt); unit->irtids = vmem_create("dmarirt", 0, unit->irte_cnt, 1, 0, M_FIRSTFIT | M_NOWAIT); DMAR_LOCK(unit); dmar_load_irt_ptr(unit); dmar_qi_invalidate_iec_glob(unit); DMAR_UNLOCK(unit); /* * Initialize mappings for already configured interrupt pins. * Required, because otherwise the interrupts fault without * irtes. */ intr_reprogram(); DMAR_LOCK(unit); dmar_enable_ir(unit); DMAR_UNLOCK(unit); return (0); } void dmar_fini_irt(struct dmar_unit *unit) { unit->ir_enabled = 0; if (unit->irt != NULL) { dmar_disable_ir(unit); dmar_qi_invalidate_iec_glob(unit); vmem_destroy(unit->irtids); kmem_free((vm_offset_t)unit->irt, unit->irte_cnt * sizeof(dmar_irte_t)); } }