/*- * Copyright (c) 1997,1998 Doug Rabson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include "opt_bus.h" #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Used to attach drivers to devclasses. */ typedef struct driverlink *driverlink_t; struct driverlink { driver_t *driver; TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ }; /* * Forward declarations */ typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; typedef TAILQ_HEAD(device_list, device) device_list_t; struct devclass { TAILQ_ENTRY(devclass) link; driver_list_t drivers; /* bus devclasses store drivers for bus */ char *name; device_t *devices; /* array of devices indexed by unit */ int maxunit; /* size of devices array */ }; /* * Implementation of device. */ struct device { /* * A device is a kernel object. The first field must be the * current ops table for the object. */ KOBJ_FIELDS; /* * Device hierarchy. */ TAILQ_ENTRY(device) link; /* list of devices in parent */ TAILQ_ENTRY(device) devlink; /* global device list membership */ device_t parent; device_list_t children; /* list of subordinate devices */ /* * Details of this device. */ driver_t *driver; devclass_t devclass; /* device class which we are in */ int unit; char* nameunit; /* name+unit e.g. foodev0 */ char* desc; /* driver specific description */ int busy; /* count of calls to device_busy() */ device_state_t state; u_int32_t devflags; /* api level flags for device_get_flags() */ u_short flags; #define DF_ENABLED 1 /* device should be probed/attached */ #define DF_FIXEDCLASS 2 /* devclass specified at create time */ #define DF_WILDCARD 4 /* unit was originally wildcard */ #define DF_DESCMALLOCED 8 /* description was malloced */ #define DF_QUIET 16 /* don't print verbose attach message */ #define DF_DONENOMATCH 32 /* don't execute DEVICE_NOMATCH again */ #define DF_EXTERNALSOFTC 64 /* softc not allocated by us */ u_char order; /* order from device_add_child_ordered() */ u_char pad; void *ivars; void *softc; }; struct device_op_desc { unsigned int offset; /* offset in driver ops */ struct method* method; /* internal method implementation */ devop_t deflt; /* default implementation */ const char* name; /* unique name (for registration) */ }; static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); #ifdef BUS_DEBUG static int bus_debug = 1; SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0, "Debug bus code"); #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a, printf("\n");} #define DEVICENAME(d) ((d)? device_get_name(d): "no device") #define DRIVERNAME(d) ((d)? d->name : "no driver") #define DEVCLANAME(d) ((d)? d->name : "no devclass") /* Produce the indenting, indent*2 spaces plus a '.' ahead of that to * prevent syslog from deleting initial spaces */ #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJname, classname)) return (dc); } PDEBUG(("%s not found%s", classname, (create? ", creating": ""))); if (create) { dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, M_BUS, M_NOWAIT|M_ZERO); if (!dc) return (NULL); dc->name = (char*) (dc + 1); strcpy(dc->name, classname); TAILQ_INIT(&dc->drivers); TAILQ_INSERT_TAIL(&devclasses, dc, link); bus_data_generation_update(); } return (dc); } devclass_t devclass_create(const char *classname) { return (devclass_find_internal(classname, TRUE)); } devclass_t devclass_find(const char *classname) { return (devclass_find_internal(classname, FALSE)); } int devclass_add_driver(devclass_t dc, driver_t *driver) { driverlink_t dl; int i; PDEBUG(("%s", DRIVERNAME(driver))); dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); if (!dl) return (ENOMEM); /* * Compile the driver's methods. Also increase the reference count * so that the class doesn't get freed when the last instance * goes. This means we can safely use static methods and avoids a * double-free in devclass_delete_driver. */ kobj_class_compile((kobj_class_t) driver); /* * Make sure the devclass which the driver is implementing exists. */ devclass_find_internal(driver->name, TRUE); dl->driver = driver; TAILQ_INSERT_TAIL(&dc->drivers, dl, link); driver->refs++; /* * Call BUS_DRIVER_ADDED for any existing busses in this class. */ for (i = 0; i < dc->maxunit; i++) if (dc->devices[i]) BUS_DRIVER_ADDED(dc->devices[i], driver); bus_data_generation_update(); return (0); } int devclass_delete_driver(devclass_t busclass, driver_t *driver) { devclass_t dc = devclass_find(driver->name); driverlink_t dl; device_t dev; int i; int error; PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); if (!dc) return (0); /* * Find the link structure in the bus' list of drivers. */ TAILQ_FOREACH(dl, &busclass->drivers, link) { if (dl->driver == driver) break; } if (!dl) { PDEBUG(("%s not found in %s list", driver->name, busclass->name)); return (ENOENT); } /* * Disassociate from any devices. We iterate through all the * devices in the devclass of the driver and detach any which are * using the driver and which have a parent in the devclass which * we are deleting from. * * Note that since a driver can be in multiple devclasses, we * should not detach devices which are not children of devices in * the affected devclass. */ for (i = 0; i < dc->maxunit; i++) { if (dc->devices[i]) { dev = dc->devices[i]; if (dev->driver == driver && dev->parent && dev->parent->devclass == busclass) { if ((error = device_detach(dev)) != 0) return (error); device_set_driver(dev, NULL); } } } TAILQ_REMOVE(&busclass->drivers, dl, link); free(dl, M_BUS); driver->refs--; if (driver->refs == 0) kobj_class_free((kobj_class_t) driver); bus_data_generation_update(); return (0); } static driverlink_t devclass_find_driver_internal(devclass_t dc, const char *classname) { driverlink_t dl; PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); TAILQ_FOREACH(dl, &dc->drivers, link) { if (!strcmp(dl->driver->name, classname)) return (dl); } PDEBUG(("not found")); return (NULL); } driver_t * devclass_find_driver(devclass_t dc, const char *classname) { driverlink_t dl; dl = devclass_find_driver_internal(dc, classname); if (dl) return (dl->driver); return (NULL); } const char * devclass_get_name(devclass_t dc) { return (dc->name); } device_t devclass_get_device(devclass_t dc, int unit) { if (dc == NULL || unit < 0 || unit >= dc->maxunit) return (NULL); return (dc->devices[unit]); } void * devclass_get_softc(devclass_t dc, int unit) { device_t dev; dev = devclass_get_device(dc, unit); if (!dev) return (NULL); return (device_get_softc(dev)); } int devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) { int i; int count; device_t *list; count = 0; for (i = 0; i < dc->maxunit; i++) if (dc->devices[i]) count++; list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); if (!list) return (ENOMEM); count = 0; for (i = 0; i < dc->maxunit; i++) { if (dc->devices[i]) { list[count] = dc->devices[i]; count++; } } *devlistp = list; *devcountp = count; return (0); } int devclass_get_maxunit(devclass_t dc) { return (dc->maxunit); } int devclass_find_free_unit(devclass_t dc, int unit) { if (dc == NULL) return (unit); while (unit < dc->maxunit && dc->devices[unit] != NULL) unit++; return (unit); } static int devclass_alloc_unit(devclass_t dc, int *unitp) { int unit = *unitp; PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); /* If we were given a wired unit number, check for existing device */ /* XXX imp XXX */ if (unit != -1) { if (unit >= 0 && unit < dc->maxunit && dc->devices[unit] != NULL) { if (bootverbose) printf("%s: %s%d already exists; skipping it\n", dc->name, dc->name, *unitp); return (EEXIST); } } else { /* Unwired device, find the next available slot for it */ unit = 0; while (unit < dc->maxunit && dc->devices[unit] != NULL) unit++; } /* * We've selected a unit beyond the length of the table, so let's * extend the table to make room for all units up to and including * this one. */ if (unit >= dc->maxunit) { device_t *newlist; int newsize; newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); if (!newlist) return (ENOMEM); bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit); bzero(newlist + dc->maxunit, sizeof(device_t) * (newsize - dc->maxunit)); if (dc->devices) free(dc->devices, M_BUS); dc->devices = newlist; dc->maxunit = newsize; } PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); *unitp = unit; return (0); } static int devclass_add_device(devclass_t dc, device_t dev) { int buflen, error; PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit); if (buflen < 0) return (ENOMEM); dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); if (!dev->nameunit) return (ENOMEM); if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) { free(dev->nameunit, M_BUS); dev->nameunit = NULL; return (error); } dc->devices[dev->unit] = dev; dev->devclass = dc; snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); return (0); } static int devclass_delete_device(devclass_t dc, device_t dev) { if (!dc || !dev) return (0); PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); if (dev->devclass != dc || dc->devices[dev->unit] != dev) panic("devclass_delete_device: inconsistent device class"); dc->devices[dev->unit] = NULL; if (dev->flags & DF_WILDCARD) dev->unit = -1; dev->devclass = NULL; free(dev->nameunit, M_BUS); dev->nameunit = NULL; return (0); } static device_t make_device(device_t parent, const char *name, int unit) { device_t dev; devclass_t dc; PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); if (name) { dc = devclass_find_internal(name, TRUE); if (!dc) { printf("make_device: can't find device class %s\n", name); return (NULL); } } else { dc = NULL; } dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO); if (!dev) return (NULL); dev->parent = parent; TAILQ_INIT(&dev->children); kobj_init((kobj_t) dev, &null_class); dev->driver = NULL; dev->devclass = NULL; dev->unit = unit; dev->nameunit = NULL; dev->desc = NULL; dev->busy = 0; dev->devflags = 0; dev->flags = DF_ENABLED; dev->order = 0; if (unit == -1) dev->flags |= DF_WILDCARD; if (name) { dev->flags |= DF_FIXEDCLASS; if (devclass_add_device(dc, dev)) { kobj_delete((kobj_t) dev, M_BUS); return (NULL); } } dev->ivars = NULL; dev->softc = NULL; dev->state = DS_NOTPRESENT; TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); bus_data_generation_update(); return (dev); } static int device_print_child(device_t dev, device_t child) { int retval = 0; if (device_is_alive(child)) retval += BUS_PRINT_CHILD(dev, child); else retval += device_printf(child, " not found\n"); return (retval); } device_t device_add_child(device_t dev, const char *name, int unit) { return (device_add_child_ordered(dev, 0, name, unit)); } device_t device_add_child_ordered(device_t dev, int order, const char *name, int unit) { device_t child; device_t place; PDEBUG(("%s at %s with order %d as unit %d", name, DEVICENAME(dev), order, unit)); child = make_device(dev, name, unit); if (child == NULL) return (child); child->order = order; TAILQ_FOREACH(place, &dev->children, link) { if (place->order > order) break; } if (place) { /* * The device 'place' is the first device whose order is * greater than the new child. */ TAILQ_INSERT_BEFORE(place, child, link); } else { /* * The new child's order is greater or equal to the order of * any existing device. Add the child to the tail of the list. */ TAILQ_INSERT_TAIL(&dev->children, child, link); } bus_data_generation_update(); return (child); } int device_delete_child(device_t dev, device_t child) { int error; device_t grandchild; PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); /* remove children first */ while ( (grandchild = TAILQ_FIRST(&child->children)) ) { error = device_delete_child(child, grandchild); if (error) return (error); } if ((error = device_detach(child)) != 0) return (error); if (child->devclass) devclass_delete_device(child->devclass, child); TAILQ_REMOVE(&dev->children, child, link); TAILQ_REMOVE(&bus_data_devices, child, devlink); device_set_desc(child, NULL); free(child, M_BUS); bus_data_generation_update(); return (0); } /* * Find only devices attached to this bus. */ device_t device_find_child(device_t dev, const char *classname, int unit) { devclass_t dc; device_t child; dc = devclass_find(classname); if (!dc) return (NULL); child = devclass_get_device(dc, unit); if (child && child->parent == dev) return (child); return (NULL); } static driverlink_t first_matching_driver(devclass_t dc, device_t dev) { if (dev->devclass) return (devclass_find_driver_internal(dc, dev->devclass->name)); return (TAILQ_FIRST(&dc->drivers)); } static driverlink_t next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) { if (dev->devclass) { driverlink_t dl; for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) if (!strcmp(dev->devclass->name, dl->driver->name)) return (dl); return (NULL); } return (TAILQ_NEXT(last, link)); } static int device_probe_child(device_t dev, device_t child) { devclass_t dc; driverlink_t best = 0; driverlink_t dl; int result, pri = 0; int hasclass = (child->devclass != 0); dc = dev->devclass; if (!dc) panic("device_probe_child: parent device has no devclass"); if (child->state == DS_ALIVE) return (0); for (dl = first_matching_driver(dc, child); dl; dl = next_matching_driver(dc, child, dl)) { PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); device_set_driver(child, dl->driver); if (!hasclass) device_set_devclass(child, dl->driver->name); result = DEVICE_PROBE(child); if (!hasclass) device_set_devclass(child, 0); /* * If the driver returns SUCCESS, there can be no higher match * for this device. */ if (result == 0) { best = dl; pri = 0; break; } /* * The driver returned an error so it certainly doesn't match. */ if (result > 0) { device_set_driver(child, 0); continue; } /* * A priority lower than SUCCESS, remember the best matching * driver. Initialise the value of pri for the first match. */ if (best == 0 || result > pri) { best = dl; pri = result; continue; } } /* * If we found a driver, change state and initialise the devclass. */ if (best) { if (!child->devclass) device_set_devclass(child, best->driver->name); device_set_driver(child, best->driver); if (pri < 0) { /* * A bit bogus. Call the probe method again to make * sure that we have the right description. */ DEVICE_PROBE(child); } child->state = DS_ALIVE; bus_data_generation_update(); return (0); } return (ENXIO); } device_t device_get_parent(device_t dev) { return (dev->parent); } int device_get_children(device_t dev, device_t **devlistp, int *devcountp) { int count; device_t child; device_t *list; count = 0; TAILQ_FOREACH(child, &dev->children, link) { count++; } list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); if (!list) return (ENOMEM); count = 0; TAILQ_FOREACH(child, &dev->children, link) { list[count] = child; count++; } *devlistp = list; *devcountp = count; return (0); } driver_t * device_get_driver(device_t dev) { return (dev->driver); } devclass_t device_get_devclass(device_t dev) { return (dev->devclass); } const char * device_get_name(device_t dev) { if (dev->devclass) return (devclass_get_name(dev->devclass)); return (NULL); } const char * device_get_nameunit(device_t dev) { return (dev->nameunit); } int device_get_unit(device_t dev) { return (dev->unit); } const char * device_get_desc(device_t dev) { return (dev->desc); } u_int32_t device_get_flags(device_t dev) { return (dev->devflags); } int device_print_prettyname(device_t dev) { const char *name = device_get_name(dev); if (name == 0) return (printf("unknown: ")); return (printf("%s%d: ", name, device_get_unit(dev))); } int device_printf(device_t dev, const char * fmt, ...) { va_list ap; int retval; retval = device_print_prettyname(dev); va_start(ap, fmt); retval += vprintf(fmt, ap); va_end(ap); return (retval); } static void device_set_desc_internal(device_t dev, const char* desc, int copy) { if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { free(dev->desc, M_BUS); dev->flags &= ~DF_DESCMALLOCED; dev->desc = NULL; } if (copy && desc) { dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); if (dev->desc) { strcpy(dev->desc, desc); dev->flags |= DF_DESCMALLOCED; } } else { /* Avoid a -Wcast-qual warning */ dev->desc = (char *)(uintptr_t) desc; } bus_data_generation_update(); } void device_set_desc(device_t dev, const char* desc) { device_set_desc_internal(dev, desc, FALSE); } void device_set_desc_copy(device_t dev, const char* desc) { device_set_desc_internal(dev, desc, TRUE); } void device_set_flags(device_t dev, u_int32_t flags) { dev->devflags = flags; } void * device_get_softc(device_t dev) { return (dev->softc); } void device_set_softc(device_t dev, void *softc) { if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) free(dev->softc, M_BUS); dev->softc = softc; if (dev->softc) dev->flags |= DF_EXTERNALSOFTC; else dev->flags &= ~DF_EXTERNALSOFTC; } void * device_get_ivars(device_t dev) { return (dev->ivars); } void device_set_ivars(device_t dev, void * ivars) { if (!dev) return; dev->ivars = ivars; return; } device_state_t device_get_state(device_t dev) { return (dev->state); } void device_enable(device_t dev) { dev->flags |= DF_ENABLED; } void device_disable(device_t dev) { dev->flags &= ~DF_ENABLED; } void device_busy(device_t dev) { if (dev->state < DS_ATTACHED) panic("device_busy: called for unattached device"); if (dev->busy == 0 && dev->parent) device_busy(dev->parent); dev->busy++; dev->state = DS_BUSY; } void device_unbusy(device_t dev) { if (dev->state != DS_BUSY) panic("device_unbusy: called for non-busy device"); dev->busy--; if (dev->busy == 0) { if (dev->parent) device_unbusy(dev->parent); dev->state = DS_ATTACHED; } } void device_quiet(device_t dev) { dev->flags |= DF_QUIET; } void device_verbose(device_t dev) { dev->flags &= ~DF_QUIET; } int device_is_quiet(device_t dev) { return ((dev->flags & DF_QUIET) != 0); } int device_is_enabled(device_t dev) { return ((dev->flags & DF_ENABLED) != 0); } int device_is_alive(device_t dev) { return (dev->state >= DS_ALIVE); } int device_set_devclass(device_t dev, const char *classname) { devclass_t dc; int error; if (!classname) { if (dev->devclass) devclass_delete_device(dev->devclass, dev); return (0); } if (dev->devclass) { printf("device_set_devclass: device class already set\n"); return (EINVAL); } dc = devclass_find_internal(classname, TRUE); if (!dc) return (ENOMEM); error = devclass_add_device(dc, dev); bus_data_generation_update(); return (error); } int device_set_driver(device_t dev, driver_t *driver) { if (dev->state >= DS_ATTACHED) return (EBUSY); if (dev->driver == driver) return (0); if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { free(dev->softc, M_BUS); dev->softc = NULL; } kobj_delete((kobj_t) dev, 0); dev->driver = driver; if (driver) { kobj_init((kobj_t) dev, (kobj_class_t) driver); if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { dev->softc = malloc(driver->size, M_BUS, M_NOWAIT | M_ZERO); if (!dev->softc) { kobj_init((kobj_t) dev, &null_class); dev->driver = NULL; return (ENOMEM); } } } else { kobj_init((kobj_t) dev, &null_class); } bus_data_generation_update(); return (0); } int device_probe_and_attach(device_t dev) { device_t bus = dev->parent; int error = 0; int hasclass = (dev->devclass != 0); if (dev->state >= DS_ALIVE) return (0); if (dev->flags & DF_ENABLED) { error = device_probe_child(bus, dev); if (!error) { if (!device_is_quiet(dev)) device_print_child(bus, dev); error = DEVICE_ATTACH(dev); if (!error) dev->state = DS_ATTACHED; else { printf("device_probe_and_attach: %s%d attach returned %d\n", dev->driver->name, dev->unit, error); /* Unset the class; set in device_probe_child */ if (!hasclass) device_set_devclass(dev, 0); device_set_driver(dev, NULL); dev->state = DS_NOTPRESENT; } } else { if (!(dev->flags & DF_DONENOMATCH)) { BUS_PROBE_NOMATCH(bus, dev); dev->flags |= DF_DONENOMATCH; } } } else { if (bootverbose) { device_print_prettyname(dev); printf("not probed (disabled)\n"); } } return (error); } int device_detach(device_t dev) { int error; PDEBUG(("%s", DEVICENAME(dev))); if (dev->state == DS_BUSY) return (EBUSY); if (dev->state != DS_ATTACHED) return (0); if ((error = DEVICE_DETACH(dev)) != 0) return (error); device_printf(dev, "detached\n"); if (dev->parent) BUS_CHILD_DETACHED(dev->parent, dev); if (!(dev->flags & DF_FIXEDCLASS)) devclass_delete_device(dev->devclass, dev); dev->state = DS_NOTPRESENT; device_set_driver(dev, NULL); return (0); } int device_shutdown(device_t dev) { if (dev->state < DS_ATTACHED) return (0); return (DEVICE_SHUTDOWN(dev)); } int device_set_unit(device_t dev, int unit) { devclass_t dc; int err; dc = device_get_devclass(dev); if (unit < dc->maxunit && dc->devices[unit]) return (EBUSY); err = devclass_delete_device(dc, dev); if (err) return (err); dev->unit = unit; err = devclass_add_device(dc, dev); if (err) return (err); bus_data_generation_update(); return (0); } /*======================================*/ /* * Some useful method implementations to make life easier for bus drivers. */ void resource_list_init(struct resource_list *rl) { SLIST_INIT(rl); } void resource_list_free(struct resource_list *rl) { struct resource_list_entry *rle; while ((rle = SLIST_FIRST(rl)) != NULL) { if (rle->res) panic("resource_list_free: resource entry is busy"); SLIST_REMOVE_HEAD(rl, link); free(rle, M_BUS); } } int resource_list_add_next(struct resource_list *rl, int type, u_long start, u_long end, u_long count) { int rid; rid = 0; while (resource_list_find(rl, type, rid) != NULL) rid++; resource_list_add(rl, type, rid, start, end, count); return (rid); } void resource_list_add(struct resource_list *rl, int type, int rid, u_long start, u_long end, u_long count) { struct resource_list_entry *rle; rle = resource_list_find(rl, type, rid); if (!rle) { rle = malloc(sizeof(struct resource_list_entry), M_BUS, M_NOWAIT); if (!rle) panic("resource_list_add: can't record entry"); SLIST_INSERT_HEAD(rl, rle, link); rle->type = type; rle->rid = rid; rle->res = NULL; } if (rle->res) panic("resource_list_add: resource entry is busy"); rle->start = start; rle->end = end; rle->count = count; } struct resource_list_entry * resource_list_find(struct resource_list *rl, int type, int rid) { struct resource_list_entry *rle; SLIST_FOREACH(rle, rl, link) { if (rle->type == type && rle->rid == rid) return (rle); } return (NULL); } void resource_list_delete(struct resource_list *rl, int type, int rid) { struct resource_list_entry *rle = resource_list_find(rl, type, rid); if (rle) { if (rle->res != NULL) panic("resource_list_delete: resource has not been released"); SLIST_REMOVE(rl, rle, resource_list_entry, link); free(rle, M_BUS); } } struct resource * resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, int type, int *rid, u_long start, u_long end, u_long count, u_int flags) { struct resource_list_entry *rle = 0; int passthrough = (device_get_parent(child) != bus); int isdefault = (start == 0UL && end == ~0UL); if (passthrough) { return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid, start, end, count, flags)); } rle = resource_list_find(rl, type, *rid); if (!rle) return (NULL); /* no resource of that type/rid */ if (rle->res) panic("resource_list_alloc: resource entry is busy"); if (isdefault) { start = rle->start; count = ulmax(count, rle->count); end = ulmax(rle->end, start + count - 1); } rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid, start, end, count, flags); /* * Record the new range. */ if (rle->res) { rle->start = rman_get_start(rle->res); rle->end = rman_get_end(rle->res); rle->count = count; } return (rle->res); } int resource_list_release(struct resource_list *rl, device_t bus, device_t child, int type, int rid, struct resource *res) { struct resource_list_entry *rle = 0; int passthrough = (device_get_parent(child) != bus); int error; if (passthrough) { return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, type, rid, res)); } rle = resource_list_find(rl, type, rid); if (!rle) panic("resource_list_release: can't find resource"); if (!rle->res) panic("resource_list_release: resource entry is not busy"); error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, type, rid, res); if (error) return (error); rle->res = NULL; return (0); } int resource_list_print_type(struct resource_list *rl, const char *name, int type, const char *format) { struct resource_list_entry *rle; int printed, retval; printed = 0; retval = 0; /* Yes, this is kinda cheating */ SLIST_FOREACH(rle, rl, link) { if (rle->type == type) { if (printed == 0) retval += printf(" %s ", name); else retval += printf(","); printed++; retval += printf(format, rle->start); if (rle->count > 1) { retval += printf("-"); retval += printf(format, rle->start + rle->count - 1); } } } return (retval); } /* * Call DEVICE_IDENTIFY for each driver. */ int bus_generic_probe(device_t dev) { devclass_t dc = dev->devclass; driverlink_t dl; TAILQ_FOREACH(dl, &dc->drivers, link) { DEVICE_IDENTIFY(dl->driver, dev); } return (0); } int bus_generic_attach(device_t dev) { device_t child; TAILQ_FOREACH(child, &dev->children, link) { device_probe_and_attach(child); } return (0); } int bus_generic_detach(device_t dev) { device_t child; int error; if (dev->state != DS_ATTACHED) return (EBUSY); TAILQ_FOREACH(child, &dev->children, link) { if ((error = device_detach(child)) != 0) return (error); } return (0); } int bus_generic_shutdown(device_t dev) { device_t child; TAILQ_FOREACH(child, &dev->children, link) { device_shutdown(child); } return (0); } int bus_generic_suspend(device_t dev) { int error; device_t child, child2; TAILQ_FOREACH(child, &dev->children, link) { error = DEVICE_SUSPEND(child); if (error) { for (child2 = TAILQ_FIRST(&dev->children); child2 && child2 != child; child2 = TAILQ_NEXT(child2, link)) DEVICE_RESUME(child2); return (error); } } return (0); } int bus_generic_resume(device_t dev) { device_t child; TAILQ_FOREACH(child, &dev->children, link) { DEVICE_RESUME(child); /* if resume fails, there's nothing we can usefully do... */ } return (0); } int bus_print_child_header (device_t dev, device_t child) { int retval = 0; if (device_get_desc(child)) { retval += device_printf(child, "<%s>", device_get_desc(child)); } else { retval += printf("%s", device_get_nameunit(child)); } return (retval); } int bus_print_child_footer (device_t dev, device_t child) { return (printf(" on %s\n", device_get_nameunit(dev))); } int bus_generic_print_child(device_t dev, device_t child) { int retval = 0; retval += bus_print_child_header(dev, child); retval += bus_print_child_footer(dev, child); return (retval); } int bus_generic_read_ivar(device_t dev, device_t child, int index, uintptr_t * result) { return (ENOENT); } int bus_generic_write_ivar(device_t dev, device_t child, int index, uintptr_t value) { return (ENOENT); } struct resource_list * bus_generic_get_resource_list (device_t dev, device_t child) { return (NULL); } void bus_generic_driver_added(device_t dev, driver_t *driver) { device_t child; DEVICE_IDENTIFY(driver, dev); TAILQ_FOREACH(child, &dev->children, link) { if (child->state == DS_NOTPRESENT) device_probe_and_attach(child); } } int bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, driver_intr_t *intr, void *arg, void **cookiep) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return (BUS_SETUP_INTR(dev->parent, child, irq, flags, intr, arg, cookiep)); return (EINVAL); } int bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, void *cookie) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); return (EINVAL); } struct resource * bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, u_long start, u_long end, u_long count, u_int flags) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, start, end, count, flags)); return (NULL); } int bus_generic_release_resource(device_t dev, device_t child, int type, int rid, struct resource *r) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, r)); return (EINVAL); } int bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, struct resource *r) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, r)); return (EINVAL); } int bus_generic_deactivate_resource(device_t dev, device_t child, int type, int rid, struct resource *r) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, r)); return (EINVAL); } int bus_generic_rl_get_resource (device_t dev, device_t child, int type, int rid, u_long *startp, u_long *countp) { struct resource_list * rl = NULL; struct resource_list_entry * rle = NULL; rl = BUS_GET_RESOURCE_LIST(dev, child); if (!rl) return (EINVAL); rle = resource_list_find(rl, type, rid); if (!rle) return (ENOENT); if (startp) *startp = rle->start; if (countp) *countp = rle->count; return (0); } int bus_generic_rl_set_resource (device_t dev, device_t child, int type, int rid, u_long start, u_long count) { struct resource_list * rl = NULL; rl = BUS_GET_RESOURCE_LIST(dev, child); if (!rl) return (EINVAL); resource_list_add(rl, type, rid, start, (start + count - 1), count); return (0); } void bus_generic_rl_delete_resource (device_t dev, device_t child, int type, int rid) { struct resource_list * rl = NULL; rl = BUS_GET_RESOURCE_LIST(dev, child); if (!rl) return; resource_list_delete(rl, type, rid); return; } int bus_generic_rl_release_resource (device_t dev, device_t child, int type, int rid, struct resource *r) { struct resource_list * rl = NULL; rl = BUS_GET_RESOURCE_LIST(dev, child); if (!rl) return (EINVAL); return (resource_list_release(rl, dev, child, type, rid, r)); } struct resource * bus_generic_rl_alloc_resource (device_t dev, device_t child, int type, int *rid, u_long start, u_long end, u_long count, u_int flags) { struct resource_list * rl = NULL; rl = BUS_GET_RESOURCE_LIST(dev, child); if (!rl) return (NULL); return (resource_list_alloc(rl, dev, child, type, rid, start, end, count, flags)); } int bus_generic_child_present(device_t bus, device_t child) { return (BUS_CHILD_PRESENT(device_get_parent(bus), bus)); } /* * Some convenience functions to make it easier for drivers to use the * resource-management functions. All these really do is hide the * indirection through the parent's method table, making for slightly * less-wordy code. In the future, it might make sense for this code * to maintain some sort of a list of resources allocated by each device. */ struct resource * bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end, u_long count, u_int flags) { if (dev->parent == 0) return (0); return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, count, flags)); } int bus_activate_resource(device_t dev, int type, int rid, struct resource *r) { if (dev->parent == 0) return (EINVAL); return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); } int bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) { if (dev->parent == 0) return (EINVAL); return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); } int bus_release_resource(device_t dev, int type, int rid, struct resource *r) { if (dev->parent == 0) return (EINVAL); return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r)); } int bus_setup_intr(device_t dev, struct resource *r, int flags, driver_intr_t handler, void *arg, void **cookiep) { if (dev->parent == 0) return (EINVAL); return (BUS_SETUP_INTR(dev->parent, dev, r, flags, handler, arg, cookiep)); } int bus_teardown_intr(device_t dev, struct resource *r, void *cookie) { if (dev->parent == 0) return (EINVAL); return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); } int bus_set_resource(device_t dev, int type, int rid, u_long start, u_long count) { return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, start, count)); } int bus_get_resource(device_t dev, int type, int rid, u_long *startp, u_long *countp) { return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, startp, countp)); } u_long bus_get_resource_start(device_t dev, int type, int rid) { u_long start, count; int error; error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, &start, &count); if (error) return (0); return (start); } u_long bus_get_resource_count(device_t dev, int type, int rid) { u_long start, count; int error; error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, &start, &count); if (error) return (0); return (count); } void bus_delete_resource(device_t dev, int type, int rid) { BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); } int bus_child_present(device_t dev) { return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); } static int root_print_child(device_t dev, device_t child) { int retval = 0; retval += bus_print_child_header(dev, child); retval += printf("\n"); return (retval); } static int root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg, void **cookiep) { /* * If an interrupt mapping gets to here something bad has happened. */ panic("root_setup_intr"); } /* * If we get here, assume that the device is permanant and really is * present in the system. Removable bus drivers are expected to intercept * this call long before it gets here. We return -1 so that drivers that * really care can check vs -1 or some ERRNO returned higher in the food * chain. */ static int root_child_present(device_t dev, device_t child) { return (-1); } static kobj_method_t root_methods[] = { /* Device interface */ KOBJMETHOD(device_shutdown, bus_generic_shutdown), KOBJMETHOD(device_suspend, bus_generic_suspend), KOBJMETHOD(device_resume, bus_generic_resume), /* Bus interface */ KOBJMETHOD(bus_print_child, root_print_child), KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), KOBJMETHOD(bus_setup_intr, root_setup_intr), KOBJMETHOD(bus_child_present, root_child_present), { 0, 0 } }; static driver_t root_driver = { "root", root_methods, 1, /* no softc */ }; device_t root_bus; devclass_t root_devclass; static int root_bus_module_handler(module_t mod, int what, void* arg) { switch (what) { case MOD_LOAD: TAILQ_INIT(&bus_data_devices); kobj_class_compile((kobj_class_t) &root_driver); root_bus = make_device(NULL, "root", 0); root_bus->desc = "System root bus"; kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); root_bus->driver = &root_driver; root_bus->state = DS_ATTACHED; root_devclass = devclass_find_internal("root", FALSE); return (0); case MOD_SHUTDOWN: device_shutdown(root_bus); return (0); } return (0); } static moduledata_t root_bus_mod = { "rootbus", root_bus_module_handler, 0 }; DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); void root_bus_configure(void) { device_t dev; PDEBUG((".")); TAILQ_FOREACH(dev, &root_bus->children, link) { device_probe_and_attach(dev); } } int driver_module_handler(module_t mod, int what, void *arg) { int error, i; struct driver_module_data *dmd; devclass_t bus_devclass; dmd = (struct driver_module_data *)arg; bus_devclass = devclass_find_internal(dmd->dmd_busname, TRUE); error = 0; switch (what) { case MOD_LOAD: if (dmd->dmd_chainevh) error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); for (i = 0; !error && i < dmd->dmd_ndrivers; i++) { PDEBUG(("Loading module: driver %s on bus %s", DRIVERNAME(dmd->dmd_drivers[i]), dmd->dmd_busname)); error = devclass_add_driver(bus_devclass, dmd->dmd_drivers[i]); } if (error) break; /* * The drivers loaded in this way are assumed to all * implement the same devclass. */ *dmd->dmd_devclass = devclass_find_internal(dmd->dmd_drivers[0]->name, TRUE); break; case MOD_UNLOAD: for (i = 0; !error && i < dmd->dmd_ndrivers; i++) { PDEBUG(("Unloading module: driver %s from bus %s", DRIVERNAME(dmd->dmd_drivers[i]), dmd->dmd_busname)); error = devclass_delete_driver(bus_devclass, dmd->dmd_drivers[i]); } if (!error && dmd->dmd_chainevh) error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); break; } return (error); } #ifdef BUS_DEBUG /* the _short versions avoid iteration by not calling anything that prints * more than oneliners. I love oneliners. */ static void print_device_short(device_t dev, int indent) { if (!dev) return; indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s,%sivars,%ssoftc,busy=%d\n", dev->unit, dev->desc, (dev->parent? "":"no "), (TAILQ_EMPTY(&dev->children)? "no ":""), (dev->flags&DF_ENABLED? "enabled,":"disabled,"), (dev->flags&DF_FIXEDCLASS? "fixed,":""), (dev->flags&DF_WILDCARD? "wildcard,":""), (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), (dev->ivars? "":"no "), (dev->softc? "":"no "), dev->busy)); } static void print_device(device_t dev, int indent) { if (!dev) return; print_device_short(dev, indent); indentprintf(("Parent:\n")); print_device_short(dev->parent, indent+1); indentprintf(("Driver:\n")); print_driver_short(dev->driver, indent+1); indentprintf(("Devclass:\n")); print_devclass_short(dev->devclass, indent+1); } void print_device_tree_short(device_t dev, int indent) /* print the device and all its children (indented) */ { device_t child; if (!dev) return; print_device_short(dev, indent); TAILQ_FOREACH(child, &dev->children, link) { print_device_tree_short(child, indent+1); } } void print_device_tree(device_t dev, int indent) /* print the device and all its children (indented) */ { device_t child; if (!dev) return; print_device(dev, indent); TAILQ_FOREACH(child, &dev->children, link) { print_device_tree(child, indent+1); } } static void print_driver_short(driver_t *driver, int indent) { if (!driver) return; indentprintf(("driver %s: softc size = %d\n", driver->name, driver->size)); } static void print_driver(driver_t *driver, int indent) { if (!driver) return; print_driver_short(driver, indent); } static void print_driver_list(driver_list_t drivers, int indent) { driverlink_t driver; TAILQ_FOREACH(driver, &drivers, link) { print_driver(driver->driver, indent); } } static void print_devclass_short(devclass_t dc, int indent) { if ( !dc ) return; indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); } static void print_devclass(devclass_t dc, int indent) { int i; if ( !dc ) return; print_devclass_short(dc, indent); indentprintf(("Drivers:\n")); print_driver_list(dc->drivers, indent+1); indentprintf(("Devices:\n")); for (i = 0; i < dc->maxunit; i++) if (dc->devices[i]) print_device(dc->devices[i], indent+1); } void print_devclass_list_short(void) { devclass_t dc; printf("Short listing of devclasses, drivers & devices:\n"); TAILQ_FOREACH(dc, &devclasses, link) { print_devclass_short(dc, 0); } } void print_devclass_list(void) { devclass_t dc; printf("Full listing of devclasses, drivers & devices:\n"); TAILQ_FOREACH(dc, &devclasses, link) { print_devclass(dc, 0); } } #endif /* * User-space access to the device tree. * * We implement a small set of nodes: * * hw.bus Single integer read method to obtain the * current generation count. * hw.bus.devices Reads the entire device tree in flat space. * hw.bus.rman Resource manager interface * * We might like to add the ability to scan devclasses and/or drivers to * determine what else is currently loaded/available. */ SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); static int sysctl_bus(SYSCTL_HANDLER_ARGS) { struct u_businfo ubus; ubus.ub_version = BUS_USER_VERSION; ubus.ub_generation = bus_data_generation; return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); } SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, "bus-related data"); static int sysctl_devices(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; int index; struct device *dev; struct u_device udev; /* XXX this is a bit big */ int error; if (namelen != 2) return (EINVAL); if (bus_data_generation_check(name[0])) return (EINVAL); index = name[1]; /* * Scan the list of devices, looking for the requested index. */ TAILQ_FOREACH(dev, &bus_data_devices, devlink) { if (index-- == 0) break; } if (dev == NULL) return (ENOENT); /* * Populate the return array. */ udev.dv_handle = (uintptr_t)dev; udev.dv_parent = (uintptr_t)dev->parent; if (dev->nameunit == NULL) { udev.dv_name[0] = 0; } else { snprintf(udev.dv_name, 32, "%s", dev->nameunit); } if (dev->desc == NULL) { udev.dv_desc[0] = 0; } else { snprintf(udev.dv_desc, 32, "%s", dev->desc); } if ((dev->driver == NULL) || (dev->driver->name == NULL)) { udev.dv_drivername[0] = 0; } else { snprintf(udev.dv_drivername, 32, "%s", dev->driver->name); } udev.dv_pnpinfo[0] = 0; udev.dv_location[0] = 0; udev.dv_devflags = dev->devflags; udev.dv_flags = dev->flags; udev.dv_state = dev->state; error = SYSCTL_OUT(req, &udev, sizeof(udev)); return (error); } SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, "system device tree"); /* * Sysctl interface for scanning the resource lists. * * We take two input parameters; the index into the list of resource * managers, and the resource offset into the list. */ static int sysctl_rman(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; int rman_idx, res_idx; struct rman *rm; struct resource *res; struct u_rman urm; struct u_resource ures; int error; if (namelen != 3) return (EINVAL); if (bus_data_generation_check(name[0])) return (EINVAL); rman_idx = name[1]; res_idx = name[2]; /* * Find the indexed resource manager */ TAILQ_FOREACH(rm, &rman_head, rm_link) { if (rman_idx-- == 0) break; } if (rm == NULL) return (ENOENT); /* * If the resource index is -1, we want details on the * resource manager. */ if (res_idx == -1) { urm.rm_handle = (uintptr_t)rm; snprintf(urm.rm_descr, RM_TEXTLEN, "%s", rm->rm_descr); urm.rm_descr[RM_TEXTLEN - 1] = '\0'; urm.rm_start = rm->rm_start; urm.rm_size = rm->rm_end - rm->rm_start + 1; urm.rm_type = rm->rm_type; error = SYSCTL_OUT(req, &urm, sizeof(urm)); return (error); } /* * Find the indexed resource and return it. */ TAILQ_FOREACH(res, &rm->rm_list, r_link) { if (res_idx-- == 0) { ures.r_handle = (uintptr_t)res; ures.r_parent = (uintptr_t)res->r_rm; ures.r_device = (uintptr_t)res->r_dev; if (res->r_dev != NULL) { if (device_get_name(res->r_dev) != NULL) { snprintf(ures.r_devname, RM_TEXTLEN, "%s%d", device_get_name(res->r_dev), device_get_unit(res->r_dev)); } else { snprintf(ures.r_devname, RM_TEXTLEN, "nomatch"); } } else { ures.r_devname[0] = 0; } ures.r_start = res->r_start; ures.r_size = res->r_end - res->r_start + 1; ures.r_flags = res->r_flags; error = SYSCTL_OUT(req, &ures, sizeof(ures)); return (error); } } return (ENOENT); } SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman, "kernel resource manager"); int bus_data_generation_check(int generation) { if (generation != bus_data_generation) return (1); /* XXX generate optimised lists here? */ return (0); } void bus_data_generation_update(void) { bus_data_generation++; }