/*- * Common functions for CAM "type" (peripheral) drivers. * * Copyright (c) 1997, 1998 Justin T. Gibbs. * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static u_int camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired, path_id_t pathid, target_id_t target, lun_id_t lun); static u_int camperiphunit(struct periph_driver *p_drv, path_id_t pathid, target_id_t target, lun_id_t lun); static void camperiphdone(struct cam_periph *periph, union ccb *done_ccb); static void camperiphfree(struct cam_periph *periph); static int camperiphscsistatuserror(union ccb *ccb, cam_flags camflags, u_int32_t sense_flags, union ccb *save_ccb, int *openings, u_int32_t *relsim_flags, u_int32_t *timeout); static int camperiphscsisenseerror(union ccb *ccb, cam_flags camflags, u_int32_t sense_flags, union ccb *save_ccb, int *openings, u_int32_t *relsim_flags, u_int32_t *timeout); static int nperiph_drivers; struct periph_driver **periph_drivers; MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers"); static int periph_selto_delay = 1000; TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay); static int periph_noresrc_delay = 500; TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay); static int periph_busy_delay = 500; TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay); void periphdriver_register(void *data) { struct periph_driver **newdrivers, **old; int ndrivers; ndrivers = nperiph_drivers + 2; newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH, M_WAITOK); if (periph_drivers) bcopy(periph_drivers, newdrivers, sizeof(*newdrivers) * nperiph_drivers); newdrivers[nperiph_drivers] = (struct periph_driver *)data; newdrivers[nperiph_drivers + 1] = NULL; old = periph_drivers; periph_drivers = newdrivers; if (old) free(old, M_CAMPERIPH); nperiph_drivers++; } cam_status cam_periph_alloc(periph_ctor_t *periph_ctor, periph_oninv_t *periph_oninvalidate, periph_dtor_t *periph_dtor, periph_start_t *periph_start, char *name, cam_periph_type type, struct cam_path *path, ac_callback_t *ac_callback, ac_code code, void *arg) { struct periph_driver **p_drv; struct cam_sim *sim; struct cam_periph *periph; struct cam_periph *cur_periph; path_id_t path_id; target_id_t target_id; lun_id_t lun_id; cam_status status; u_int init_level; init_level = 0; /* * Handle Hot-Plug scenarios. If there is already a peripheral * of our type assigned to this path, we are likely waiting for * final close on an old, invalidated, peripheral. If this is * the case, queue up a deferred call to the peripheral's async * handler. If it looks like a mistaken re-allocation, complain. */ if ((periph = cam_periph_find(path, name)) != NULL) { if ((periph->flags & CAM_PERIPH_INVALID) != 0 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) { periph->flags |= CAM_PERIPH_NEW_DEV_FOUND; periph->deferred_callback = ac_callback; periph->deferred_ac = code; return (CAM_REQ_INPROG); } else { printf("cam_periph_alloc: attempt to re-allocate " "valid device %s%d rejected\n", periph->periph_name, periph->unit_number); } return (CAM_REQ_INVALID); } periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH, M_NOWAIT); if (periph == NULL) return (CAM_RESRC_UNAVAIL); init_level++; xpt_lock_buses(); for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { if (strcmp((*p_drv)->driver_name, name) == 0) break; } xpt_unlock_buses(); if (*p_drv == NULL) { printf("cam_periph_alloc: invalid periph name '%s'\n", name); free(periph, M_CAMPERIPH); return (CAM_REQ_INVALID); } sim = xpt_path_sim(path); path_id = xpt_path_path_id(path); target_id = xpt_path_target_id(path); lun_id = xpt_path_lun_id(path); bzero(periph, sizeof(*periph)); cam_init_pinfo(&periph->pinfo); periph->periph_start = periph_start; periph->periph_dtor = periph_dtor; periph->periph_oninval = periph_oninvalidate; periph->type = type; periph->periph_name = name; periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id); periph->immediate_priority = CAM_PRIORITY_NONE; periph->refcount = 0; periph->sim = sim; SLIST_INIT(&periph->ccb_list); status = xpt_create_path(&path, periph, path_id, target_id, lun_id); if (status != CAM_REQ_CMP) goto failure; periph->path = path; init_level++; status = xpt_add_periph(periph); if (status != CAM_REQ_CMP) goto failure; cur_periph = TAILQ_FIRST(&(*p_drv)->units); while (cur_periph != NULL && cur_periph->unit_number < periph->unit_number) cur_periph = TAILQ_NEXT(cur_periph, unit_links); if (cur_periph != NULL) TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links); else { TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links); (*p_drv)->generation++; } init_level++; status = periph_ctor(periph, arg); if (status == CAM_REQ_CMP) init_level++; failure: switch (init_level) { case 4: /* Initialized successfully */ break; case 3: TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); xpt_remove_periph(periph); /* FALLTHROUGH */ case 2: xpt_free_path(periph->path); /* FALLTHROUGH */ case 1: free(periph, M_CAMPERIPH); /* FALLTHROUGH */ case 0: /* No cleanup to perform. */ break; default: panic("cam_periph_alloc: Unkown init level"); } return(status); } /* * Find a peripheral structure with the specified path, target, lun, * and (optionally) type. If the name is NULL, this function will return * the first peripheral driver that matches the specified path. */ struct cam_periph * cam_periph_find(struct cam_path *path, char *name) { struct periph_driver **p_drv; struct cam_periph *periph; xpt_lock_buses(); for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0)) continue; TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { if (xpt_path_comp(periph->path, path) == 0) { xpt_unlock_buses(); return(periph); } } if (name != NULL) { xpt_unlock_buses(); return(NULL); } } xpt_unlock_buses(); return(NULL); } cam_status cam_periph_acquire(struct cam_periph *periph) { if (periph == NULL) return(CAM_REQ_CMP_ERR); xpt_lock_buses(); periph->refcount++; xpt_unlock_buses(); return(CAM_REQ_CMP); } void cam_periph_release_locked(struct cam_periph *periph) { if (periph == NULL) return; xpt_lock_buses(); if ((--periph->refcount == 0) && (periph->flags & CAM_PERIPH_INVALID)) { camperiphfree(periph); } xpt_unlock_buses(); } void cam_periph_release(struct cam_periph *periph) { struct cam_sim *sim; if (periph == NULL) return; sim = periph->sim; mtx_assert(sim->mtx, MA_NOTOWNED); mtx_lock(sim->mtx); cam_periph_release_locked(periph); mtx_unlock(sim->mtx); } int cam_periph_hold(struct cam_periph *periph, int priority) { int error; /* * Increment the reference count on the peripheral * while we wait for our lock attempt to succeed * to ensure the peripheral doesn't disappear out * from user us while we sleep. */ if (cam_periph_acquire(periph) != CAM_REQ_CMP) return (ENXIO); mtx_assert(periph->sim->mtx, MA_OWNED); while ((periph->flags & CAM_PERIPH_LOCKED) != 0) { periph->flags |= CAM_PERIPH_LOCK_WANTED; if ((error = mtx_sleep(periph, periph->sim->mtx, priority, "caplck", 0)) != 0) { cam_periph_release_locked(periph); return (error); } } periph->flags |= CAM_PERIPH_LOCKED; return (0); } void cam_periph_unhold(struct cam_periph *periph) { mtx_assert(periph->sim->mtx, MA_OWNED); periph->flags &= ~CAM_PERIPH_LOCKED; if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) { periph->flags &= ~CAM_PERIPH_LOCK_WANTED; wakeup(periph); } cam_periph_release_locked(periph); } /* * Look for the next unit number that is not currently in use for this * peripheral type starting at "newunit". Also exclude unit numbers that * are reserved by for future "hardwiring" unless we already know that this * is a potential wired device. Only assume that the device is "wired" the * first time through the loop since after that we'll be looking at unit * numbers that did not match a wiring entry. */ static u_int camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired, path_id_t pathid, target_id_t target, lun_id_t lun) { struct cam_periph *periph; char *periph_name; int i, val, dunit, r; const char *dname, *strval; periph_name = p_drv->driver_name; for (;;newunit++) { for (periph = TAILQ_FIRST(&p_drv->units); periph != NULL && periph->unit_number != newunit; periph = TAILQ_NEXT(periph, unit_links)) ; if (periph != NULL && periph->unit_number == newunit) { if (wired != 0) { xpt_print(periph->path, "Duplicate Wired " "Device entry!\n"); xpt_print(periph->path, "Second device (%s " "device at scbus%d target %d lun %d) will " "not be wired\n", periph_name, pathid, target, lun); wired = 0; } continue; } if (wired) break; /* * Don't match entries like "da 4" as a wired down * device, but do match entries like "da 4 target 5" * or even "da 4 scbus 1". */ i = 0; dname = periph_name; for (;;) { r = resource_find_dev(&i, dname, &dunit, NULL, NULL); if (r != 0) break; /* if no "target" and no specific scbus, skip */ if (resource_int_value(dname, dunit, "target", &val) && (resource_string_value(dname, dunit, "at",&strval)|| strcmp(strval, "scbus") == 0)) continue; if (newunit == dunit) break; } if (r != 0) break; } return (newunit); } static u_int camperiphunit(struct periph_driver *p_drv, path_id_t pathid, target_id_t target, lun_id_t lun) { u_int unit; int wired, i, val, dunit; const char *dname, *strval; char pathbuf[32], *periph_name; periph_name = p_drv->driver_name; snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid); unit = 0; i = 0; dname = periph_name; for (wired = 0; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0; wired = 0) { if (resource_string_value(dname, dunit, "at", &strval) == 0) { if (strcmp(strval, pathbuf) != 0) continue; wired++; } if (resource_int_value(dname, dunit, "target", &val) == 0) { if (val != target) continue; wired++; } if (resource_int_value(dname, dunit, "lun", &val) == 0) { if (val != lun) continue; wired++; } if (wired != 0) { unit = dunit; break; } } /* * Either start from 0 looking for the next unit or from * the unit number given in the resource config. This way, * if we have wildcard matches, we don't return the same * unit number twice. */ unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun); return (unit); } void cam_periph_invalidate(struct cam_periph *periph) { /* * We only call this routine the first time a peripheral is * invalidated. */ if (((periph->flags & CAM_PERIPH_INVALID) == 0) && (periph->periph_oninval != NULL)) periph->periph_oninval(periph); periph->flags |= CAM_PERIPH_INVALID; periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND; xpt_lock_buses(); if (periph->refcount == 0) camperiphfree(periph); else if (periph->refcount < 0) printf("cam_invalidate_periph: refcount < 0!!\n"); xpt_unlock_buses(); } static void camperiphfree(struct cam_periph *periph) { struct periph_driver **p_drv; for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0) break; } if (*p_drv == NULL) { printf("camperiphfree: attempt to free non-existant periph\n"); return; } TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); (*p_drv)->generation++; xpt_unlock_buses(); if (periph->periph_dtor != NULL) periph->periph_dtor(periph); xpt_remove_periph(periph); if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) { union ccb ccb; void *arg; switch (periph->deferred_ac) { case AC_FOUND_DEVICE: ccb.ccb_h.func_code = XPT_GDEV_TYPE; xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); xpt_action(&ccb); arg = &ccb; break; case AC_PATH_REGISTERED: ccb.ccb_h.func_code = XPT_PATH_INQ; xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); xpt_action(&ccb); arg = &ccb; break; default: arg = NULL; break; } periph->deferred_callback(NULL, periph->deferred_ac, periph->path, arg); } xpt_free_path(periph->path); free(periph, M_CAMPERIPH); xpt_lock_buses(); } /* * Map user virtual pointers into kernel virtual address space, so we can * access the memory. This won't work on physical pointers, for now it's * up to the caller to check for that. (XXX KDM -- should we do that here * instead?) This also only works for up to MAXPHYS memory. Since we use * buffers to map stuff in and out, we're limited to the buffer size. */ int cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) { int numbufs, i, j; int flags[CAM_PERIPH_MAXMAPS]; u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; u_int32_t lengths[CAM_PERIPH_MAXMAPS]; u_int32_t dirs[CAM_PERIPH_MAXMAPS]; /* Some controllers may not be able to handle more data. */ size_t maxmap = DFLTPHYS; switch(ccb->ccb_h.func_code) { case XPT_DEV_MATCH: if (ccb->cdm.match_buf_len == 0) { printf("cam_periph_mapmem: invalid match buffer " "length 0\n"); return(EINVAL); } if (ccb->cdm.pattern_buf_len > 0) { data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; lengths[0] = ccb->cdm.pattern_buf_len; dirs[0] = CAM_DIR_OUT; data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; lengths[1] = ccb->cdm.match_buf_len; dirs[1] = CAM_DIR_IN; numbufs = 2; } else { data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; lengths[0] = ccb->cdm.match_buf_len; dirs[0] = CAM_DIR_IN; numbufs = 1; } /* * This request will not go to the hardware, no reason * to be so strict. vmapbuf() is able to map up to MAXPHYS. */ maxmap = MAXPHYS; break; case XPT_SCSI_IO: case XPT_CONT_TARGET_IO: if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) return(0); data_ptrs[0] = &ccb->csio.data_ptr; lengths[0] = ccb->csio.dxfer_len; dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; numbufs = 1; break; case XPT_ATA_IO: if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) return(0); data_ptrs[0] = &ccb->ataio.data_ptr; lengths[0] = ccb->ataio.dxfer_len; dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; numbufs = 1; break; default: return(EINVAL); break; /* NOTREACHED */ } /* * Check the transfer length and permissions first, so we don't * have to unmap any previously mapped buffers. */ for (i = 0; i < numbufs; i++) { flags[i] = 0; /* * The userland data pointer passed in may not be page * aligned. vmapbuf() truncates the address to a page * boundary, so if the address isn't page aligned, we'll * need enough space for the given transfer length, plus * whatever extra space is necessary to make it to the page * boundary. */ if ((lengths[i] + (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > maxmap){ printf("cam_periph_mapmem: attempt to map %lu bytes, " "which is greater than %lu\n", (long)(lengths[i] + (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)), (u_long)maxmap); return(E2BIG); } if (dirs[i] & CAM_DIR_OUT) { flags[i] = BIO_WRITE; } if (dirs[i] & CAM_DIR_IN) { flags[i] = BIO_READ; } } /* this keeps the current process from getting swapped */ /* * XXX KDM should I use P_NOSWAP instead? */ PHOLD(curproc); for (i = 0; i < numbufs; i++) { /* * Get the buffer. */ mapinfo->bp[i] = getpbuf(NULL); /* save the buffer's data address */ mapinfo->bp[i]->b_saveaddr = mapinfo->bp[i]->b_data; /* put our pointer in the data slot */ mapinfo->bp[i]->b_data = *data_ptrs[i]; /* set the transfer length, we know it's < MAXPHYS */ mapinfo->bp[i]->b_bufsize = lengths[i]; /* set the direction */ mapinfo->bp[i]->b_iocmd = flags[i]; /* * Map the buffer into kernel memory. * * Note that useracc() alone is not a sufficient test. * vmapbuf() can still fail due to a smaller file mapped * into a larger area of VM, or if userland races against * vmapbuf() after the useracc() check. */ if (vmapbuf(mapinfo->bp[i]) < 0) { for (j = 0; j < i; ++j) { *data_ptrs[j] = mapinfo->bp[j]->b_saveaddr; vunmapbuf(mapinfo->bp[j]); relpbuf(mapinfo->bp[j], NULL); } relpbuf(mapinfo->bp[i], NULL); PRELE(curproc); return(EACCES); } /* set our pointer to the new mapped area */ *data_ptrs[i] = mapinfo->bp[i]->b_data; mapinfo->num_bufs_used++; } /* * Now that we've gotten this far, change ownership to the kernel * of the buffers so that we don't run afoul of returning to user * space with locks (on the buffer) held. */ for (i = 0; i < numbufs; i++) { BUF_KERNPROC(mapinfo->bp[i]); } return(0); } /* * Unmap memory segments mapped into kernel virtual address space by * cam_periph_mapmem(). */ void cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) { int numbufs, i; u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; if (mapinfo->num_bufs_used <= 0) { /* allow ourselves to be swapped once again */ PRELE(curproc); return; } switch (ccb->ccb_h.func_code) { case XPT_DEV_MATCH: numbufs = min(mapinfo->num_bufs_used, 2); if (numbufs == 1) { data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; } else { data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; } break; case XPT_SCSI_IO: case XPT_CONT_TARGET_IO: data_ptrs[0] = &ccb->csio.data_ptr; numbufs = min(mapinfo->num_bufs_used, 1); break; case XPT_ATA_IO: data_ptrs[0] = &ccb->ataio.data_ptr; numbufs = min(mapinfo->num_bufs_used, 1); break; default: /* allow ourselves to be swapped once again */ PRELE(curproc); return; break; /* NOTREACHED */ } for (i = 0; i < numbufs; i++) { /* Set the user's pointer back to the original value */ *data_ptrs[i] = mapinfo->bp[i]->b_saveaddr; /* unmap the buffer */ vunmapbuf(mapinfo->bp[i]); /* release the buffer */ relpbuf(mapinfo->bp[i], NULL); } /* allow ourselves to be swapped once again */ PRELE(curproc); } union ccb * cam_periph_getccb(struct cam_periph *periph, u_int32_t priority) { struct ccb_hdr *ccb_h; mtx_assert(periph->sim->mtx, MA_OWNED); CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering cdgetccb\n")); while (SLIST_FIRST(&periph->ccb_list) == NULL) { if (periph->immediate_priority > priority) periph->immediate_priority = priority; xpt_schedule(periph, priority); if ((SLIST_FIRST(&periph->ccb_list) != NULL) && (SLIST_FIRST(&periph->ccb_list)->pinfo.priority == priority)) break; mtx_assert(periph->sim->mtx, MA_OWNED); mtx_sleep(&periph->ccb_list, periph->sim->mtx, PRIBIO, "cgticb", 0); } ccb_h = SLIST_FIRST(&periph->ccb_list); SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); return ((union ccb *)ccb_h); } void cam_periph_ccbwait(union ccb *ccb) { struct cam_sim *sim; sim = xpt_path_sim(ccb->ccb_h.path); if ((ccb->ccb_h.pinfo.index != CAM_UNQUEUED_INDEX) || ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG)) mtx_sleep(&ccb->ccb_h.cbfcnp, sim->mtx, PRIBIO, "cbwait", 0); } int cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr, int (*error_routine)(union ccb *ccb, cam_flags camflags, u_int32_t sense_flags)) { union ccb *ccb; int error; int found; error = found = 0; switch(cmd){ case CAMGETPASSTHRU: ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL); ccb->ccb_h.func_code = XPT_GDEVLIST; /* * Basically, the point of this is that we go through * getting the list of devices, until we find a passthrough * device. In the current version of the CAM code, the * only way to determine what type of device we're dealing * with is by its name. */ while (found == 0) { ccb->cgdl.index = 0; ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS; while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) { /* we want the next device in the list */ xpt_action(ccb); if (strncmp(ccb->cgdl.periph_name, "pass", 4) == 0){ found = 1; break; } } if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) && (found == 0)) { ccb->cgdl.periph_name[0] = '\0'; ccb->cgdl.unit_number = 0; break; } } /* copy the result back out */ bcopy(ccb, addr, sizeof(union ccb)); /* and release the ccb */ xpt_release_ccb(ccb); break; default: error = ENOTTY; break; } return(error); } int cam_periph_runccb(union ccb *ccb, int (*error_routine)(union ccb *ccb, cam_flags camflags, u_int32_t sense_flags), cam_flags camflags, u_int32_t sense_flags, struct devstat *ds) { struct cam_sim *sim; int error; error = 0; sim = xpt_path_sim(ccb->ccb_h.path); mtx_assert(sim->mtx, MA_OWNED); /* * If the user has supplied a stats structure, and if we understand * this particular type of ccb, record the transaction start. */ if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO || ccb->ccb_h.func_code == XPT_ATA_IO)) devstat_start_transaction(ds, NULL); xpt_action(ccb); do { cam_periph_ccbwait(ccb); if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) error = 0; else if (error_routine != NULL) error = (*error_routine)(ccb, camflags, sense_flags); else error = 0; } while (error == ERESTART); if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) cam_release_devq(ccb->ccb_h.path, /* relsim_flags */0, /* openings */0, /* timeout */0, /* getcount_only */ FALSE); if (ds != NULL) { if (ccb->ccb_h.func_code == XPT_SCSI_IO) { devstat_end_transaction(ds, ccb->csio.dxfer_len, ccb->csio.tag_action & 0x3, ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) ? DEVSTAT_NO_DATA : (ccb->ccb_h.flags & CAM_DIR_OUT) ? DEVSTAT_WRITE : DEVSTAT_READ, NULL, NULL); } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { devstat_end_transaction(ds, ccb->ataio.dxfer_len, ccb->ataio.tag_action & 0x3, ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) ? DEVSTAT_NO_DATA : (ccb->ccb_h.flags & CAM_DIR_OUT) ? DEVSTAT_WRITE : DEVSTAT_READ, NULL, NULL); } } return(error); } void cam_freeze_devq(struct cam_path *path) { struct ccb_hdr ccb_h; xpt_setup_ccb(&ccb_h, path, CAM_PRIORITY_NORMAL); ccb_h.func_code = XPT_NOOP; ccb_h.flags = CAM_DEV_QFREEZE; xpt_action((union ccb *)&ccb_h); } u_int32_t cam_release_devq(struct cam_path *path, u_int32_t relsim_flags, u_int32_t openings, u_int32_t timeout, int getcount_only) { struct ccb_relsim crs; xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); crs.ccb_h.func_code = XPT_REL_SIMQ; crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0; crs.release_flags = relsim_flags; crs.openings = openings; crs.release_timeout = timeout; xpt_action((union ccb *)&crs); return (crs.qfrozen_cnt); } #define saved_ccb_ptr ppriv_ptr0 static void camperiphdone(struct cam_periph *periph, union ccb *done_ccb) { union ccb *saved_ccb; cam_status status; int frozen = 0; int sense; struct scsi_start_stop_unit *scsi_cmd; u_int32_t relsim_flags, timeout; int xpt_done_ccb = FALSE; status = done_ccb->ccb_h.status; if (status & CAM_DEV_QFRZN) { frozen = 1; /* * Clear freeze flag now for case of retry, * freeze will be dropped later. */ done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN; } sense = (status & CAM_AUTOSNS_VALID) != 0; status &= CAM_STATUS_MASK; timeout = 0; relsim_flags = 0; saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr; switch (status) { case CAM_REQ_CMP: { /* * If we have successfully taken a device from the not * ready to ready state, re-scan the device and re-get * the inquiry information. Many devices (mostly disks) * don't properly report their inquiry information unless * they are spun up. * * If we manually retrieved sense into a CCB and got * something other than "NO SENSE" send the updated CCB * back to the client via xpt_done() to be processed via * the error recovery code again. */ if (done_ccb->ccb_h.func_code == XPT_SCSI_IO) { scsi_cmd = (struct scsi_start_stop_unit *) &done_ccb->csio.cdb_io.cdb_bytes; if (scsi_cmd->opcode == START_STOP_UNIT) xpt_async(AC_INQ_CHANGED, done_ccb->ccb_h.path, NULL); if (scsi_cmd->opcode == REQUEST_SENSE) { u_int sense_key; sense_key = saved_ccb->csio.sense_data.flags; sense_key &= SSD_KEY; if (sense_key != SSD_KEY_NO_SENSE) { saved_ccb->ccb_h.status |= CAM_AUTOSNS_VALID; #if 0 xpt_print(saved_ccb->ccb_h.path, "Recovered Sense\n"); scsi_sense_print(&saved_ccb->csio); cam_error_print(saved_ccb, CAM_ESF_ALL, CAM_EPF_ALL); #endif } else { saved_ccb->ccb_h.status &= ~CAM_STATUS_MASK; saved_ccb->ccb_h.status |= CAM_AUTOSENSE_FAIL; } xpt_done_ccb = TRUE; } } bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb, sizeof(union ccb)); periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; if (xpt_done_ccb == FALSE) xpt_action(done_ccb); break; } case CAM_SCSI_STATUS_ERROR: scsi_cmd = (struct scsi_start_stop_unit *) &done_ccb->csio.cdb_io.cdb_bytes; if (sense != 0) { struct ccb_getdev cgd; struct scsi_sense_data *sense; int error_code, sense_key, asc, ascq; scsi_sense_action err_action; sense = &done_ccb->csio.sense_data; scsi_extract_sense(sense, &error_code, &sense_key, &asc, &ascq); /* * Grab the inquiry data for this device. */ xpt_setup_ccb(&cgd.ccb_h, done_ccb->ccb_h.path, CAM_PRIORITY_NORMAL); cgd.ccb_h.func_code = XPT_GDEV_TYPE; xpt_action((union ccb *)&cgd); err_action = scsi_error_action(&done_ccb->csio, &cgd.inq_data, 0); /* * If the error is "invalid field in CDB", * and the load/eject flag is set, turn the * flag off and try again. This is just in * case the drive in question barfs on the * load eject flag. The CAM code should set * the load/eject flag by default for * removable media. */ /* XXX KDM * Should we check to see what the specific * scsi status is?? Or does it not matter * since we already know that there was an * error, and we know what the specific * error code was, and we know what the * opcode is.. */ if ((scsi_cmd->opcode == START_STOP_UNIT) && ((scsi_cmd->how & SSS_LOEJ) != 0) && (asc == 0x24) && (ascq == 0x00) && (done_ccb->ccb_h.retry_count > 0)) { scsi_cmd->how &= ~SSS_LOEJ; xpt_action(done_ccb); } else if ((done_ccb->ccb_h.retry_count > 1) && ((err_action & SS_MASK) != SS_FAIL)) { /* * In this case, the error recovery * command failed, but we've got * some retries left on it. Give * it another try unless this is an * unretryable error. */ /* set the timeout to .5 sec */ relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; timeout = 500; xpt_action(done_ccb); break; } else { /* * Perform the final retry with the original * CCB so that final error processing is * performed by the owner of the CCB. */ bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb, sizeof(union ccb)); periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; xpt_action(done_ccb); } } else { /* * Eh?? The command failed, but we don't * have any sense. What's up with that? * Fire the CCB again to return it to the * caller. */ bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb, sizeof(union ccb)); periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; xpt_action(done_ccb); } break; default: bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb, sizeof(union ccb)); periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; xpt_action(done_ccb); break; } /* decrement the retry count */ /* * XXX This isn't appropriate in all cases. Restructure, * so that the retry count is only decremented on an * actual retry. Remeber that the orignal ccb had its * retry count dropped before entering recovery, so * doing it again is a bug. */ if (done_ccb->ccb_h.retry_count > 0) done_ccb->ccb_h.retry_count--; /* * Drop freeze taken due to CAM_DEV_QFREEZE flag set on recovery * request. */ cam_release_devq(done_ccb->ccb_h.path, /*relsim_flags*/relsim_flags, /*openings*/0, /*timeout*/timeout, /*getcount_only*/0); if (xpt_done_ccb == TRUE) { /* * Copy frozen flag from recovery request if it is set there * for some reason. */ if (frozen != 0) done_ccb->ccb_h.status |= CAM_DEV_QFRZN; (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); } else { /* Drop freeze taken, if this recovery request got error. */ if (frozen != 0) { cam_release_devq(done_ccb->ccb_h.path, /*relsim_flags*/0, /*openings*/0, /*timeout*/0, /*getcount_only*/0); } } } /* * Generic Async Event handler. Peripheral drivers usually * filter out the events that require personal attention, * and leave the rest to this function. */ void cam_periph_async(struct cam_periph *periph, u_int32_t code, struct cam_path *path, void *arg) { switch (code) { case AC_LOST_DEVICE: cam_periph_invalidate(periph); break; case AC_SENT_BDR: case AC_BUS_RESET: { cam_periph_bus_settle(periph, scsi_delay); break; } default: break; } } void cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle) { struct ccb_getdevstats cgds; xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL); cgds.ccb_h.func_code = XPT_GDEV_STATS; xpt_action((union ccb *)&cgds); cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle); } void cam_periph_freeze_after_event(struct cam_periph *periph, struct timeval* event_time, u_int duration_ms) { struct timeval delta; struct timeval duration_tv; microtime(&delta); timevalsub(&delta, event_time); duration_tv.tv_sec = duration_ms / 1000; duration_tv.tv_usec = (duration_ms % 1000) * 1000; if (timevalcmp(&delta, &duration_tv, <)) { timevalsub(&duration_tv, &delta); duration_ms = duration_tv.tv_sec * 1000; duration_ms += duration_tv.tv_usec / 1000; cam_freeze_devq(periph->path); cam_release_devq(periph->path, RELSIM_RELEASE_AFTER_TIMEOUT, /*reduction*/0, /*timeout*/duration_ms, /*getcount_only*/0); } } static int camperiphscsistatuserror(union ccb *ccb, cam_flags camflags, u_int32_t sense_flags, union ccb *save_ccb, int *openings, u_int32_t *relsim_flags, u_int32_t *timeout) { int error; switch (ccb->csio.scsi_status) { case SCSI_STATUS_OK: case SCSI_STATUS_COND_MET: case SCSI_STATUS_INTERMED: case SCSI_STATUS_INTERMED_COND_MET: error = 0; break; case SCSI_STATUS_CMD_TERMINATED: case SCSI_STATUS_CHECK_COND: error = camperiphscsisenseerror(ccb, camflags, sense_flags, save_ccb, openings, relsim_flags, timeout); break; case SCSI_STATUS_QUEUE_FULL: { /* no decrement */ struct ccb_getdevstats cgds; /* * First off, find out what the current * transaction counts are. */ xpt_setup_ccb(&cgds.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL); cgds.ccb_h.func_code = XPT_GDEV_STATS; xpt_action((union ccb *)&cgds); /* * If we were the only transaction active, treat * the QUEUE FULL as if it were a BUSY condition. */ if (cgds.dev_active != 0) { int total_openings; /* * Reduce the number of openings to * be 1 less than the amount it took * to get a queue full bounded by the * minimum allowed tag count for this * device. */ total_openings = cgds.dev_active + cgds.dev_openings; *openings = cgds.dev_active; if (*openings < cgds.mintags) *openings = cgds.mintags; if (*openings < total_openings) *relsim_flags = RELSIM_ADJUST_OPENINGS; else { /* * Some devices report queue full for * temporary resource shortages. For * this reason, we allow a minimum * tag count to be entered via a * quirk entry to prevent the queue * count on these devices from falling * to a pessimisticly low value. We * still wait for the next successful * completion, however, before queueing * more transactions to the device. */ *relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT; } *timeout = 0; error = ERESTART; if (bootverbose) { xpt_print(ccb->ccb_h.path, "Queue Full\n"); } break; } /* FALLTHROUGH */ } case SCSI_STATUS_BUSY: /* * Restart the queue after either another * command completes or a 1 second timeout. */ if (bootverbose) { xpt_print(ccb->ccb_h.path, "Device Busy\n"); } if (ccb->ccb_h.retry_count > 0) { ccb->ccb_h.retry_count--; error = ERESTART; *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT | RELSIM_RELEASE_AFTER_CMDCMPLT; *timeout = 1000; } else { error = EIO; } break; case SCSI_STATUS_RESERV_CONFLICT: xpt_print(ccb->ccb_h.path, "Reservation Conflict\n"); error = EIO; break; default: xpt_print(ccb->ccb_h.path, "SCSI Status 0x%x\n", ccb->csio.scsi_status); error = EIO; break; } return (error); } static int camperiphscsisenseerror(union ccb *ccb, cam_flags camflags, u_int32_t sense_flags, union ccb *save_ccb, int *openings, u_int32_t *relsim_flags, u_int32_t *timeout) { struct cam_periph *periph; int error; periph = xpt_path_periph(ccb->ccb_h.path); if (periph->flags & CAM_PERIPH_RECOVERY_INPROG) { /* * If error recovery is already in progress, don't attempt * to process this error, but requeue it unconditionally * and attempt to process it once error recovery has * completed. This failed command is probably related to * the error that caused the currently active error recovery * action so our current recovery efforts should also * address this command. Be aware that the error recovery * code assumes that only one recovery action is in progress * on a particular peripheral instance at any given time * (e.g. only one saved CCB for error recovery) so it is * imperitive that we don't violate this assumption. */ error = ERESTART; } else { scsi_sense_action err_action; struct ccb_getdev cgd; const char *action_string; union ccb* print_ccb; /* A description of the error recovery action performed */ action_string = NULL; /* * The location of the orignal ccb * for sense printing purposes. */ print_ccb = ccb; /* * Grab the inquiry data for this device. */ xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL); cgd.ccb_h.func_code = XPT_GDEV_TYPE; xpt_action((union ccb *)&cgd); if ((ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0) err_action = scsi_error_action(&ccb->csio, &cgd.inq_data, sense_flags); else if ((ccb->ccb_h.flags & CAM_DIS_AUTOSENSE) == 0) err_action = SS_REQSENSE; else err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO; error = err_action & SS_ERRMASK; /* * If the recovery action will consume a retry, * make sure we actually have retries available. */ if ((err_action & SSQ_DECREMENT_COUNT) != 0) { if (ccb->ccb_h.retry_count > 0) ccb->ccb_h.retry_count--; else { action_string = "Retries Exhausted"; goto sense_error_done; } } if ((err_action & SS_MASK) >= SS_START) { /* * Do common portions of commands that * use recovery CCBs. */ if (save_ccb == NULL) { action_string = "No recovery CCB supplied"; goto sense_error_done; } /* * Clear freeze flag for original request here, as * this freeze will be dropped as part of ERESTART. */ ccb->ccb_h.status &= ~CAM_DEV_QFRZN; bcopy(ccb, save_ccb, sizeof(*save_ccb)); print_ccb = save_ccb; periph->flags |= CAM_PERIPH_RECOVERY_INPROG; } switch (err_action & SS_MASK) { case SS_NOP: action_string = "No Recovery Action Needed"; error = 0; break; case SS_RETRY: action_string = "Retrying Command (per Sense Data)"; error = ERESTART; break; case SS_FAIL: action_string = "Unretryable error"; break; case SS_START: { int le; /* * Send a start unit command to the device, and * then retry the command. */ action_string = "Attempting to Start Unit"; /* * Check for removable media and set * load/eject flag appropriately. */ if (SID_IS_REMOVABLE(&cgd.inq_data)) le = TRUE; else le = FALSE; scsi_start_stop(&ccb->csio, /*retries*/1, camperiphdone, MSG_SIMPLE_Q_TAG, /*start*/TRUE, /*load/eject*/le, /*immediate*/FALSE, SSD_FULL_SIZE, /*timeout*/50000); break; } case SS_TUR: { /* * Send a Test Unit Ready to the device. * If the 'many' flag is set, we send 120 * test unit ready commands, one every half * second. Otherwise, we just send one TUR. * We only want to do this if the retry * count has not been exhausted. */ int retries; if ((err_action & SSQ_MANY) != 0) { action_string = "Polling device for readiness"; retries = 120; } else { action_string = "Testing device for readiness"; retries = 1; } scsi_test_unit_ready(&ccb->csio, retries, camperiphdone, MSG_SIMPLE_Q_TAG, SSD_FULL_SIZE, /*timeout*/5000); /* * Accomplish our 500ms delay by deferring * the release of our device queue appropriately. */ *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; *timeout = 500; break; } case SS_REQSENSE: { /* * Send a Request Sense to the device. We * assume that we are in a contingent allegiance * condition so we do not tag this request. */ scsi_request_sense(&ccb->csio, /*retries*/1, camperiphdone, &save_ccb->csio.sense_data, sizeof(save_ccb->csio.sense_data), CAM_TAG_ACTION_NONE, /*sense_len*/SSD_FULL_SIZE, /*timeout*/5000); break; } default: panic("Unhandled error action %x", err_action); } if ((err_action & SS_MASK) >= SS_START) { /* * Drop the priority, so that the recovery * CCB is the first to execute. Freeze the queue * after this command is sent so that we can * restore the old csio and have it queued in * the proper order before we release normal * transactions to the device. */ ccb->ccb_h.pinfo.priority = CAM_PRIORITY_DEV; ccb->ccb_h.flags |= CAM_DEV_QFREEZE; ccb->ccb_h.saved_ccb_ptr = save_ccb; error = ERESTART; } sense_error_done: if ((err_action & SSQ_PRINT_SENSE) != 0 && (ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0) { cam_error_print(print_ccb, CAM_ESF_ALL, CAM_EPF_ALL); xpt_print_path(ccb->ccb_h.path); if (bootverbose) scsi_sense_print(&print_ccb->csio); printf("%s\n", action_string); } } return (error); } /* * Generic error handler. Peripheral drivers usually filter * out the errors that they handle in a unique mannor, then * call this function. */ int cam_periph_error(union ccb *ccb, cam_flags camflags, u_int32_t sense_flags, union ccb *save_ccb) { const char *action_string; cam_status status; int frozen; int error, printed = 0; int openings; u_int32_t relsim_flags; u_int32_t timeout = 0; action_string = NULL; status = ccb->ccb_h.status; frozen = (status & CAM_DEV_QFRZN) != 0; status &= CAM_STATUS_MASK; openings = relsim_flags = 0; switch (status) { case CAM_REQ_CMP: error = 0; break; case CAM_SCSI_STATUS_ERROR: error = camperiphscsistatuserror(ccb, camflags, sense_flags, save_ccb, &openings, &relsim_flags, &timeout); break; case CAM_AUTOSENSE_FAIL: xpt_print(ccb->ccb_h.path, "AutoSense Failed\n"); error = EIO; /* we have to kill the command */ break; case CAM_ATA_STATUS_ERROR: if (bootverbose && printed == 0) { xpt_print(ccb->ccb_h.path, "Request completed with CAM_ATA_STATUS_ERROR\n"); cam_error_print(ccb, CAM_ESF_ALL, CAM_EPF_ALL); printed++; } /* FALLTHROUGH */ case CAM_REQ_CMP_ERR: if (bootverbose && printed == 0) { xpt_print(ccb->ccb_h.path, "Request completed with CAM_REQ_CMP_ERR\n"); printed++; } /* FALLTHROUGH */ case CAM_CMD_TIMEOUT: if (bootverbose && printed == 0) { xpt_print(ccb->ccb_h.path, "Command timed out\n"); printed++; } /* FALLTHROUGH */ case CAM_UNEXP_BUSFREE: if (bootverbose && printed == 0) { xpt_print(ccb->ccb_h.path, "Unexpected Bus Free\n"); printed++; } /* FALLTHROUGH */ case CAM_UNCOR_PARITY: if (bootverbose && printed == 0) { xpt_print(ccb->ccb_h.path, "Uncorrected Parity Error\n"); printed++; } /* FALLTHROUGH */ case CAM_DATA_RUN_ERR: if (bootverbose && printed == 0) { xpt_print(ccb->ccb_h.path, "Data Overrun\n"); printed++; } error = EIO; /* we have to kill the command */ /* decrement the number of retries */ if (ccb->ccb_h.retry_count > 0) { ccb->ccb_h.retry_count--; error = ERESTART; } else { action_string = "Retries Exhausted"; error = EIO; } break; case CAM_UA_ABORT: case CAM_UA_TERMIO: case CAM_MSG_REJECT_REC: /* XXX Don't know that these are correct */ error = EIO; break; case CAM_SEL_TIMEOUT: { struct cam_path *newpath; if ((camflags & CAM_RETRY_SELTO) != 0) { if (ccb->ccb_h.retry_count > 0) { ccb->ccb_h.retry_count--; error = ERESTART; if (bootverbose && printed == 0) { xpt_print(ccb->ccb_h.path, "Selection Timeout\n"); printed++; } /* * Wait a bit to give the device * time to recover before we try again. */ relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; timeout = periph_selto_delay; break; } } error = ENXIO; /* Should we do more if we can't create the path?? */ if (xpt_create_path(&newpath, xpt_path_periph(ccb->ccb_h.path), xpt_path_path_id(ccb->ccb_h.path), xpt_path_target_id(ccb->ccb_h.path), CAM_LUN_WILDCARD) != CAM_REQ_CMP) break; /* * Let peripheral drivers know that this device has gone * away. */ xpt_async(AC_LOST_DEVICE, newpath, NULL); xpt_free_path(newpath); break; } case CAM_REQ_INVALID: case CAM_PATH_INVALID: case CAM_DEV_NOT_THERE: case CAM_NO_HBA: case CAM_PROVIDE_FAIL: case CAM_REQ_TOO_BIG: case CAM_LUN_INVALID: case CAM_TID_INVALID: error = EINVAL; break; case CAM_SCSI_BUS_RESET: case CAM_BDR_SENT: /* * Commands that repeatedly timeout and cause these * kinds of error recovery actions, should return * CAM_CMD_TIMEOUT, which allows us to safely assume * that this command was an innocent bystander to * these events and should be unconditionally * retried. */ if (bootverbose && printed == 0) { xpt_print_path(ccb->ccb_h.path); if (status == CAM_BDR_SENT) printf("Bus Device Reset sent\n"); else printf("Bus Reset issued\n"); printed++; } /* FALLTHROUGH */ case CAM_REQUEUE_REQ: /* Unconditional requeue */ error = ERESTART; if (bootverbose && printed == 0) { xpt_print(ccb->ccb_h.path, "Request Requeued\n"); printed++; } break; case CAM_RESRC_UNAVAIL: /* Wait a bit for the resource shortage to abate. */ timeout = periph_noresrc_delay; /* FALLTHROUGH */ case CAM_BUSY: if (timeout == 0) { /* Wait a bit for the busy condition to abate. */ timeout = periph_busy_delay; } relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; /* FALLTHROUGH */ default: /* decrement the number of retries */ if (ccb->ccb_h.retry_count > 0) { ccb->ccb_h.retry_count--; error = ERESTART; if (bootverbose && printed == 0) { xpt_print(ccb->ccb_h.path, "CAM Status 0x%x\n", status); printed++; } } else { error = EIO; action_string = "Retries Exhausted"; } break; } /* * If we have and error and are booting verbosely, whine * *unless* this was a non-retryable selection timeout. */ if (error != 0 && bootverbose && !(status == CAM_SEL_TIMEOUT && (camflags & CAM_RETRY_SELTO) == 0)) { if (error != ERESTART) { if (action_string == NULL) action_string = "Unretryable Error"; xpt_print(ccb->ccb_h.path, "error %d\n", error); xpt_print(ccb->ccb_h.path, "%s\n", action_string); } else xpt_print(ccb->ccb_h.path, "Retrying Command\n"); } /* Attempt a retry */ if (error == ERESTART || error == 0) { if (frozen != 0) ccb->ccb_h.status &= ~CAM_DEV_QFRZN; if (error == ERESTART) xpt_action(ccb); if (frozen != 0) cam_release_devq(ccb->ccb_h.path, relsim_flags, openings, timeout, /*getcount_only*/0); } return (error); }