/*- * Copyright (c) 1982, 1986, 1989, 1990, 1991, 1993 * The Regents of the University of California. * (c) UNIX System Laboratories, Inc. * Copyright (c) 2000-2001 Robert N. M. Watson. * All rights reserved. * * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_prot.c 8.6 (Berkeley) 1/21/94 */ /* * System calls related to processes and protection */ #include __FBSDID("$FreeBSD$"); #include "opt_compat.h" #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef REGRESSION FEATURE(regression, "Kernel support for interfaces necessary for regression testing (SECURITY RISK!)"); #endif #include #include static MALLOC_DEFINE(M_CRED, "cred", "credentials"); SYSCTL_NODE(_security, OID_AUTO, bsd, CTLFLAG_RW, 0, "BSD security policy"); static void crsetgroups_locked(struct ucred *cr, int ngrp, gid_t *groups); #ifndef _SYS_SYSPROTO_H_ struct getpid_args { int dummy; }; #endif /* ARGSUSED */ int sys_getpid(struct thread *td, struct getpid_args *uap) { struct proc *p = td->td_proc; td->td_retval[0] = p->p_pid; #if defined(COMPAT_43) td->td_retval[1] = kern_getppid(td); #endif return (0); } #ifndef _SYS_SYSPROTO_H_ struct getppid_args { int dummy; }; #endif /* ARGSUSED */ int sys_getppid(struct thread *td, struct getppid_args *uap) { td->td_retval[0] = kern_getppid(td); return (0); } int kern_getppid(struct thread *td) { struct proc *p = td->td_proc; struct proc *pp; int ppid; PROC_LOCK(p); if (!(p->p_flag & P_TRACED)) { ppid = p->p_pptr->p_pid; PROC_UNLOCK(p); } else { PROC_UNLOCK(p); sx_slock(&proctree_lock); pp = proc_realparent(p); ppid = pp->p_pid; sx_sunlock(&proctree_lock); } return (ppid); } /* * Get process group ID; note that POSIX getpgrp takes no parameter. */ #ifndef _SYS_SYSPROTO_H_ struct getpgrp_args { int dummy; }; #endif int sys_getpgrp(struct thread *td, struct getpgrp_args *uap) { struct proc *p = td->td_proc; PROC_LOCK(p); td->td_retval[0] = p->p_pgrp->pg_id; PROC_UNLOCK(p); return (0); } /* Get an arbitrary pid's process group id */ #ifndef _SYS_SYSPROTO_H_ struct getpgid_args { pid_t pid; }; #endif int sys_getpgid(struct thread *td, struct getpgid_args *uap) { struct proc *p; int error; if (uap->pid == 0) { p = td->td_proc; PROC_LOCK(p); } else { p = pfind(uap->pid); if (p == NULL) return (ESRCH); error = p_cansee(td, p); if (error) { PROC_UNLOCK(p); return (error); } } td->td_retval[0] = p->p_pgrp->pg_id; PROC_UNLOCK(p); return (0); } /* * Get an arbitrary pid's session id. */ #ifndef _SYS_SYSPROTO_H_ struct getsid_args { pid_t pid; }; #endif int sys_getsid(struct thread *td, struct getsid_args *uap) { struct proc *p; int error; if (uap->pid == 0) { p = td->td_proc; PROC_LOCK(p); } else { p = pfind(uap->pid); if (p == NULL) return (ESRCH); error = p_cansee(td, p); if (error) { PROC_UNLOCK(p); return (error); } } td->td_retval[0] = p->p_session->s_sid; PROC_UNLOCK(p); return (0); } #ifndef _SYS_SYSPROTO_H_ struct getuid_args { int dummy; }; #endif /* ARGSUSED */ int sys_getuid(struct thread *td, struct getuid_args *uap) { td->td_retval[0] = td->td_ucred->cr_ruid; #if defined(COMPAT_43) td->td_retval[1] = td->td_ucred->cr_uid; #endif return (0); } #ifndef _SYS_SYSPROTO_H_ struct geteuid_args { int dummy; }; #endif /* ARGSUSED */ int sys_geteuid(struct thread *td, struct geteuid_args *uap) { td->td_retval[0] = td->td_ucred->cr_uid; return (0); } #ifndef _SYS_SYSPROTO_H_ struct getgid_args { int dummy; }; #endif /* ARGSUSED */ int sys_getgid(struct thread *td, struct getgid_args *uap) { td->td_retval[0] = td->td_ucred->cr_rgid; #if defined(COMPAT_43) td->td_retval[1] = td->td_ucred->cr_groups[0]; #endif return (0); } /* * Get effective group ID. The "egid" is groups[0], and could be obtained * via getgroups. This syscall exists because it is somewhat painful to do * correctly in a library function. */ #ifndef _SYS_SYSPROTO_H_ struct getegid_args { int dummy; }; #endif /* ARGSUSED */ int sys_getegid(struct thread *td, struct getegid_args *uap) { td->td_retval[0] = td->td_ucred->cr_groups[0]; return (0); } #ifndef _SYS_SYSPROTO_H_ struct getgroups_args { u_int gidsetsize; gid_t *gidset; }; #endif int sys_getgroups(struct thread *td, register struct getgroups_args *uap) { struct ucred *cred; u_int ngrp; int error; cred = td->td_ucred; ngrp = cred->cr_ngroups; if (uap->gidsetsize == 0) { error = 0; goto out; } if (uap->gidsetsize < ngrp) return (EINVAL); error = copyout(cred->cr_groups, uap->gidset, ngrp * sizeof(gid_t)); out: td->td_retval[0] = ngrp; return (error); } #ifndef _SYS_SYSPROTO_H_ struct setsid_args { int dummy; }; #endif /* ARGSUSED */ int sys_setsid(register struct thread *td, struct setsid_args *uap) { struct pgrp *pgrp; int error; struct proc *p = td->td_proc; struct pgrp *newpgrp; struct session *newsess; error = 0; pgrp = NULL; newpgrp = malloc(sizeof(struct pgrp), M_PGRP, M_WAITOK | M_ZERO); newsess = malloc(sizeof(struct session), M_SESSION, M_WAITOK | M_ZERO); sx_xlock(&proctree_lock); if (p->p_pgid == p->p_pid || (pgrp = pgfind(p->p_pid)) != NULL) { if (pgrp != NULL) PGRP_UNLOCK(pgrp); error = EPERM; } else { (void)enterpgrp(p, p->p_pid, newpgrp, newsess); td->td_retval[0] = p->p_pid; newpgrp = NULL; newsess = NULL; } sx_xunlock(&proctree_lock); if (newpgrp != NULL) free(newpgrp, M_PGRP); if (newsess != NULL) free(newsess, M_SESSION); return (error); } /* * set process group (setpgid/old setpgrp) * * caller does setpgid(targpid, targpgid) * * pid must be caller or child of caller (ESRCH) * if a child * pid must be in same session (EPERM) * pid can't have done an exec (EACCES) * if pgid != pid * there must exist some pid in same session having pgid (EPERM) * pid must not be session leader (EPERM) */ #ifndef _SYS_SYSPROTO_H_ struct setpgid_args { int pid; /* target process id */ int pgid; /* target pgrp id */ }; #endif /* ARGSUSED */ int sys_setpgid(struct thread *td, register struct setpgid_args *uap) { struct proc *curp = td->td_proc; register struct proc *targp; /* target process */ register struct pgrp *pgrp; /* target pgrp */ int error; struct pgrp *newpgrp; if (uap->pgid < 0) return (EINVAL); error = 0; newpgrp = malloc(sizeof(struct pgrp), M_PGRP, M_WAITOK | M_ZERO); sx_xlock(&proctree_lock); if (uap->pid != 0 && uap->pid != curp->p_pid) { if ((targp = pfind(uap->pid)) == NULL) { error = ESRCH; goto done; } if (!inferior(targp)) { PROC_UNLOCK(targp); error = ESRCH; goto done; } if ((error = p_cansee(td, targp))) { PROC_UNLOCK(targp); goto done; } if (targp->p_pgrp == NULL || targp->p_session != curp->p_session) { PROC_UNLOCK(targp); error = EPERM; goto done; } if (targp->p_flag & P_EXEC) { PROC_UNLOCK(targp); error = EACCES; goto done; } PROC_UNLOCK(targp); } else targp = curp; if (SESS_LEADER(targp)) { error = EPERM; goto done; } if (uap->pgid == 0) uap->pgid = targp->p_pid; if ((pgrp = pgfind(uap->pgid)) == NULL) { if (uap->pgid == targp->p_pid) { error = enterpgrp(targp, uap->pgid, newpgrp, NULL); if (error == 0) newpgrp = NULL; } else error = EPERM; } else { if (pgrp == targp->p_pgrp) { PGRP_UNLOCK(pgrp); goto done; } if (pgrp->pg_id != targp->p_pid && pgrp->pg_session != curp->p_session) { PGRP_UNLOCK(pgrp); error = EPERM; goto done; } PGRP_UNLOCK(pgrp); error = enterthispgrp(targp, pgrp); } done: sx_xunlock(&proctree_lock); KASSERT((error == 0) || (newpgrp != NULL), ("setpgid failed and newpgrp is NULL")); if (newpgrp != NULL) free(newpgrp, M_PGRP); return (error); } /* * Use the clause in B.4.2.2 that allows setuid/setgid to be 4.2/4.3BSD * compatible. It says that setting the uid/gid to euid/egid is a special * case of "appropriate privilege". Once the rules are expanded out, this * basically means that setuid(nnn) sets all three id's, in all permitted * cases unless _POSIX_SAVED_IDS is enabled. In that case, setuid(getuid()) * does not set the saved id - this is dangerous for traditional BSD * programs. For this reason, we *really* do not want to set * _POSIX_SAVED_IDS and do not want to clear POSIX_APPENDIX_B_4_2_2. */ #define POSIX_APPENDIX_B_4_2_2 #ifndef _SYS_SYSPROTO_H_ struct setuid_args { uid_t uid; }; #endif /* ARGSUSED */ int sys_setuid(struct thread *td, struct setuid_args *uap) { struct proc *p = td->td_proc; struct ucred *newcred, *oldcred; uid_t uid; struct uidinfo *uip; int error; uid = uap->uid; AUDIT_ARG_UID(uid); newcred = crget(); uip = uifind(uid); PROC_LOCK(p); /* * Copy credentials so other references do not see our changes. */ oldcred = crcopysafe(p, newcred); #ifdef MAC error = mac_cred_check_setuid(oldcred, uid); if (error) goto fail; #endif /* * See if we have "permission" by POSIX 1003.1 rules. * * Note that setuid(geteuid()) is a special case of * "appropriate privileges" in appendix B.4.2.2. We need * to use this clause to be compatible with traditional BSD * semantics. Basically, it means that "setuid(xx)" sets all * three id's (assuming you have privs). * * Notes on the logic. We do things in three steps. * 1: We determine if the euid is going to change, and do EPERM * right away. We unconditionally change the euid later if this * test is satisfied, simplifying that part of the logic. * 2: We determine if the real and/or saved uids are going to * change. Determined by compile options. * 3: Change euid last. (after tests in #2 for "appropriate privs") */ if (uid != oldcred->cr_ruid && /* allow setuid(getuid()) */ #ifdef _POSIX_SAVED_IDS uid != oldcred->cr_svuid && /* allow setuid(saved gid) */ #endif #ifdef POSIX_APPENDIX_B_4_2_2 /* Use BSD-compat clause from B.4.2.2 */ uid != oldcred->cr_uid && /* allow setuid(geteuid()) */ #endif (error = priv_check_cred(oldcred, PRIV_CRED_SETUID, 0)) != 0) goto fail; #ifdef _POSIX_SAVED_IDS /* * Do we have "appropriate privileges" (are we root or uid == euid) * If so, we are changing the real uid and/or saved uid. */ if ( #ifdef POSIX_APPENDIX_B_4_2_2 /* Use the clause from B.4.2.2 */ uid == oldcred->cr_uid || #endif /* We are using privs. */ priv_check_cred(oldcred, PRIV_CRED_SETUID, 0) == 0) #endif { /* * Set the real uid and transfer proc count to new user. */ if (uid != oldcred->cr_ruid) { change_ruid(newcred, uip); setsugid(p); } /* * Set saved uid * * XXX always set saved uid even if not _POSIX_SAVED_IDS, as * the security of seteuid() depends on it. B.4.2.2 says it * is important that we should do this. */ if (uid != oldcred->cr_svuid) { change_svuid(newcred, uid); setsugid(p); } } /* * In all permitted cases, we are changing the euid. */ if (uid != oldcred->cr_uid) { change_euid(newcred, uip); setsugid(p); } proc_set_cred(p, newcred); PROC_UNLOCK(p); #ifdef RACCT racct_proc_ucred_changed(p, oldcred, newcred); #endif uifree(uip); crfree(oldcred); return (0); fail: PROC_UNLOCK(p); uifree(uip); crfree(newcred); return (error); } #ifndef _SYS_SYSPROTO_H_ struct seteuid_args { uid_t euid; }; #endif /* ARGSUSED */ int sys_seteuid(struct thread *td, struct seteuid_args *uap) { struct proc *p = td->td_proc; struct ucred *newcred, *oldcred; uid_t euid; struct uidinfo *euip; int error; euid = uap->euid; AUDIT_ARG_EUID(euid); newcred = crget(); euip = uifind(euid); PROC_LOCK(p); /* * Copy credentials so other references do not see our changes. */ oldcred = crcopysafe(p, newcred); #ifdef MAC error = mac_cred_check_seteuid(oldcred, euid); if (error) goto fail; #endif if (euid != oldcred->cr_ruid && /* allow seteuid(getuid()) */ euid != oldcred->cr_svuid && /* allow seteuid(saved uid) */ (error = priv_check_cred(oldcred, PRIV_CRED_SETEUID, 0)) != 0) goto fail; /* * Everything's okay, do it. */ if (oldcred->cr_uid != euid) { change_euid(newcred, euip); setsugid(p); } proc_set_cred(p, newcred); PROC_UNLOCK(p); uifree(euip); crfree(oldcred); return (0); fail: PROC_UNLOCK(p); uifree(euip); crfree(newcred); return (error); } #ifndef _SYS_SYSPROTO_H_ struct setgid_args { gid_t gid; }; #endif /* ARGSUSED */ int sys_setgid(struct thread *td, struct setgid_args *uap) { struct proc *p = td->td_proc; struct ucred *newcred, *oldcred; gid_t gid; int error; gid = uap->gid; AUDIT_ARG_GID(gid); newcred = crget(); PROC_LOCK(p); oldcred = crcopysafe(p, newcred); #ifdef MAC error = mac_cred_check_setgid(oldcred, gid); if (error) goto fail; #endif /* * See if we have "permission" by POSIX 1003.1 rules. * * Note that setgid(getegid()) is a special case of * "appropriate privileges" in appendix B.4.2.2. We need * to use this clause to be compatible with traditional BSD * semantics. Basically, it means that "setgid(xx)" sets all * three id's (assuming you have privs). * * For notes on the logic here, see setuid() above. */ if (gid != oldcred->cr_rgid && /* allow setgid(getgid()) */ #ifdef _POSIX_SAVED_IDS gid != oldcred->cr_svgid && /* allow setgid(saved gid) */ #endif #ifdef POSIX_APPENDIX_B_4_2_2 /* Use BSD-compat clause from B.4.2.2 */ gid != oldcred->cr_groups[0] && /* allow setgid(getegid()) */ #endif (error = priv_check_cred(oldcred, PRIV_CRED_SETGID, 0)) != 0) goto fail; #ifdef _POSIX_SAVED_IDS /* * Do we have "appropriate privileges" (are we root or gid == egid) * If so, we are changing the real uid and saved gid. */ if ( #ifdef POSIX_APPENDIX_B_4_2_2 /* use the clause from B.4.2.2 */ gid == oldcred->cr_groups[0] || #endif /* We are using privs. */ priv_check_cred(oldcred, PRIV_CRED_SETGID, 0) == 0) #endif { /* * Set real gid */ if (oldcred->cr_rgid != gid) { change_rgid(newcred, gid); setsugid(p); } /* * Set saved gid * * XXX always set saved gid even if not _POSIX_SAVED_IDS, as * the security of setegid() depends on it. B.4.2.2 says it * is important that we should do this. */ if (oldcred->cr_svgid != gid) { change_svgid(newcred, gid); setsugid(p); } } /* * In all cases permitted cases, we are changing the egid. * Copy credentials so other references do not see our changes. */ if (oldcred->cr_groups[0] != gid) { change_egid(newcred, gid); setsugid(p); } proc_set_cred(p, newcred); PROC_UNLOCK(p); crfree(oldcred); return (0); fail: PROC_UNLOCK(p); crfree(newcred); return (error); } #ifndef _SYS_SYSPROTO_H_ struct setegid_args { gid_t egid; }; #endif /* ARGSUSED */ int sys_setegid(struct thread *td, struct setegid_args *uap) { struct proc *p = td->td_proc; struct ucred *newcred, *oldcred; gid_t egid; int error; egid = uap->egid; AUDIT_ARG_EGID(egid); newcred = crget(); PROC_LOCK(p); oldcred = crcopysafe(p, newcred); #ifdef MAC error = mac_cred_check_setegid(oldcred, egid); if (error) goto fail; #endif if (egid != oldcred->cr_rgid && /* allow setegid(getgid()) */ egid != oldcred->cr_svgid && /* allow setegid(saved gid) */ (error = priv_check_cred(oldcred, PRIV_CRED_SETEGID, 0)) != 0) goto fail; if (oldcred->cr_groups[0] != egid) { change_egid(newcred, egid); setsugid(p); } proc_set_cred(p, newcred); PROC_UNLOCK(p); crfree(oldcred); return (0); fail: PROC_UNLOCK(p); crfree(newcred); return (error); } #ifndef _SYS_SYSPROTO_H_ struct setgroups_args { u_int gidsetsize; gid_t *gidset; }; #endif /* ARGSUSED */ int sys_setgroups(struct thread *td, struct setgroups_args *uap) { gid_t smallgroups[XU_NGROUPS]; gid_t *groups; u_int gidsetsize; int error; gidsetsize = uap->gidsetsize; if (gidsetsize > ngroups_max + 1) return (EINVAL); if (gidsetsize > XU_NGROUPS) groups = malloc(gidsetsize * sizeof(gid_t), M_TEMP, M_WAITOK); else groups = smallgroups; error = copyin(uap->gidset, groups, gidsetsize * sizeof(gid_t)); if (error == 0) error = kern_setgroups(td, gidsetsize, groups); if (gidsetsize > XU_NGROUPS) free(groups, M_TEMP); return (error); } int kern_setgroups(struct thread *td, u_int ngrp, gid_t *groups) { struct proc *p = td->td_proc; struct ucred *newcred, *oldcred; int error; MPASS(ngrp <= ngroups_max + 1); AUDIT_ARG_GROUPSET(groups, ngrp); newcred = crget(); crextend(newcred, ngrp); PROC_LOCK(p); oldcred = crcopysafe(p, newcred); #ifdef MAC error = mac_cred_check_setgroups(oldcred, ngrp, groups); if (error) goto fail; #endif error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS, 0); if (error) goto fail; if (ngrp == 0) { /* * setgroups(0, NULL) is a legitimate way of clearing the * groups vector on non-BSD systems (which generally do not * have the egid in the groups[0]). We risk security holes * when running non-BSD software if we do not do the same. */ newcred->cr_ngroups = 1; } else { crsetgroups_locked(newcred, ngrp, groups); } setsugid(p); proc_set_cred(p, newcred); PROC_UNLOCK(p); crfree(oldcred); return (0); fail: PROC_UNLOCK(p); crfree(newcred); return (error); } #ifndef _SYS_SYSPROTO_H_ struct setreuid_args { uid_t ruid; uid_t euid; }; #endif /* ARGSUSED */ int sys_setreuid(register struct thread *td, struct setreuid_args *uap) { struct proc *p = td->td_proc; struct ucred *newcred, *oldcred; uid_t euid, ruid; struct uidinfo *euip, *ruip; int error; euid = uap->euid; ruid = uap->ruid; AUDIT_ARG_EUID(euid); AUDIT_ARG_RUID(ruid); newcred = crget(); euip = uifind(euid); ruip = uifind(ruid); PROC_LOCK(p); oldcred = crcopysafe(p, newcred); #ifdef MAC error = mac_cred_check_setreuid(oldcred, ruid, euid); if (error) goto fail; #endif if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid && ruid != oldcred->cr_svuid) || (euid != (uid_t)-1 && euid != oldcred->cr_uid && euid != oldcred->cr_ruid && euid != oldcred->cr_svuid)) && (error = priv_check_cred(oldcred, PRIV_CRED_SETREUID, 0)) != 0) goto fail; if (euid != (uid_t)-1 && oldcred->cr_uid != euid) { change_euid(newcred, euip); setsugid(p); } if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) { change_ruid(newcred, ruip); setsugid(p); } if ((ruid != (uid_t)-1 || newcred->cr_uid != newcred->cr_ruid) && newcred->cr_svuid != newcred->cr_uid) { change_svuid(newcred, newcred->cr_uid); setsugid(p); } proc_set_cred(p, newcred); PROC_UNLOCK(p); #ifdef RACCT racct_proc_ucred_changed(p, oldcred, newcred); #endif uifree(ruip); uifree(euip); crfree(oldcred); return (0); fail: PROC_UNLOCK(p); uifree(ruip); uifree(euip); crfree(newcred); return (error); } #ifndef _SYS_SYSPROTO_H_ struct setregid_args { gid_t rgid; gid_t egid; }; #endif /* ARGSUSED */ int sys_setregid(register struct thread *td, struct setregid_args *uap) { struct proc *p = td->td_proc; struct ucred *newcred, *oldcred; gid_t egid, rgid; int error; egid = uap->egid; rgid = uap->rgid; AUDIT_ARG_EGID(egid); AUDIT_ARG_RGID(rgid); newcred = crget(); PROC_LOCK(p); oldcred = crcopysafe(p, newcred); #ifdef MAC error = mac_cred_check_setregid(oldcred, rgid, egid); if (error) goto fail; #endif if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid && rgid != oldcred->cr_svgid) || (egid != (gid_t)-1 && egid != oldcred->cr_groups[0] && egid != oldcred->cr_rgid && egid != oldcred->cr_svgid)) && (error = priv_check_cred(oldcred, PRIV_CRED_SETREGID, 0)) != 0) goto fail; if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) { change_egid(newcred, egid); setsugid(p); } if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) { change_rgid(newcred, rgid); setsugid(p); } if ((rgid != (gid_t)-1 || newcred->cr_groups[0] != newcred->cr_rgid) && newcred->cr_svgid != newcred->cr_groups[0]) { change_svgid(newcred, newcred->cr_groups[0]); setsugid(p); } proc_set_cred(p, newcred); PROC_UNLOCK(p); crfree(oldcred); return (0); fail: PROC_UNLOCK(p); crfree(newcred); return (error); } /* * setresuid(ruid, euid, suid) is like setreuid except control over the saved * uid is explicit. */ #ifndef _SYS_SYSPROTO_H_ struct setresuid_args { uid_t ruid; uid_t euid; uid_t suid; }; #endif /* ARGSUSED */ int sys_setresuid(register struct thread *td, struct setresuid_args *uap) { struct proc *p = td->td_proc; struct ucred *newcred, *oldcred; uid_t euid, ruid, suid; struct uidinfo *euip, *ruip; int error; euid = uap->euid; ruid = uap->ruid; suid = uap->suid; AUDIT_ARG_EUID(euid); AUDIT_ARG_RUID(ruid); AUDIT_ARG_SUID(suid); newcred = crget(); euip = uifind(euid); ruip = uifind(ruid); PROC_LOCK(p); oldcred = crcopysafe(p, newcred); #ifdef MAC error = mac_cred_check_setresuid(oldcred, ruid, euid, suid); if (error) goto fail; #endif if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid && ruid != oldcred->cr_svuid && ruid != oldcred->cr_uid) || (euid != (uid_t)-1 && euid != oldcred->cr_ruid && euid != oldcred->cr_svuid && euid != oldcred->cr_uid) || (suid != (uid_t)-1 && suid != oldcred->cr_ruid && suid != oldcred->cr_svuid && suid != oldcred->cr_uid)) && (error = priv_check_cred(oldcred, PRIV_CRED_SETRESUID, 0)) != 0) goto fail; if (euid != (uid_t)-1 && oldcred->cr_uid != euid) { change_euid(newcred, euip); setsugid(p); } if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) { change_ruid(newcred, ruip); setsugid(p); } if (suid != (uid_t)-1 && oldcred->cr_svuid != suid) { change_svuid(newcred, suid); setsugid(p); } proc_set_cred(p, newcred); PROC_UNLOCK(p); #ifdef RACCT racct_proc_ucred_changed(p, oldcred, newcred); #endif uifree(ruip); uifree(euip); crfree(oldcred); return (0); fail: PROC_UNLOCK(p); uifree(ruip); uifree(euip); crfree(newcred); return (error); } /* * setresgid(rgid, egid, sgid) is like setregid except control over the saved * gid is explicit. */ #ifndef _SYS_SYSPROTO_H_ struct setresgid_args { gid_t rgid; gid_t egid; gid_t sgid; }; #endif /* ARGSUSED */ int sys_setresgid(register struct thread *td, struct setresgid_args *uap) { struct proc *p = td->td_proc; struct ucred *newcred, *oldcred; gid_t egid, rgid, sgid; int error; egid = uap->egid; rgid = uap->rgid; sgid = uap->sgid; AUDIT_ARG_EGID(egid); AUDIT_ARG_RGID(rgid); AUDIT_ARG_SGID(sgid); newcred = crget(); PROC_LOCK(p); oldcred = crcopysafe(p, newcred); #ifdef MAC error = mac_cred_check_setresgid(oldcred, rgid, egid, sgid); if (error) goto fail; #endif if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid && rgid != oldcred->cr_svgid && rgid != oldcred->cr_groups[0]) || (egid != (gid_t)-1 && egid != oldcred->cr_rgid && egid != oldcred->cr_svgid && egid != oldcred->cr_groups[0]) || (sgid != (gid_t)-1 && sgid != oldcred->cr_rgid && sgid != oldcred->cr_svgid && sgid != oldcred->cr_groups[0])) && (error = priv_check_cred(oldcred, PRIV_CRED_SETRESGID, 0)) != 0) goto fail; if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) { change_egid(newcred, egid); setsugid(p); } if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) { change_rgid(newcred, rgid); setsugid(p); } if (sgid != (gid_t)-1 && oldcred->cr_svgid != sgid) { change_svgid(newcred, sgid); setsugid(p); } proc_set_cred(p, newcred); PROC_UNLOCK(p); crfree(oldcred); return (0); fail: PROC_UNLOCK(p); crfree(newcred); return (error); } #ifndef _SYS_SYSPROTO_H_ struct getresuid_args { uid_t *ruid; uid_t *euid; uid_t *suid; }; #endif /* ARGSUSED */ int sys_getresuid(register struct thread *td, struct getresuid_args *uap) { struct ucred *cred; int error1 = 0, error2 = 0, error3 = 0; cred = td->td_ucred; if (uap->ruid) error1 = copyout(&cred->cr_ruid, uap->ruid, sizeof(cred->cr_ruid)); if (uap->euid) error2 = copyout(&cred->cr_uid, uap->euid, sizeof(cred->cr_uid)); if (uap->suid) error3 = copyout(&cred->cr_svuid, uap->suid, sizeof(cred->cr_svuid)); return (error1 ? error1 : error2 ? error2 : error3); } #ifndef _SYS_SYSPROTO_H_ struct getresgid_args { gid_t *rgid; gid_t *egid; gid_t *sgid; }; #endif /* ARGSUSED */ int sys_getresgid(register struct thread *td, struct getresgid_args *uap) { struct ucred *cred; int error1 = 0, error2 = 0, error3 = 0; cred = td->td_ucred; if (uap->rgid) error1 = copyout(&cred->cr_rgid, uap->rgid, sizeof(cred->cr_rgid)); if (uap->egid) error2 = copyout(&cred->cr_groups[0], uap->egid, sizeof(cred->cr_groups[0])); if (uap->sgid) error3 = copyout(&cred->cr_svgid, uap->sgid, sizeof(cred->cr_svgid)); return (error1 ? error1 : error2 ? error2 : error3); } #ifndef _SYS_SYSPROTO_H_ struct issetugid_args { int dummy; }; #endif /* ARGSUSED */ int sys_issetugid(register struct thread *td, struct issetugid_args *uap) { struct proc *p = td->td_proc; /* * Note: OpenBSD sets a P_SUGIDEXEC flag set at execve() time, * we use P_SUGID because we consider changing the owners as * "tainting" as well. * This is significant for procs that start as root and "become" * a user without an exec - programs cannot know *everything* * that libc *might* have put in their data segment. */ PROC_LOCK(p); td->td_retval[0] = (p->p_flag & P_SUGID) ? 1 : 0; PROC_UNLOCK(p); return (0); } int sys___setugid(struct thread *td, struct __setugid_args *uap) { #ifdef REGRESSION struct proc *p; p = td->td_proc; switch (uap->flag) { case 0: PROC_LOCK(p); p->p_flag &= ~P_SUGID; PROC_UNLOCK(p); return (0); case 1: PROC_LOCK(p); p->p_flag |= P_SUGID; PROC_UNLOCK(p); return (0); default: return (EINVAL); } #else /* !REGRESSION */ return (ENOSYS); #endif /* REGRESSION */ } /* * Check if gid is a member of the group set. */ int groupmember(gid_t gid, struct ucred *cred) { int l; int h; int m; if (cred->cr_groups[0] == gid) return(1); /* * If gid was not our primary group, perform a binary search * of the supplemental groups. This is possible because we * sort the groups in crsetgroups(). */ l = 1; h = cred->cr_ngroups; while (l < h) { m = l + ((h - l) / 2); if (cred->cr_groups[m] < gid) l = m + 1; else h = m; } if ((l < cred->cr_ngroups) && (cred->cr_groups[l] == gid)) return (1); return (0); } /* * Test the active securelevel against a given level. securelevel_gt() * implements (securelevel > level). securelevel_ge() implements * (securelevel >= level). Note that the logic is inverted -- these * functions return EPERM on "success" and 0 on "failure". * * Due to care taken when setting the securelevel, we know that no jail will * be less secure that its parent (or the physical system), so it is sufficient * to test the current jail only. * * XXXRW: Possibly since this has to do with privilege, it should move to * kern_priv.c. */ int securelevel_gt(struct ucred *cr, int level) { return (cr->cr_prison->pr_securelevel > level ? EPERM : 0); } int securelevel_ge(struct ucred *cr, int level) { return (cr->cr_prison->pr_securelevel >= level ? EPERM : 0); } /* * 'see_other_uids' determines whether or not visibility of processes * and sockets with credentials holding different real uids is possible * using a variety of system MIBs. * XXX: data declarations should be together near the beginning of the file. */ static int see_other_uids = 1; SYSCTL_INT(_security_bsd, OID_AUTO, see_other_uids, CTLFLAG_RW, &see_other_uids, 0, "Unprivileged processes may see subjects/objects with different real uid"); /*- * Determine if u1 "can see" the subject specified by u2, according to the * 'see_other_uids' policy. * Returns: 0 for permitted, ESRCH otherwise * Locks: none * References: *u1 and *u2 must not change during the call * u1 may equal u2, in which case only one reference is required */ int cr_canseeotheruids(struct ucred *u1, struct ucred *u2) { if (!see_other_uids && u1->cr_ruid != u2->cr_ruid) { if (priv_check_cred(u1, PRIV_SEEOTHERUIDS, 0) != 0) return (ESRCH); } return (0); } /* * 'see_other_gids' determines whether or not visibility of processes * and sockets with credentials holding different real gids is possible * using a variety of system MIBs. * XXX: data declarations should be together near the beginning of the file. */ static int see_other_gids = 1; SYSCTL_INT(_security_bsd, OID_AUTO, see_other_gids, CTLFLAG_RW, &see_other_gids, 0, "Unprivileged processes may see subjects/objects with different real gid"); /* * Determine if u1 can "see" the subject specified by u2, according to the * 'see_other_gids' policy. * Returns: 0 for permitted, ESRCH otherwise * Locks: none * References: *u1 and *u2 must not change during the call * u1 may equal u2, in which case only one reference is required */ int cr_canseeothergids(struct ucred *u1, struct ucred *u2) { int i, match; if (!see_other_gids) { match = 0; for (i = 0; i < u1->cr_ngroups; i++) { if (groupmember(u1->cr_groups[i], u2)) match = 1; if (match) break; } if (!match) { if (priv_check_cred(u1, PRIV_SEEOTHERGIDS, 0) != 0) return (ESRCH); } } return (0); } /*- * Determine if u1 "can see" the subject specified by u2. * Returns: 0 for permitted, an errno value otherwise * Locks: none * References: *u1 and *u2 must not change during the call * u1 may equal u2, in which case only one reference is required */ int cr_cansee(struct ucred *u1, struct ucred *u2) { int error; if ((error = prison_check(u1, u2))) return (error); #ifdef MAC if ((error = mac_cred_check_visible(u1, u2))) return (error); #endif if ((error = cr_canseeotheruids(u1, u2))) return (error); if ((error = cr_canseeothergids(u1, u2))) return (error); return (0); } /*- * Determine if td "can see" the subject specified by p. * Returns: 0 for permitted, an errno value otherwise * Locks: Sufficient locks to protect p->p_ucred must be held. td really * should be curthread. * References: td and p must be valid for the lifetime of the call */ int p_cansee(struct thread *td, struct proc *p) { /* Wrap cr_cansee() for all functionality. */ KASSERT(td == curthread, ("%s: td not curthread", __func__)); PROC_LOCK_ASSERT(p, MA_OWNED); return (cr_cansee(td->td_ucred, p->p_ucred)); } /* * 'conservative_signals' prevents the delivery of a broad class of * signals by unprivileged processes to processes that have changed their * credentials since the last invocation of execve(). This can prevent * the leakage of cached information or retained privileges as a result * of a common class of signal-related vulnerabilities. However, this * may interfere with some applications that expect to be able to * deliver these signals to peer processes after having given up * privilege. */ static int conservative_signals = 1; SYSCTL_INT(_security_bsd, OID_AUTO, conservative_signals, CTLFLAG_RW, &conservative_signals, 0, "Unprivileged processes prevented from " "sending certain signals to processes whose credentials have changed"); /*- * Determine whether cred may deliver the specified signal to proc. * Returns: 0 for permitted, an errno value otherwise. * Locks: A lock must be held for proc. * References: cred and proc must be valid for the lifetime of the call. */ int cr_cansignal(struct ucred *cred, struct proc *proc, int signum) { int error; PROC_LOCK_ASSERT(proc, MA_OWNED); /* * Jail semantics limit the scope of signalling to proc in the * same jail as cred, if cred is in jail. */ error = prison_check(cred, proc->p_ucred); if (error) return (error); #ifdef MAC if ((error = mac_proc_check_signal(cred, proc, signum))) return (error); #endif if ((error = cr_canseeotheruids(cred, proc->p_ucred))) return (error); if ((error = cr_canseeothergids(cred, proc->p_ucred))) return (error); /* * UNIX signal semantics depend on the status of the P_SUGID * bit on the target process. If the bit is set, then additional * restrictions are placed on the set of available signals. */ if (conservative_signals && (proc->p_flag & P_SUGID)) { switch (signum) { case 0: case SIGKILL: case SIGINT: case SIGTERM: case SIGALRM: case SIGSTOP: case SIGTTIN: case SIGTTOU: case SIGTSTP: case SIGHUP: case SIGUSR1: case SIGUSR2: /* * Generally, permit job and terminal control * signals. */ break; default: /* Not permitted without privilege. */ error = priv_check_cred(cred, PRIV_SIGNAL_SUGID, 0); if (error) return (error); } } /* * Generally, the target credential's ruid or svuid must match the * subject credential's ruid or euid. */ if (cred->cr_ruid != proc->p_ucred->cr_ruid && cred->cr_ruid != proc->p_ucred->cr_svuid && cred->cr_uid != proc->p_ucred->cr_ruid && cred->cr_uid != proc->p_ucred->cr_svuid) { error = priv_check_cred(cred, PRIV_SIGNAL_DIFFCRED, 0); if (error) return (error); } return (0); } /*- * Determine whether td may deliver the specified signal to p. * Returns: 0 for permitted, an errno value otherwise * Locks: Sufficient locks to protect various components of td and p * must be held. td must be curthread, and a lock must be * held for p. * References: td and p must be valid for the lifetime of the call */ int p_cansignal(struct thread *td, struct proc *p, int signum) { KASSERT(td == curthread, ("%s: td not curthread", __func__)); PROC_LOCK_ASSERT(p, MA_OWNED); if (td->td_proc == p) return (0); /* * UNIX signalling semantics require that processes in the same * session always be able to deliver SIGCONT to one another, * overriding the remaining protections. */ /* XXX: This will require an additional lock of some sort. */ if (signum == SIGCONT && td->td_proc->p_session == p->p_session) return (0); /* * Some compat layers use SIGTHR and higher signals for * communication between different kernel threads of the same * process, so that they expect that it's always possible to * deliver them, even for suid applications where cr_cansignal() can * deny such ability for security consideration. It should be * pretty safe to do since the only way to create two processes * with the same p_leader is via rfork(2). */ if (td->td_proc->p_leader != NULL && signum >= SIGTHR && signum < SIGTHR + 4 && td->td_proc->p_leader == p->p_leader) return (0); return (cr_cansignal(td->td_ucred, p, signum)); } /*- * Determine whether td may reschedule p. * Returns: 0 for permitted, an errno value otherwise * Locks: Sufficient locks to protect various components of td and p * must be held. td must be curthread, and a lock must * be held for p. * References: td and p must be valid for the lifetime of the call */ int p_cansched(struct thread *td, struct proc *p) { int error; KASSERT(td == curthread, ("%s: td not curthread", __func__)); PROC_LOCK_ASSERT(p, MA_OWNED); if (td->td_proc == p) return (0); if ((error = prison_check(td->td_ucred, p->p_ucred))) return (error); #ifdef MAC if ((error = mac_proc_check_sched(td->td_ucred, p))) return (error); #endif if ((error = cr_canseeotheruids(td->td_ucred, p->p_ucred))) return (error); if ((error = cr_canseeothergids(td->td_ucred, p->p_ucred))) return (error); if (td->td_ucred->cr_ruid != p->p_ucred->cr_ruid && td->td_ucred->cr_uid != p->p_ucred->cr_ruid) { error = priv_check(td, PRIV_SCHED_DIFFCRED); if (error) return (error); } return (0); } /* * The 'unprivileged_proc_debug' flag may be used to disable a variety of * unprivileged inter-process debugging services, including some procfs * functionality, ptrace(), and ktrace(). In the past, inter-process * debugging has been involved in a variety of security problems, and sites * not requiring the service might choose to disable it when hardening * systems. * * XXX: Should modifying and reading this variable require locking? * XXX: data declarations should be together near the beginning of the file. */ static int unprivileged_proc_debug = 1; SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_proc_debug, CTLFLAG_RW, &unprivileged_proc_debug, 0, "Unprivileged processes may use process debugging facilities"); /*- * Determine whether td may debug p. * Returns: 0 for permitted, an errno value otherwise * Locks: Sufficient locks to protect various components of td and p * must be held. td must be curthread, and a lock must * be held for p. * References: td and p must be valid for the lifetime of the call */ int p_candebug(struct thread *td, struct proc *p) { int credentialchanged, error, grpsubset, i, uidsubset; KASSERT(td == curthread, ("%s: td not curthread", __func__)); PROC_LOCK_ASSERT(p, MA_OWNED); if (!unprivileged_proc_debug) { error = priv_check(td, PRIV_DEBUG_UNPRIV); if (error) return (error); } if (td->td_proc == p) return (0); if ((error = prison_check(td->td_ucred, p->p_ucred))) return (error); #ifdef MAC if ((error = mac_proc_check_debug(td->td_ucred, p))) return (error); #endif if ((error = cr_canseeotheruids(td->td_ucred, p->p_ucred))) return (error); if ((error = cr_canseeothergids(td->td_ucred, p->p_ucred))) return (error); /* * Is p's group set a subset of td's effective group set? This * includes p's egid, group access list, rgid, and svgid. */ grpsubset = 1; for (i = 0; i < p->p_ucred->cr_ngroups; i++) { if (!groupmember(p->p_ucred->cr_groups[i], td->td_ucred)) { grpsubset = 0; break; } } grpsubset = grpsubset && groupmember(p->p_ucred->cr_rgid, td->td_ucred) && groupmember(p->p_ucred->cr_svgid, td->td_ucred); /* * Are the uids present in p's credential equal to td's * effective uid? This includes p's euid, svuid, and ruid. */ uidsubset = (td->td_ucred->cr_uid == p->p_ucred->cr_uid && td->td_ucred->cr_uid == p->p_ucred->cr_svuid && td->td_ucred->cr_uid == p->p_ucred->cr_ruid); /* * Has the credential of the process changed since the last exec()? */ credentialchanged = (p->p_flag & P_SUGID); /* * If p's gids aren't a subset, or the uids aren't a subset, * or the credential has changed, require appropriate privilege * for td to debug p. */ if (!grpsubset || !uidsubset) { error = priv_check(td, PRIV_DEBUG_DIFFCRED); if (error) return (error); } if (credentialchanged) { error = priv_check(td, PRIV_DEBUG_SUGID); if (error) return (error); } /* Can't trace init when securelevel > 0. */ if (p == initproc) { error = securelevel_gt(td->td_ucred, 0); if (error) return (error); } /* * Can't trace a process that's currently exec'ing. * * XXX: Note, this is not a security policy decision, it's a * basic correctness/functionality decision. Therefore, this check * should be moved to the caller's of p_candebug(). */ if ((p->p_flag & P_INEXEC) != 0) return (EBUSY); /* Denied explicitely */ if ((p->p_flag2 & P2_NOTRACE) != 0) { error = priv_check(td, PRIV_DEBUG_DENIED); if (error != 0) return (error); } return (0); } /*- * Determine whether the subject represented by cred can "see" a socket. * Returns: 0 for permitted, ENOENT otherwise. */ int cr_canseesocket(struct ucred *cred, struct socket *so) { int error; error = prison_check(cred, so->so_cred); if (error) return (ENOENT); #ifdef MAC error = mac_socket_check_visible(cred, so); if (error) return (error); #endif if (cr_canseeotheruids(cred, so->so_cred)) return (ENOENT); if (cr_canseeothergids(cred, so->so_cred)) return (ENOENT); return (0); } /*- * Determine whether td can wait for the exit of p. * Returns: 0 for permitted, an errno value otherwise * Locks: Sufficient locks to protect various components of td and p * must be held. td must be curthread, and a lock must * be held for p. * References: td and p must be valid for the lifetime of the call */ int p_canwait(struct thread *td, struct proc *p) { int error; KASSERT(td == curthread, ("%s: td not curthread", __func__)); PROC_LOCK_ASSERT(p, MA_OWNED); if ((error = prison_check(td->td_ucred, p->p_ucred))) return (error); #ifdef MAC if ((error = mac_proc_check_wait(td->td_ucred, p))) return (error); #endif #if 0 /* XXXMAC: This could have odd effects on some shells. */ if ((error = cr_canseeotheruids(td->td_ucred, p->p_ucred))) return (error); #endif return (0); } /* * Allocate a zeroed cred structure. */ struct ucred * crget(void) { register struct ucred *cr; cr = malloc(sizeof(*cr), M_CRED, M_WAITOK | M_ZERO); refcount_init(&cr->cr_ref, 1); #ifdef AUDIT audit_cred_init(cr); #endif #ifdef MAC mac_cred_init(cr); #endif cr->cr_groups = cr->cr_smallgroups; cr->cr_agroups = sizeof(cr->cr_smallgroups) / sizeof(cr->cr_smallgroups[0]); return (cr); } /* * Claim another reference to a ucred structure. */ struct ucred * crhold(struct ucred *cr) { refcount_acquire(&cr->cr_ref); return (cr); } /* * Free a cred structure. Throws away space when ref count gets to 0. */ void crfree(struct ucred *cr) { KASSERT(cr->cr_ref > 0, ("bad ucred refcount: %d", cr->cr_ref)); KASSERT(cr->cr_ref != 0xdeadc0de, ("dangling reference to ucred")); if (refcount_release(&cr->cr_ref)) { /* * Some callers of crget(), such as nfs_statfs(), * allocate a temporary credential, but don't * allocate a uidinfo structure. */ if (cr->cr_uidinfo != NULL) uifree(cr->cr_uidinfo); if (cr->cr_ruidinfo != NULL) uifree(cr->cr_ruidinfo); /* * Free a prison, if any. */ if (cr->cr_prison != NULL) prison_free(cr->cr_prison); if (cr->cr_loginclass != NULL) loginclass_free(cr->cr_loginclass); #ifdef AUDIT audit_cred_destroy(cr); #endif #ifdef MAC mac_cred_destroy(cr); #endif if (cr->cr_groups != cr->cr_smallgroups) free(cr->cr_groups, M_CRED); free(cr, M_CRED); } } /* * Copy a ucred's contents from a template. Does not block. */ void crcopy(struct ucred *dest, struct ucred *src) { KASSERT(dest->cr_ref == 1, ("crcopy of shared ucred")); bcopy(&src->cr_startcopy, &dest->cr_startcopy, (unsigned)((caddr_t)&src->cr_endcopy - (caddr_t)&src->cr_startcopy)); crsetgroups(dest, src->cr_ngroups, src->cr_groups); uihold(dest->cr_uidinfo); uihold(dest->cr_ruidinfo); prison_hold(dest->cr_prison); loginclass_hold(dest->cr_loginclass); #ifdef AUDIT audit_cred_copy(src, dest); #endif #ifdef MAC mac_cred_copy(src, dest); #endif } /* * Dup cred struct to a new held one. */ struct ucred * crdup(struct ucred *cr) { struct ucred *newcr; newcr = crget(); crcopy(newcr, cr); return (newcr); } /* * Fill in a struct xucred based on a struct ucred. */ void cru2x(struct ucred *cr, struct xucred *xcr) { int ngroups; bzero(xcr, sizeof(*xcr)); xcr->cr_version = XUCRED_VERSION; xcr->cr_uid = cr->cr_uid; ngroups = MIN(cr->cr_ngroups, XU_NGROUPS); xcr->cr_ngroups = ngroups; bcopy(cr->cr_groups, xcr->cr_groups, ngroups * sizeof(*cr->cr_groups)); } /* * Set initial process credentials. * Callers are responsible for providing the reference for provided credentials. */ void proc_set_cred_init(struct proc *p, struct ucred *newcred) { p->p_ucred = newcred; } /* * Change process credentials. * Callers are responsible for providing the reference for passed credentials * and for freeing old ones. * * Process has to be locked except when it does not have credentials (as it * should not be visible just yet) or when newcred is NULL (as this can be * only used when the process is about to be freed, at which point it should * not be visible anymore). */ struct ucred * proc_set_cred(struct proc *p, struct ucred *newcred) { struct ucred *oldcred; MPASS(p->p_ucred != NULL); if (newcred == NULL) MPASS(p->p_state == PRS_ZOMBIE); else PROC_LOCK_ASSERT(p, MA_OWNED); oldcred = p->p_ucred; p->p_ucred = newcred; if (newcred != NULL) PROC_UPDATE_COW(p); return (oldcred); } struct ucred * crcopysafe(struct proc *p, struct ucred *cr) { struct ucred *oldcred; int groups; PROC_LOCK_ASSERT(p, MA_OWNED); oldcred = p->p_ucred; while (cr->cr_agroups < oldcred->cr_agroups) { groups = oldcred->cr_agroups; PROC_UNLOCK(p); crextend(cr, groups); PROC_LOCK(p); oldcred = p->p_ucred; } crcopy(cr, oldcred); return (oldcred); } /* * Extend the passed in credential to hold n items. */ void crextend(struct ucred *cr, int n) { int cnt; /* Truncate? */ if (n <= cr->cr_agroups) return; /* * We extend by 2 each time since we're using a power of two * allocator until we need enough groups to fill a page. * Once we're allocating multiple pages, only allocate as many * as we actually need. The case of processes needing a * non-power of two number of pages seems more likely than * a real world process that adds thousands of groups one at a * time. */ if ( n < PAGE_SIZE / sizeof(gid_t) ) { if (cr->cr_agroups == 0) cnt = MINALLOCSIZE / sizeof(gid_t); else cnt = cr->cr_agroups * 2; while (cnt < n) cnt *= 2; } else cnt = roundup2(n, PAGE_SIZE / sizeof(gid_t)); /* Free the old array. */ if (cr->cr_groups != cr->cr_smallgroups) free(cr->cr_groups, M_CRED); cr->cr_groups = malloc(cnt * sizeof(gid_t), M_CRED, M_WAITOK | M_ZERO); cr->cr_agroups = cnt; } /* * Copy groups in to a credential, preserving any necessary invariants. * Currently this includes the sorting of all supplemental gids. * crextend() must have been called before hand to ensure sufficient * space is available. */ static void crsetgroups_locked(struct ucred *cr, int ngrp, gid_t *groups) { int i; int j; gid_t g; KASSERT(cr->cr_agroups >= ngrp, ("cr_ngroups is too small")); bcopy(groups, cr->cr_groups, ngrp * sizeof(gid_t)); cr->cr_ngroups = ngrp; /* * Sort all groups except cr_groups[0] to allow groupmember to * perform a binary search. * * XXX: If large numbers of groups become common this should * be replaced with shell sort like linux uses or possibly * heap sort. */ for (i = 2; i < ngrp; i++) { g = cr->cr_groups[i]; for (j = i-1; j >= 1 && g < cr->cr_groups[j]; j--) cr->cr_groups[j + 1] = cr->cr_groups[j]; cr->cr_groups[j + 1] = g; } } /* * Copy groups in to a credential after expanding it if required. * Truncate the list to (ngroups_max + 1) if it is too large. */ void crsetgroups(struct ucred *cr, int ngrp, gid_t *groups) { if (ngrp > ngroups_max + 1) ngrp = ngroups_max + 1; crextend(cr, ngrp); crsetgroups_locked(cr, ngrp, groups); } /* * Get login name, if available. */ #ifndef _SYS_SYSPROTO_H_ struct getlogin_args { char *namebuf; u_int namelen; }; #endif /* ARGSUSED */ int sys_getlogin(struct thread *td, struct getlogin_args *uap) { char login[MAXLOGNAME]; struct proc *p = td->td_proc; size_t len; if (uap->namelen > MAXLOGNAME) uap->namelen = MAXLOGNAME; PROC_LOCK(p); SESS_LOCK(p->p_session); len = strlcpy(login, p->p_session->s_login, uap->namelen) + 1; SESS_UNLOCK(p->p_session); PROC_UNLOCK(p); if (len > uap->namelen) return (ERANGE); return (copyout(login, uap->namebuf, len)); } /* * Set login name. */ #ifndef _SYS_SYSPROTO_H_ struct setlogin_args { char *namebuf; }; #endif /* ARGSUSED */ int sys_setlogin(struct thread *td, struct setlogin_args *uap) { struct proc *p = td->td_proc; int error; char logintmp[MAXLOGNAME]; CTASSERT(sizeof(p->p_session->s_login) >= sizeof(logintmp)); error = priv_check(td, PRIV_PROC_SETLOGIN); if (error) return (error); error = copyinstr(uap->namebuf, logintmp, sizeof(logintmp), NULL); if (error != 0) { if (error == ENAMETOOLONG) error = EINVAL; return (error); } PROC_LOCK(p); SESS_LOCK(p->p_session); strcpy(p->p_session->s_login, logintmp); SESS_UNLOCK(p->p_session); PROC_UNLOCK(p); return (0); } void setsugid(struct proc *p) { PROC_LOCK_ASSERT(p, MA_OWNED); p->p_flag |= P_SUGID; if (!(p->p_pfsflags & PF_ISUGID)) p->p_stops = 0; } /*- * Change a process's effective uid. * Side effects: newcred->cr_uid and newcred->cr_uidinfo will be modified. * References: newcred must be an exclusive credential reference for the * duration of the call. */ void change_euid(struct ucred *newcred, struct uidinfo *euip) { newcred->cr_uid = euip->ui_uid; uihold(euip); uifree(newcred->cr_uidinfo); newcred->cr_uidinfo = euip; } /*- * Change a process's effective gid. * Side effects: newcred->cr_gid will be modified. * References: newcred must be an exclusive credential reference for the * duration of the call. */ void change_egid(struct ucred *newcred, gid_t egid) { newcred->cr_groups[0] = egid; } /*- * Change a process's real uid. * Side effects: newcred->cr_ruid will be updated, newcred->cr_ruidinfo * will be updated, and the old and new cr_ruidinfo proc * counts will be updated. * References: newcred must be an exclusive credential reference for the * duration of the call. */ void change_ruid(struct ucred *newcred, struct uidinfo *ruip) { (void)chgproccnt(newcred->cr_ruidinfo, -1, 0); newcred->cr_ruid = ruip->ui_uid; uihold(ruip); uifree(newcred->cr_ruidinfo); newcred->cr_ruidinfo = ruip; (void)chgproccnt(newcred->cr_ruidinfo, 1, 0); } /*- * Change a process's real gid. * Side effects: newcred->cr_rgid will be updated. * References: newcred must be an exclusive credential reference for the * duration of the call. */ void change_rgid(struct ucred *newcred, gid_t rgid) { newcred->cr_rgid = rgid; } /*- * Change a process's saved uid. * Side effects: newcred->cr_svuid will be updated. * References: newcred must be an exclusive credential reference for the * duration of the call. */ void change_svuid(struct ucred *newcred, uid_t svuid) { newcred->cr_svuid = svuid; } /*- * Change a process's saved gid. * Side effects: newcred->cr_svgid will be updated. * References: newcred must be an exclusive credential reference for the * duration of the call. */ void change_svgid(struct ucred *newcred, gid_t svgid) { newcred->cr_svgid = svgid; }