/* * Copyright (c) 1997, 1998 John S. Dyson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice immediately at the beginning of the file, without modification, * this list of conditions, and the following disclaimer. * 2. Absolutely no warranty of function or purpose is made by the author * John S. Dyson. * * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static MALLOC_DEFINE(M_ZONE, "ZONE", "Zone header"); #define ZENTRY_FREE (void*)0x12342378 #define ZONE_ROUNDING 32 /* * This file comprises a very simple zone allocator. This is used * in lieu of the malloc allocator, where needed or more optimal. * * Note that the initial implementation of this had coloring, and * absolutely no improvement (actually perf degradation) occurred. * * Note also that the zones are type stable. The only restriction is * that the first two longwords of a data structure can be changed * between allocations. Any data that must be stable between allocations * must reside in areas after the first two longwords. * * zinitna, zinit, zbootinit are the initialization routines. * zalloc, zfree, are the allocation/free routines. */ /* * Subsystem lock. Never grab it while holding a zone lock. */ static struct mtx zone_mtx; /* * Singly-linked list of zones, for book-keeping purposes */ static SLIST_HEAD(vm_zone_list, vm_zone) zlist; /* * Statistics */ static int zone_kmem_pages; /* Number of interrupt-safe pages allocated */ static int zone_kern_pages; /* Number of KVA pages allocated */ static int zone_kmem_kvaspace; /* Number of non-intsafe pages allocated */ /* * Subsystem initialization, called from vm_mem_init() */ void vm_zone_init(void) { mtx_init(&zone_mtx, "zone subsystem", MTX_DEF); SLIST_INIT(&zlist); } void vm_zone_init2(void) { /* * LATER: traverse zlist looking for partially initialized * LATER: zones and finish initializing them. */ } /* * Create a zone, but don't allocate the zone structure. If the * zone had been previously created by the zone boot code, initialize * various parts of the zone code. * * If waits are not allowed during allocation (e.g. during interrupt * code), a-priori allocate the kernel virtual space, and allocate * only pages when needed. * * Arguments: * z pointer to zone structure. * obj pointer to VM object (opt). * name name of zone. * size size of zone entries. * nentries number of zone entries allocated (only ZONE_INTERRUPT.) * flags ZONE_INTERRUPT -- items can be allocated at interrupt time. * zalloc number of pages allocated when memory is needed. * * Note that when using ZONE_INTERRUPT, the size of the zone is limited * by the nentries argument. The size of the memory allocatable is * unlimited if ZONE_INTERRUPT is not set. * */ int zinitna(vm_zone_t z, vm_object_t obj, char *name, int size, int nentries, int flags, int zalloc) { int totsize, oldzflags; oldzflags = z->zflags; if ((z->zflags & ZONE_BOOT) == 0) { z->zsize = (size + ZONE_ROUNDING - 1) & ~(ZONE_ROUNDING - 1); z->zfreecnt = 0; z->ztotal = 0; z->zmax = 0; z->zname = name; z->znalloc = 0; z->zitems = NULL; } z->zflags |= flags; /* * If we cannot wait, allocate KVA space up front, and we will fill * in pages as needed. */ if (z->zflags & ZONE_INTERRUPT) { totsize = round_page(z->zsize * nentries); atomic_add_int(&zone_kmem_kvaspace, totsize); z->zkva = kmem_alloc_pageable(kernel_map, totsize); if (z->zkva == 0) return 0; z->zpagemax = totsize / PAGE_SIZE; if (obj == NULL) { z->zobj = vm_object_allocate(OBJT_DEFAULT, z->zpagemax); } else { z->zobj = obj; _vm_object_allocate(OBJT_DEFAULT, z->zpagemax, obj); } z->zallocflag = VM_ALLOC_INTERRUPT; z->zmax += nentries; } else { z->zallocflag = VM_ALLOC_SYSTEM; z->zmax = 0; } if (z->zsize > PAGE_SIZE) z->zfreemin = 1; else z->zfreemin = PAGE_SIZE / z->zsize; z->zpagecount = 0; if (zalloc) z->zalloc = zalloc; else z->zalloc = 1; /* our zone is good and ready, add it to the list */ if ((z->zflags & ZONE_BOOT) == 0) { mtx_init(&(z)->zmtx, "zone", MTX_DEF); mtx_lock(&zone_mtx); SLIST_INSERT_HEAD(&zlist, z, zent); mtx_unlock(&zone_mtx); } return 1; } /* * Subroutine same as zinitna, except zone data structure is allocated * automatically by malloc. This routine should normally be used, except * in certain tricky startup conditions in the VM system -- then * zbootinit and zinitna can be used. Zinit is the standard zone * initialization call. */ vm_zone_t zinit(char *name, int size, int nentries, int flags, int zalloc) { vm_zone_t z; z = (vm_zone_t) malloc(sizeof (struct vm_zone), M_ZONE, M_NOWAIT | M_ZERO); if (z == NULL) return NULL; if (zinitna(z, NULL, name, size, nentries, flags, zalloc) == 0) { free(z, M_ZONE); return NULL; } return z; } /* * Initialize a zone before the system is fully up. * * We can't rely on being able to allocate items dynamically, so we * kickstart the zone with a number of static items provided by the * caller. * * This routine should only be called before full VM startup. */ void zbootinit(vm_zone_t z, char *name, int size, void *item, int nitems) { int i; z->zname = name; z->zsize = size; z->zpagemax = 0; z->zobj = NULL; z->zflags = ZONE_BOOT; z->zfreemin = 0; z->zallocflag = 0; z->zpagecount = 0; z->zalloc = 0; z->znalloc = 0; mtx_init(&(z)->zmtx, "zone", MTX_DEF); bzero(item, nitems * z->zsize); z->zitems = NULL; for (i = 0; i < nitems; i++) { ((void **) item)[0] = z->zitems; #ifdef INVARIANTS ((void **) item)[1] = ZENTRY_FREE; #endif z->zitems = item; (char *) item += z->zsize; } z->zfreecnt = nitems; z->zmax = nitems; z->ztotal = nitems; mtx_lock(&zone_mtx); SLIST_INSERT_HEAD(&zlist, z, zent); mtx_unlock(&zone_mtx); } /* * Grow the specified zone to accomodate more items. */ static void * _zget(vm_zone_t z) { int i; vm_page_t m; int nitems, nbytes; void *item; KASSERT(z != NULL, ("invalid zone")); mtx_assert(&z->zmtx, MA_OWNED); if (z->zflags & ZONE_INTERRUPT) { item = (char *) z->zkva + z->zpagecount * PAGE_SIZE; for (i = 0; ((i < z->zalloc) && (z->zpagecount < z->zpagemax)); i++) { vm_offset_t zkva; m = vm_page_alloc(z->zobj, z->zpagecount, z->zallocflag); if (m == NULL) break; zkva = z->zkva + z->zpagecount * PAGE_SIZE; pmap_kenter(zkva, VM_PAGE_TO_PHYS(m)); bzero((caddr_t) zkva, PAGE_SIZE); z->zpagecount++; atomic_add_int(&zone_kmem_pages, 1); cnt.v_wire_count++; } nitems = (i * PAGE_SIZE) / z->zsize; } else { nbytes = z->zalloc * PAGE_SIZE; /* * Check to see if the kernel map is already locked. We could allow * for recursive locks, but that eliminates a valuable debugging * mechanism, and opens up the kernel map for potential corruption * by inconsistent data structure manipulation. We could also use * the interrupt allocation mechanism, but that has size limitations. * Luckily, we have kmem_map that is a submap of kernel map available * for memory allocation, and manipulation of that map doesn't affect * the kernel map structures themselves. * * We can wait, so just do normal map allocation in the appropriate * map. */ if (lockstatus(&kernel_map->lock, NULL)) { mtx_unlock(&z->zmtx); item = (void *) kmem_malloc(kmem_map, nbytes, M_WAITOK); mtx_lock(&z->zmtx); if (item != NULL) atomic_add_int(&zone_kmem_pages, z->zalloc); } else { mtx_unlock(&z->zmtx); item = (void *) kmem_alloc(kernel_map, nbytes); mtx_lock(&z->zmtx); if (item != NULL) atomic_add_int(&zone_kern_pages, z->zalloc); } if (item != NULL) { bzero(item, nbytes); } else { nbytes = 0; } nitems = nbytes / z->zsize; } z->ztotal += nitems; /* * Save one for immediate allocation */ if (nitems != 0) { nitems -= 1; for (i = 0; i < nitems; i++) { ((void **) item)[0] = z->zitems; #ifdef INVARIANTS ((void **) item)[1] = ZENTRY_FREE; #endif z->zitems = item; (char *) item += z->zsize; } z->zfreecnt += nitems; z->znalloc++; } else if (z->zfreecnt > 0) { item = z->zitems; z->zitems = ((void **) item)[0]; #ifdef INVARIANTS KASSERT(((void **) item)[1] == ZENTRY_FREE, ("item is not free")); ((void **) item)[1] = 0; #endif z->zfreecnt--; z->znalloc++; } else { item = NULL; } mtx_assert(&z->zmtx, MA_OWNED); return item; } /* * Allocates an item from the specified zone. */ void * zalloc(vm_zone_t z) { void *item; KASSERT(z != NULL, ("invalid zone")); mtx_lock(&z->zmtx); if (z->zfreecnt <= z->zfreemin) { item = _zget(z); mtx_unlock(&z->zmtx); return item; } item = z->zitems; z->zitems = ((void **) item)[0]; #ifdef INVARIANTS KASSERT(((void **) item)[1] == ZENTRY_FREE, ("item is not free")); ((void **) item)[1] = 0; #endif z->zfreecnt--; z->znalloc++; mtx_unlock(&z->zmtx); return item; } /* * Frees an item back to the specified zone. */ void zfree(vm_zone_t z, void *item) { KASSERT(z != NULL, ("invalid zone")); KASSERT(item != NULL, ("invalid item")); mtx_lock(&z->zmtx); ((void **) item)[0] = z->zitems; #ifdef INVARIANTS KASSERT(((void **) item)[1] != ZENTRY_FREE, ("item is already free")); ((void **) item)[1] = (void *) ZENTRY_FREE; #endif z->zitems = item; z->zfreecnt++; mtx_unlock(&z->zmtx); } /* * Sysctl handler for vm.zone */ static int sysctl_vm_zone(SYSCTL_HANDLER_ARGS) { int error, len, cnt; const int linesize = 128; /* conservative */ char *tmpbuf, *offset; vm_zone_t z; char *p; cnt = 0; mtx_lock(&zone_mtx); SLIST_FOREACH(z, &zlist, zent) cnt++; mtx_unlock(&zone_mtx); MALLOC(tmpbuf, char *, (cnt == 0 ? 1 : cnt) * linesize, M_TEMP, M_WAITOK); len = snprintf(tmpbuf, linesize, "\nITEM SIZE LIMIT USED FREE REQUESTS\n\n"); if (cnt == 0) tmpbuf[len - 1] = '\0'; error = SYSCTL_OUT(req, tmpbuf, cnt == 0 ? len-1 : len); if (error || cnt == 0) goto out; offset = tmpbuf; mtx_lock(&zone_mtx); SLIST_FOREACH(z, &zlist, zent) { if (cnt == 0) /* list may have changed size */ break; mtx_lock(&z->zmtx); len = snprintf(offset, linesize, "%-12.12s %6.6u, %8.8u, %6.6u, %6.6u, %8.8u\n", z->zname, z->zsize, z->zmax, (z->ztotal - z->zfreecnt), z->zfreecnt, z->znalloc); mtx_unlock(&z->zmtx); for (p = offset + 12; p > offset && *p == ' '; --p) /* nothing */ ; p[1] = ':'; cnt--; offset += len; } mtx_unlock(&zone_mtx); offset--; *offset = '\0'; error = SYSCTL_OUT(req, tmpbuf, offset - tmpbuf); out: FREE(tmpbuf, M_TEMP); return (error); } SYSCTL_OID(_vm, OID_AUTO, zone, CTLTYPE_STRING|CTLFLAG_RD, NULL, 0, sysctl_vm_zone, "A", "Zone Info"); SYSCTL_INT(_vm, OID_AUTO, zone_kmem_pages, CTLFLAG_RD, &zone_kmem_pages, 0, "Number of interrupt safe pages allocated by zone"); SYSCTL_INT(_vm, OID_AUTO, zone_kmem_kvaspace, CTLFLAG_RD, &zone_kmem_kvaspace, 0, "KVA space allocated by zone"); SYSCTL_INT(_vm, OID_AUTO, zone_kern_pages, CTLFLAG_RD, &zone_kern_pages, 0, "Number of non-interrupt safe pages allocated by zone");