/*- * Copyright (c) 1998 Doug Rabson. * Copyright (c) 2001 Jake Burkholder. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: FreeBSD: src/sys/i386/include/atomic.h,v 1.20 2001/02/11 * $FreeBSD$ */ #ifndef _MACHINE_ATOMIC_H_ #define _MACHINE_ATOMIC_H_ #include #define mb() __asm__ __volatile__ ("membar #MemIssue": : :"memory") #define wmb() mb() #define rmb() mb() /* Userland needs different ASI's. */ #ifdef _KERNEL #define __ASI_ATOMIC ASI_N #else #define __ASI_ATOMIC ASI_P #endif /* * Various simple arithmetic on memory which is atomic in the presence * of interrupts and multiple processors. See atomic(9) for details. * Note that efficient hardware support exists only for the 32 and 64 * bit variants; the 8 and 16 bit versions are not provided and should * not be used in MI code. * * This implementation takes advantage of the fact that the sparc64 * cas instruction is both a load and a store. The loop is often coded * as follows: * * do { * expect = *p; * new = expect + 1; * } while (cas(p, expect, new) != expect); * * which performs an unnnecessary load on each iteration that the cas * operation fails. Modified as follows: * * expect = *p; * for (;;) { * new = expect + 1; * result = cas(p, expect, new); * if (result == expect) * break; * expect = result; * } * * the return value of cas is used to avoid the extra reload. * * We only include a memory barrier in the rel variants as in total store * order which we use for running the kernel and all of the userland atomic * loads and stores behave as if the were followed by a membar with a mask * of #LoadLoad | #LoadStore | #StoreStore. In order to be also sufficient * for use of relaxed memory ordering, the atomic_cas() in the acq variants * additionally would have to be followed by a membar #LoadLoad | #LoadStore. * Due to the suggested assembly syntax of the membar operands containing a * # character, they cannot be used in macros. The cmask and mmask bits thus * are hard coded in machine/cpufunc.h and used here through macros. * Hopefully the bit numbers won't change in the future. */ #define itype(sz) uint ## sz ## _t #define atomic_cas_32(p, e, s) casa((p), (e), (s), __ASI_ATOMIC) #define atomic_cas_64(p, e, s) casxa((p), (e), (s), __ASI_ATOMIC) #define atomic_cas(p, e, s, sz) \ atomic_cas_ ## sz((p), (e), (s)) #define atomic_cas_acq(p, e, s, sz) ({ \ itype(sz) v; \ v = atomic_cas((p), (e), (s), sz); \ __compiler_membar(); \ v; \ }) #define atomic_cas_rel(p, e, s, sz) ({ \ itype(sz) v; \ membar(LoadStore | StoreStore); \ v = atomic_cas((p), (e), (s), sz); \ v; \ }) #define atomic_op(p, op, v, sz) ({ \ itype(sz) e, r, s; \ for (e = *(volatile itype(sz) *)(p);; e = r) { \ s = e op (v); \ r = atomic_cas_ ## sz((p), e, s); \ if (r == e) \ break; \ } \ e; \ }) #define atomic_op_acq(p, op, v, sz) ({ \ itype(sz) t; \ t = atomic_op((p), op, (v), sz); \ __compiler_membar(); \ t; \ }) #define atomic_op_rel(p, op, v, sz) ({ \ itype(sz) t; \ membar(LoadStore | StoreStore); \ t = atomic_op((p), op, (v), sz); \ t; \ }) #define atomic_load_acq(p, sz) ({ \ itype(sz) v; \ v = atomic_cas((p), 0, 0, sz); \ __compiler_membar(); \ v; \ }) #define atomic_load_clear(p, sz) ({ \ itype(sz) e, r; \ for (e = *(volatile itype(sz) *)(p);; e = r) { \ r = atomic_cas((p), e, 0, sz); \ if (r == e) \ break; \ } \ e; \ }) #define atomic_store_rel(p, v, sz) do { \ itype(sz) e, r; \ membar(LoadStore | StoreStore); \ for (e = *(volatile itype(sz) *)(p);; e = r) { \ r = atomic_cas((p), e, (v), sz); \ if (r == e) \ break; \ } \ } while (0) #define ATOMIC_GEN(name, ptype, vtype, atype, sz) \ \ static __inline vtype \ atomic_add_ ## name(volatile ptype p, atype v) \ { \ return ((vtype)atomic_op((p), +, (v), sz)); \ } \ static __inline vtype \ atomic_add_acq_ ## name(volatile ptype p, atype v) \ { \ return ((vtype)atomic_op_acq((p), +, (v), sz)); \ } \ static __inline vtype \ atomic_add_rel_ ## name(volatile ptype p, atype v) \ { \ return ((vtype)atomic_op_rel((p), +, (v), sz)); \ } \ \ static __inline vtype \ atomic_clear_ ## name(volatile ptype p, atype v) \ { \ return ((vtype)atomic_op((p), &, ~(v), sz)); \ } \ static __inline vtype \ atomic_clear_acq_ ## name(volatile ptype p, atype v) \ { \ return ((vtype)atomic_op_acq((p), &, ~(v), sz)); \ } \ static __inline vtype \ atomic_clear_rel_ ## name(volatile ptype p, atype v) \ { \ return ((vtype)atomic_op_rel((p), &, ~(v), sz)); \ } \ \ static __inline int \ atomic_cmpset_ ## name(volatile ptype p, vtype e, vtype s) \ { \ return (((vtype)atomic_cas((p), (e), (s), sz)) == (e)); \ } \ static __inline int \ atomic_cmpset_acq_ ## name(volatile ptype p, vtype e, vtype s) \ { \ return (((vtype)atomic_cas_acq((p), (e), (s), sz)) == (e)); \ } \ static __inline int \ atomic_cmpset_rel_ ## name(volatile ptype p, vtype e, vtype s) \ { \ return (((vtype)atomic_cas_rel((p), (e), (s), sz)) == (e)); \ } \ \ static __inline vtype \ atomic_load_ ## name(volatile ptype p) \ { \ return ((vtype)atomic_cas((p), 0, 0, sz)); \ } \ static __inline vtype \ atomic_load_acq_ ## name(volatile ptype p) \ { \ return ((vtype)atomic_cas_acq((p), 0, 0, sz)); \ } \ \ static __inline vtype \ atomic_readandclear_ ## name(volatile ptype p) \ { \ return ((vtype)atomic_load_clear((p), sz)); \ } \ \ static __inline vtype \ atomic_set_ ## name(volatile ptype p, atype v) \ { \ return ((vtype)atomic_op((p), |, (v), sz)); \ } \ static __inline vtype \ atomic_set_acq_ ## name(volatile ptype p, atype v) \ { \ return ((vtype)atomic_op_acq((p), |, (v), sz)); \ } \ static __inline vtype \ atomic_set_rel_ ## name(volatile ptype p, atype v) \ { \ return ((vtype)atomic_op_rel((p), |, (v), sz)); \ } \ \ static __inline vtype \ atomic_subtract_ ## name(volatile ptype p, atype v) \ { \ return ((vtype)atomic_op((p), -, (v), sz)); \ } \ static __inline vtype \ atomic_subtract_acq_ ## name(volatile ptype p, atype v) \ { \ return ((vtype)atomic_op_acq((p), -, (v), sz)); \ } \ static __inline vtype \ atomic_subtract_rel_ ## name(volatile ptype p, atype v) \ { \ return ((vtype)atomic_op_rel((p), -, (v), sz)); \ } \ \ static __inline void \ atomic_store_rel_ ## name(volatile ptype p, vtype v) \ { \ atomic_store_rel((p), (v), sz); \ } ATOMIC_GEN(int, u_int *, u_int, u_int, 32); ATOMIC_GEN(32, uint32_t *, uint32_t, uint32_t, 32); ATOMIC_GEN(long, u_long *, u_long, u_long, 64); ATOMIC_GEN(64, uint64_t *, uint64_t, uint64_t, 64); ATOMIC_GEN(ptr, uintptr_t *, uintptr_t, uintptr_t, 64); #define atomic_fetchadd_int atomic_add_int #define atomic_fetchadd_32 atomic_add_32 #define atomic_fetchadd_long atomic_add_long #undef ATOMIC_GEN #undef atomic_cas #undef atomic_cas_acq #undef atomic_cas_rel #undef atomic_op #undef atomic_op_acq #undef atomic_op_rel #undef atomic_load_acq #undef atomic_store_rel #undef atomic_load_clear #endif /* !_MACHINE_ATOMIC_H_ */