/*- * Copyright (c) 1997,1998 Maxim Bolotin and Oleg Sharoiko. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include __FBSDID("$FreeBSD$"); /* * * Device driver for Crystal Semiconductor CS8920 based ethernet * adapters. By Maxim Bolotin and Oleg Sharoiko, 27-April-1997 */ /* #define CS_DEBUG */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CS_USE_64K_DMA #define CS_DMA_BUFFER_SIZE 65536 #else #define CS_DMA_BUFFER_SIZE 16384 #endif static void cs_init(void *); static void cs_init_locked(struct cs_softc *); static int cs_ioctl(struct ifnet *, u_long, caddr_t); static void cs_start(struct ifnet *); static void cs_start_locked(struct ifnet *); static void cs_stop(struct cs_softc *); static void cs_reset(struct cs_softc *); static void cs_watchdog(void *); static int cs_mediachange(struct ifnet *); static void cs_mediastatus(struct ifnet *, struct ifmediareq *); static int cs_mediaset(struct cs_softc *, int); static void cs_write_mbufs(struct cs_softc*, struct mbuf*); static void cs_xmit_buf(struct cs_softc*); static int cs_get_packet(struct cs_softc*); static void cs_setmode(struct cs_softc*); static int get_eeprom_data(struct cs_softc *sc, int, int, uint16_t *); static int get_eeprom_cksum(int, int, uint16_t *); static int wait_eeprom_ready( struct cs_softc *); static void control_dc_dc( struct cs_softc *, int ); static int enable_tp(struct cs_softc *); static int enable_aui(struct cs_softc *); static int enable_bnc(struct cs_softc *); static int cs_duplex_auto(struct cs_softc *); devclass_t cs_devclass; driver_intr_t csintr; /* sysctl vars */ SYSCTL_NODE(_hw, OID_AUTO, cs, CTLFLAG_RD, 0, "cs device parameters"); int cs_ignore_cksum_failure = 0; TUNABLE_INT("hw.cs.ignore_checksum_failure", &cs_ignore_cksum_failure); SYSCTL_INT(_hw_cs, OID_AUTO, ignore_checksum_failure, CTLFLAG_RW, &cs_ignore_cksum_failure, 0, "ignore checksum errors in cs card EEPROM"); static int cs_recv_delay = 570; TUNABLE_INT("hw.cs.recv_delay", &cs_recv_delay); SYSCTL_INT(_hw_cs, OID_AUTO, recv_delay, CTLFLAG_RW, &cs_recv_delay, 570, ""); static int cs8900_eeint2irq[16] = { 10, 11, 12, 5, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }; static int cs8900_irq2eeint[16] = { 255, 255, 255, 255, 255, 3, 255, 255, 255, 0, 1, 2, 255, 255, 255, 255 }; static int get_eeprom_data(struct cs_softc *sc, int off, int len, uint16_t *buffer) { int i; #ifdef CS_DEBUG device_printf(sc->dev, "EEPROM data from %x for %x:\n", off, len); #endif for (i=0; i < len; i++) { if (wait_eeprom_ready(sc) < 0) return (-1); /* Send command to EEPROM to read */ cs_writereg(sc, PP_EECMD, (off + i) | EEPROM_READ_CMD); if (wait_eeprom_ready(sc) < 0) return (-1); buffer[i] = cs_readreg(sc, PP_EEData); #ifdef CS_DEBUG printf("%04x ",buffer[i]); #endif } #ifdef CS_DEBUG printf("\n"); #endif return (0); } static int get_eeprom_cksum(int off, int len, uint16_t *buffer) { int i; uint16_t cksum=0; for (i = 0; i < len; i++) cksum += buffer[i]; cksum &= 0xffff; if (cksum == 0 || cs_ignore_cksum_failure) return (0); return (-1); } static int wait_eeprom_ready(struct cs_softc *sc) { int i; /* * From the CS8900A datasheet, section 3.5.2: * "Before issuing any command to the EEPROM, the host must wait * for the SIBUSY bit (Register 16, SelfST, bit 8) to clear. After * each command has been issued, the host must wait again for SIBUSY * to clear." * * Before we issue the command, we should be !busy, so that will * be fast. The datasheet suggests that clock out from the part * per word will be on the order of 25us, which is consistant with * the 1MHz serial clock and 16bits... We should never hit 100, * let alone 15,000 here. The original code did an unconditional * 30ms DELAY here. Bad Kharma. cs_readreg takes ~2us. */ for (i = 0; i < 15000; i++) /* 30ms max */ if (!(cs_readreg(sc, PP_SelfST) & SI_BUSY)) return (0); return (1); } static void control_dc_dc(struct cs_softc *sc, int on_not_off) { unsigned int self_control = HCB1_ENBL; if (((sc->adapter_cnf & A_CNF_DC_DC_POLARITY)!=0) ^ on_not_off) self_control |= HCB1; else self_control &= ~HCB1; cs_writereg(sc, PP_SelfCTL, self_control); DELAY(500000); /* Bad! */ } static int cs_duplex_auto(struct cs_softc *sc) { int i, error=0; cs_writereg(sc, PP_AutoNegCTL, RE_NEG_NOW | ALLOW_FDX | AUTO_NEG_ENABLE); for (i=0; cs_readreg(sc, PP_AutoNegST) & AUTO_NEG_BUSY; i++) { if (i > 4000) { device_printf(sc->dev, "full/half duplex auto negotiation timeout\n"); error = ETIMEDOUT; break; } DELAY(1000); } return (error); } static int enable_tp(struct cs_softc *sc) { cs_writereg(sc, PP_LineCTL, sc->line_ctl & ~AUI_ONLY); control_dc_dc(sc, 0); return (0); } static int enable_aui(struct cs_softc *sc) { cs_writereg(sc, PP_LineCTL, (sc->line_ctl & ~AUTO_AUI_10BASET) | AUI_ONLY); control_dc_dc(sc, 0); return (0); } static int enable_bnc(struct cs_softc *sc) { cs_writereg(sc, PP_LineCTL, (sc->line_ctl & ~AUTO_AUI_10BASET) | AUI_ONLY); control_dc_dc(sc, 1); return (0); } int cs_cs89x0_probe(device_t dev) { int i; int error; u_long irq, junk; struct cs_softc *sc = device_get_softc(dev); unsigned rev_type = 0; uint16_t id; char chip_revision; uint16_t eeprom_buff[CHKSUM_LEN]; int chip_type, pp_isaint, pp_isadma; sc->dev = dev; error = cs_alloc_port(dev, 0, CS_89x0_IO_PORTS); if (error) return (error); sc->nic_addr = rman_get_start(sc->port_res); if ((cs_inw(sc, ADD_PORT) & ADD_MASK) != ADD_SIG) { /* Chip not detected. Let's try to reset it */ if (bootverbose) device_printf(dev, "trying to reset the chip.\n"); cs_outw(sc, ADD_PORT, PP_SelfCTL); i = cs_inw(sc, DATA_PORT); cs_outw(sc, ADD_PORT, PP_SelfCTL); cs_outw(sc, DATA_PORT, i | POWER_ON_RESET); if ((cs_inw(sc, ADD_PORT) & ADD_MASK) != ADD_SIG) return (ENXIO); } for (i = 0; i < 10000; i++) { id = cs_readreg(sc, PP_ChipID); if (id == CHIP_EISA_ID_SIG) break; } if (i == 10000) return (ENXIO); rev_type = cs_readreg(sc, PRODUCT_ID_ADD); chip_type = rev_type & ~REVISON_BITS; chip_revision = ((rev_type & REVISON_BITS) >> 8) + 'A'; sc->chip_type = chip_type; if (chip_type == CS8900) { pp_isaint = PP_CS8900_ISAINT; pp_isadma = PP_CS8900_ISADMA; sc->send_cmd = TX_CS8900_AFTER_ALL; } else { pp_isaint = PP_CS8920_ISAINT; pp_isadma = PP_CS8920_ISADMA; sc->send_cmd = TX_CS8920_AFTER_ALL; } /* * Clear some fields so that fail of EEPROM will left them clean */ sc->auto_neg_cnf = 0; sc->adapter_cnf = 0; sc->isa_config = 0; /* * If no interrupt specified, use what the board tells us. */ error = bus_get_resource(dev, SYS_RES_IRQ, 0, &irq, &junk); /* * Get data from EEPROM */ if((cs_readreg(sc, PP_SelfST) & EEPROM_PRESENT) == 0) { device_printf(dev, "No EEPROM, assuming defaults.\n"); } else if (get_eeprom_data(sc,START_EEPROM_DATA,CHKSUM_LEN, eeprom_buff)<0) { device_printf(dev, "EEPROM read failed, assuming defaults.\n"); } else if (get_eeprom_cksum(START_EEPROM_DATA,CHKSUM_LEN, eeprom_buff)<0) { device_printf(dev, "EEPROM cheksum bad, assuming defaults.\n"); } else { sc->auto_neg_cnf = eeprom_buff[AUTO_NEG_CNF_OFFSET]; sc->adapter_cnf = eeprom_buff[ADAPTER_CNF_OFFSET]; sc->isa_config = eeprom_buff[ISA_CNF_OFFSET]; for (i=0; ienaddr[i*2] = eeprom_buff[i]; sc->enaddr[i*2+1] = eeprom_buff[i] >> 8; } /* * If no interrupt specified, use what the * board tells us. */ if (error) { irq = sc->isa_config & INT_NO_MASK; error = 0; if (chip_type == CS8900) { irq = cs8900_eeint2irq[irq]; } else { if (irq > CS8920_NO_INTS) irq = 255; } if (irq == 255) { device_printf(dev, "invalid irq in EEPROM.\n"); error = EINVAL; } if (!error) bus_set_resource(dev, SYS_RES_IRQ, 0, irq, 1); } } if (!error && !(sc->flags & CS_NO_IRQ)) { if (chip_type == CS8900) { if (irq >= 0 || irq < 16) irq = cs8900_irq2eeint[irq]; else irq = 255; } else { if (irq > CS8920_NO_INTS) irq = 255; } if (irq == 255) error = EINVAL; } if (error) { device_printf(dev, "Unknown or invalid irq\n"); return (error); } if (!(sc->flags & CS_NO_IRQ)) cs_writereg(sc, pp_isaint, irq); /* * Temporary disabled * if (drq>0) cs_writereg(sc, pp_isadma, drq); else { device_printf(dev, "incorrect drq\n",); return (0); } */ if (bootverbose) device_printf(dev, "CS89%c0%s rev %c media%s%s%s\n", chip_type == CS8900 ? '0' : '2', chip_type == CS8920M ? "M" : "", chip_revision, (sc->adapter_cnf & A_CNF_10B_T) ? " TP" : "", (sc->adapter_cnf & A_CNF_AUI) ? " AUI" : "", (sc->adapter_cnf & A_CNF_10B_2) ? " BNC" : ""); if ((sc->adapter_cnf & A_CNF_EXTND_10B_2) && (sc->adapter_cnf & A_CNF_LOW_RX_SQUELCH)) sc->line_ctl = LOW_RX_SQUELCH; else sc->line_ctl = 0; return (0); } /* * Allocate a port resource with the given resource id. */ int cs_alloc_port(device_t dev, int rid, int size) { struct cs_softc *sc = device_get_softc(dev); struct resource *res; res = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid, 0ul, ~0ul, size, RF_ACTIVE); if (res == NULL) return (ENOENT); sc->port_rid = rid; sc->port_res = res; return (0); } /* * Allocate an irq resource with the given resource id. */ int cs_alloc_irq(device_t dev, int rid) { struct cs_softc *sc = device_get_softc(dev); struct resource *res; res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE); if (res == NULL) return (ENOENT); sc->irq_rid = rid; sc->irq_res = res; return (0); } /* * Release all resources */ void cs_release_resources(device_t dev) { struct cs_softc *sc = device_get_softc(dev); if (sc->port_res) { bus_release_resource(dev, SYS_RES_IOPORT, sc->port_rid, sc->port_res); sc->port_res = 0; } if (sc->irq_res) { bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq_res); sc->irq_res = 0; } } /* * Install the interface into kernel networking data structures */ int cs_attach(device_t dev) { int error, media=0; struct cs_softc *sc = device_get_softc(dev); struct ifnet *ifp; sc->dev = dev; ifp = sc->ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "can not if_alloc()\n"); cs_release_resources(dev); return (ENOMEM); } mtx_init(&sc->lock, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); callout_init_mtx(&sc->timer, &sc->lock, 0); CS_LOCK(sc); cs_stop(sc); CS_UNLOCK(sc); ifp->if_softc=sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_start=cs_start; ifp->if_ioctl=cs_ioctl; ifp->if_init=cs_init; IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); ifp->if_flags=(IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); /* * this code still in progress (DMA support) * sc->recv_ring=malloc(CS_DMA_BUFFER_SIZE<<1, M_DEVBUF, M_NOWAIT); if (sc->recv_ring == NULL) { log(LOG_ERR, "%s: Couldn't allocate memory for NIC\n", ifp->if_xname); return(0); } if ((sc->recv_ring-(sc->recv_ring & 0x1FFFF)) < (128*1024-CS_DMA_BUFFER_SIZE)) sc->recv_ring+=16*1024; */ sc->buffer=malloc(ETHER_MAX_LEN-ETHER_CRC_LEN,M_DEVBUF,M_NOWAIT); if (sc->buffer == NULL) { device_printf(sc->dev, "Couldn't allocate memory for NIC\n"); if_free(ifp); mtx_destroy(&sc->lock); cs_release_resources(dev); return(ENOMEM); } /* * Initialize the media structures. */ ifmedia_init(&sc->media, 0, cs_mediachange, cs_mediastatus); if (sc->adapter_cnf & A_CNF_10B_T) { ifmedia_add(&sc->media, IFM_ETHER|IFM_10_T, 0, NULL); if (sc->chip_type != CS8900) { ifmedia_add(&sc->media, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL); ifmedia_add(&sc->media, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL); } } if (sc->adapter_cnf & A_CNF_10B_2) ifmedia_add(&sc->media, IFM_ETHER|IFM_10_2, 0, NULL); if (sc->adapter_cnf & A_CNF_AUI) ifmedia_add(&sc->media, IFM_ETHER|IFM_10_5, 0, NULL); if (sc->adapter_cnf & A_CNF_MEDIA) ifmedia_add(&sc->media, IFM_ETHER|IFM_AUTO, 0, NULL); /* Set default media from EEPROM */ switch (sc->adapter_cnf & A_CNF_MEDIA_TYPE) { case A_CNF_MEDIA_AUTO: media = IFM_ETHER|IFM_AUTO; break; case A_CNF_MEDIA_10B_T: media = IFM_ETHER|IFM_10_T; break; case A_CNF_MEDIA_10B_2: media = IFM_ETHER|IFM_10_2; break; case A_CNF_MEDIA_AUI: media = IFM_ETHER|IFM_10_5; break; default: device_printf(sc->dev, "no media, assuming 10baseT\n"); sc->adapter_cnf |= A_CNF_10B_T; ifmedia_add(&sc->media, IFM_ETHER|IFM_10_T, 0, NULL); if (sc->chip_type != CS8900) { ifmedia_add(&sc->media, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL); ifmedia_add(&sc->media, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL); } media = IFM_ETHER | IFM_10_T; break; } ifmedia_set(&sc->media, media); cs_mediaset(sc, media); ether_ifattach(ifp, sc->enaddr); error = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_NET | INTR_MPSAFE, NULL, csintr, sc, &sc->irq_handle); if (error) { ether_ifdetach(ifp); free(sc->buffer, M_DEVBUF); if_free(ifp); mtx_destroy(&sc->lock); cs_release_resources(dev); return (error); } return (0); } int cs_detach(device_t dev) { struct cs_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); ifp = sc->ifp; CS_LOCK(sc); cs_stop(sc); CS_UNLOCK(sc); callout_drain(&sc->timer); ether_ifdetach(ifp); bus_teardown_intr(dev, sc->irq_res, sc->irq_handle); cs_release_resources(dev); free(sc->buffer, M_DEVBUF); if_free(ifp); mtx_destroy(&sc->lock); return (0); } /* * Initialize the board */ static void cs_init(void *xsc) { struct cs_softc *sc=(struct cs_softc *)xsc; CS_LOCK(sc); cs_init_locked(sc); CS_UNLOCK(sc); } static void cs_init_locked(struct cs_softc *sc) { struct ifnet *ifp = sc->ifp; int i, rx_cfg; /* * reset watchdog timer */ sc->tx_timeout = 0; sc->buf_len = 0; /* * Hardware initialization of cs */ /* Enable receiver and transmitter */ cs_writereg(sc, PP_LineCTL, cs_readreg(sc, PP_LineCTL) | SERIAL_RX_ON | SERIAL_TX_ON); /* Configure the receiver mode */ cs_setmode(sc); /* * This defines what type of frames will cause interrupts * Bad frames should generate interrupts so that the driver * could track statistics of discarded packets */ rx_cfg = RX_OK_ENBL | RX_CRC_ERROR_ENBL | RX_RUNT_ENBL | RX_EXTRA_DATA_ENBL; if (sc->isa_config & STREAM_TRANSFER) rx_cfg |= RX_STREAM_ENBL; cs_writereg(sc, PP_RxCFG, rx_cfg); cs_writereg(sc, PP_TxCFG, TX_LOST_CRS_ENBL | TX_SQE_ERROR_ENBL | TX_OK_ENBL | TX_LATE_COL_ENBL | TX_JBR_ENBL | TX_ANY_COL_ENBL | TX_16_COL_ENBL); cs_writereg(sc, PP_BufCFG, READY_FOR_TX_ENBL | RX_MISS_COUNT_OVRFLOW_ENBL | TX_COL_COUNT_OVRFLOW_ENBL | TX_UNDERRUN_ENBL /*| RX_DMA_ENBL*/); /* Write MAC address into IA filter */ for (i=0; ienaddr[i * 2] | (sc->enaddr[i * 2 + 1] << 8) ); /* * Now enable everything */ /* #ifdef CS_USE_64K_DMA cs_writereg(sc, PP_BusCTL, ENABLE_IRQ | RX_DMA_SIZE_64K); #else cs_writereg(sc, PP_BusCTL, ENABLE_IRQ); #endif */ cs_writereg(sc, PP_BusCTL, ENABLE_IRQ); /* * Set running and clear output active flags */ sc->ifp->if_drv_flags |= IFF_DRV_RUNNING; sc->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; callout_reset(&sc->timer, hz, cs_watchdog, sc); /* * Start sending process */ cs_start_locked(ifp); } /* * Get the packet from the board and send it to the upper layer. */ static int cs_get_packet(struct cs_softc *sc) { struct ifnet *ifp = sc->ifp; int iobase = sc->nic_addr, status, length; struct ether_header *eh; struct mbuf *m; #ifdef CS_DEBUG int i; #endif status = cs_inw(sc, RX_FRAME_PORT); length = cs_inw(sc, RX_FRAME_PORT); #ifdef CS_DEBUG device_printf(sc->dev, "rcvd: stat %x, len %d\n", status, length); #endif if (!(status & RX_OK)) { #ifdef CS_DEBUG device_printf(sc->dev, "bad pkt stat %x\n", status); #endif ifp->if_ierrors++; return (-1); } MGETHDR(m, M_DONTWAIT, MT_DATA); if (m==NULL) return (-1); if (length > MHLEN) { MCLGET(m, M_DONTWAIT); if (!(m->m_flags & M_EXT)) { m_freem(m); return (-1); } } /* Initialize packet's header info */ m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = length; m->m_len = length; /* Get the data */ insw(iobase + RX_FRAME_PORT, m->m_data, (length+1)>>1); eh = mtod(m, struct ether_header *); #ifdef CS_DEBUG for (i=0;im_data+i))); printf( "\n" ); #endif if (status & (RX_IA | RX_BROADCAST) || (ifp->if_flags & IFF_MULTICAST && status & RX_HASHED)) { /* Feed the packet to the upper layer */ (*ifp->if_input)(ifp, m); ifp->if_ipackets++; if (length == ETHER_MAX_LEN-ETHER_CRC_LEN) DELAY(cs_recv_delay); } else { m_freem(m); } return (0); } /* * Handle interrupts */ void csintr(void *arg) { struct cs_softc *sc = (struct cs_softc*) arg; struct ifnet *ifp = sc->ifp; int status; #ifdef CS_DEBUG device_printf(sc->dev, "Interrupt.\n"); #endif CS_LOCK(sc); while ((status=cs_inw(sc, ISQ_PORT))) { #ifdef CS_DEBUG device_printf(sc->dev, "from ISQ: %04x\n", status); #endif switch (status & ISQ_EVENT_MASK) { case ISQ_RECEIVER_EVENT: cs_get_packet(sc); break; case ISQ_TRANSMITTER_EVENT: if (status & TX_OK) ifp->if_opackets++; else ifp->if_oerrors++; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; sc->tx_timeout = 0; break; case ISQ_BUFFER_EVENT: if (status & READY_FOR_TX) { ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; sc->tx_timeout = 0; } if (status & TX_UNDERRUN) { ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; sc->tx_timeout = 0; ifp->if_oerrors++; } break; case ISQ_RX_MISS_EVENT: ifp->if_ierrors+=(status>>6); break; case ISQ_TX_COL_EVENT: ifp->if_collisions+=(status>>6); break; } } if (!(ifp->if_drv_flags & IFF_DRV_OACTIVE)) { cs_start_locked(ifp); } CS_UNLOCK(sc); } /* * Save the data in buffer */ static void cs_write_mbufs( struct cs_softc *sc, struct mbuf *m ) { int len; struct mbuf *mp; unsigned char *data, *buf; for (mp=m, buf=sc->buffer, sc->buf_len=0; mp != NULL; mp=mp->m_next) { len = mp->m_len; /* * Ignore empty parts */ if (!len) continue; /* * Find actual data address */ data = mtod(mp, caddr_t); bcopy((caddr_t) data, (caddr_t) buf, len); buf += len; sc->buf_len += len; } } static void cs_xmit_buf( struct cs_softc *sc ) { outsw(sc->nic_addr+TX_FRAME_PORT, sc->buffer, (sc->buf_len+1)>>1); sc->buf_len = 0; } static void cs_start(struct ifnet *ifp) { struct cs_softc *sc = ifp->if_softc; CS_LOCK(sc); cs_start_locked(ifp); CS_UNLOCK(sc); } static void cs_start_locked(struct ifnet *ifp) { int length; struct mbuf *m, *mp; struct cs_softc *sc = ifp->if_softc; for (;;) { if (sc->buf_len) length = sc->buf_len; else { IF_DEQUEUE( &ifp->if_snd, m ); if (m==NULL) { return; } for (length=0, mp=m; mp != NULL; mp=mp->m_next) length += mp->m_len; /* Skip zero-length packets */ if (length == 0) { m_freem(m); continue; } cs_write_mbufs(sc, m); BPF_MTAP(ifp, m); m_freem(m); } /* * Issue a SEND command */ cs_outw(sc, TX_CMD_PORT, sc->send_cmd); cs_outw(sc, TX_LEN_PORT, length ); /* * If there's no free space in the buffer then leave * this packet for the next time: indicate output active * and return. */ if (!(cs_readreg(sc, PP_BusST) & READY_FOR_TX_NOW)) { sc->tx_timeout = sc->buf_len; ifp->if_drv_flags |= IFF_DRV_OACTIVE; return; } cs_xmit_buf(sc); /* * Set the watchdog timer in case we never hear * from board again. (I don't know about correct * value for this timeout) */ sc->tx_timeout = length; ifp->if_drv_flags |= IFF_DRV_OACTIVE; return; } } /* * Stop everything on the interface */ static void cs_stop(struct cs_softc *sc) { CS_ASSERT_LOCKED(sc); cs_writereg(sc, PP_RxCFG, 0); cs_writereg(sc, PP_TxCFG, 0); cs_writereg(sc, PP_BufCFG, 0); cs_writereg(sc, PP_BusCTL, 0); sc->ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); sc->tx_timeout = 0; callout_stop(&sc->timer); } /* * Reset the interface */ static void cs_reset(struct cs_softc *sc) { CS_ASSERT_LOCKED(sc); cs_stop(sc); cs_init_locked(sc); } static uint16_t cs_hash_index(struct sockaddr_dl *addr) { uint32_t crc; uint16_t idx; caddr_t lla; lla = LLADDR(addr); crc = ether_crc32_le(lla, ETHER_ADDR_LEN); idx = crc >> 26; return (idx); } static void cs_setmode(struct cs_softc *sc) { int rx_ctl; uint16_t af[4]; uint16_t port, mask, index; struct ifnet *ifp = sc->ifp; struct ifmultiaddr *ifma; /* Stop the receiver while changing filters */ cs_writereg(sc, PP_LineCTL, cs_readreg(sc, PP_LineCTL) & ~SERIAL_RX_ON); if (ifp->if_flags & IFF_PROMISC) { /* Turn on promiscuous mode. */ rx_ctl = RX_OK_ACCEPT | RX_PROM_ACCEPT; } else if (ifp->if_flags & IFF_MULTICAST) { /* Allow receiving frames with multicast addresses */ rx_ctl = RX_IA_ACCEPT | RX_BROADCAST_ACCEPT | RX_OK_ACCEPT | RX_MULTCAST_ACCEPT; /* Start with an empty filter */ af[0] = af[1] = af[2] = af[3] = 0x0000; if (ifp->if_flags & IFF_ALLMULTI) { /* Accept all multicast frames */ af[0] = af[1] = af[2] = af[3] = 0xffff; } else { /* * Set up the filter to only accept multicast * frames we're interested in. */ if_maddr_rlock(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { struct sockaddr_dl *dl = (struct sockaddr_dl *)ifma->ifma_addr; index = cs_hash_index(dl); port = (u_int16_t) (index >> 4); mask = (u_int16_t) (1 << (index & 0xf)); af[port] |= mask; } if_maddr_runlock(ifp); } cs_writereg(sc, PP_LAF + 0, af[0]); cs_writereg(sc, PP_LAF + 2, af[1]); cs_writereg(sc, PP_LAF + 4, af[2]); cs_writereg(sc, PP_LAF + 6, af[3]); } else { /* * Receive only good frames addressed for us and * good broadcasts. */ rx_ctl = RX_IA_ACCEPT | RX_BROADCAST_ACCEPT | RX_OK_ACCEPT; } /* Set up the filter */ cs_writereg(sc, PP_RxCTL, RX_DEF_ACCEPT | rx_ctl); /* Turn on receiver */ cs_writereg(sc, PP_LineCTL, cs_readreg(sc, PP_LineCTL) | SERIAL_RX_ON); } static int cs_ioctl(register struct ifnet *ifp, u_long command, caddr_t data) { struct cs_softc *sc=ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; int error=0; #ifdef CS_DEBUG if_printf(ifp, "%s command=%lx\n", __func__, command); #endif switch (command) { case SIOCSIFFLAGS: /* * Switch interface state between "running" and * "stopped", reflecting the UP flag. */ CS_LOCK(sc); if (sc->ifp->if_flags & IFF_UP) { if ((sc->ifp->if_drv_flags & IFF_DRV_RUNNING)==0) { cs_init_locked(sc); } } else { if ((sc->ifp->if_drv_flags & IFF_DRV_RUNNING)!=0) { cs_stop(sc); } } /* * Promiscuous and/or multicast flags may have changed, * so reprogram the multicast filter and/or receive mode. * * See note about multicasts in cs_setmode */ cs_setmode(sc); CS_UNLOCK(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: /* * Multicast list has changed; set the hardware filter * accordingly. * * See note about multicasts in cs_setmode */ CS_LOCK(sc); cs_setmode(sc); CS_UNLOCK(sc); error = 0; break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->media, command); break; default: error = ether_ioctl(ifp, command, data); break; } return (error); } /* * Device timeout/watchdog routine. Entered if the device neglects to * generate an interrupt after a transmit has been started on it. */ static void cs_watchdog(void *arg) { struct cs_softc *sc = arg; struct ifnet *ifp = sc->ifp; CS_ASSERT_LOCKED(sc); if (sc->tx_timeout && --sc->tx_timeout == 0) { ifp->if_oerrors++; log(LOG_ERR, "%s: device timeout\n", ifp->if_xname); /* Reset the interface */ if (ifp->if_flags & IFF_UP) cs_reset(sc); else cs_stop(sc); } callout_reset(&sc->timer, hz, cs_watchdog, sc); } static int cs_mediachange(struct ifnet *ifp) { struct cs_softc *sc = ifp->if_softc; struct ifmedia *ifm = &sc->media; int error; if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) return (EINVAL); CS_LOCK(sc); error = cs_mediaset(sc, ifm->ifm_media); CS_UNLOCK(sc); return (error); } static void cs_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) { int line_status; struct cs_softc *sc = ifp->if_softc; CS_LOCK(sc); ifmr->ifm_active = IFM_ETHER; line_status = cs_readreg(sc, PP_LineST); if (line_status & TENBASET_ON) { ifmr->ifm_active |= IFM_10_T; if (sc->chip_type != CS8900) { if (cs_readreg(sc, PP_AutoNegST) & FDX_ACTIVE) ifmr->ifm_active |= IFM_FDX; if (cs_readreg(sc, PP_AutoNegST) & HDX_ACTIVE) ifmr->ifm_active |= IFM_HDX; } ifmr->ifm_status = IFM_AVALID; if (line_status & LINK_OK) ifmr->ifm_status |= IFM_ACTIVE; } else { if (line_status & AUI_ON) { cs_writereg(sc, PP_SelfCTL, cs_readreg(sc, PP_SelfCTL) | HCB1_ENBL); if (((sc->adapter_cnf & A_CNF_DC_DC_POLARITY)!=0)^ (cs_readreg(sc, PP_SelfCTL) & HCB1)) ifmr->ifm_active |= IFM_10_2; else ifmr->ifm_active |= IFM_10_5; } } CS_UNLOCK(sc); } static int cs_mediaset(struct cs_softc *sc, int media) { int error = 0; /* Stop the receiver & transmitter */ cs_writereg(sc, PP_LineCTL, cs_readreg(sc, PP_LineCTL) & ~(SERIAL_RX_ON | SERIAL_TX_ON)); #ifdef CS_DEBUG device_printf(sc->dev, "%s media=%x\n", __func__, media); #endif switch (IFM_SUBTYPE(media)) { default: case IFM_AUTO: /* * This chip makes it a little hard to support this, so treat * it as IFM_10_T, auto duplex. */ enable_tp(sc); cs_duplex_auto(sc); break; case IFM_10_T: enable_tp(sc); if (media & IFM_FDX) cs_duplex_full(sc); else if (media & IFM_HDX) cs_duplex_half(sc); else error = cs_duplex_auto(sc); break; case IFM_10_2: enable_bnc(sc); break; case IFM_10_5: enable_aui(sc); break; } /* * Turn the transmitter & receiver back on */ cs_writereg(sc, PP_LineCTL, cs_readreg(sc, PP_LineCTL) | SERIAL_RX_ON | SERIAL_TX_ON); return (error); }