/*- * Copyright (c) 2007 * Damien Bergamini * Copyright (c) 2008 * Benjamin Close * Copyright (c) 2008 Sam Leffler, Errno Consulting * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Driver for Intel Wireless WiFi Link 4965AGN 802.11 network adapters. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int iwn_probe(device_t); static int iwn_attach(device_t); static int iwn_detach(device_t); static int iwn_cleanup(device_t); static struct ieee80211vap *iwn_vap_create(struct ieee80211com *, const char name[IFNAMSIZ], int unit, int opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]); static void iwn_vap_delete(struct ieee80211vap *); static int iwn_shutdown(device_t); static int iwn_suspend(device_t); static int iwn_resume(device_t); static int iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *, void **, bus_size_t, bus_size_t, int); static void iwn_dma_contig_free(struct iwn_dma_info *); int iwn_alloc_shared(struct iwn_softc *); void iwn_free_shared(struct iwn_softc *); int iwn_alloc_kw(struct iwn_softc *); void iwn_free_kw(struct iwn_softc *); int iwn_alloc_fwmem(struct iwn_softc *); void iwn_free_fwmem(struct iwn_softc *); struct iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *); void iwn_free_rbuf(void *, void *); int iwn_alloc_rpool(struct iwn_softc *); void iwn_free_rpool(struct iwn_softc *); int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *, int); void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *, const uint8_t [IEEE80211_ADDR_LEN]); void iwn_newassoc(struct ieee80211_node *, int); int iwn_media_change(struct ifnet *); int iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int); void iwn_mem_lock(struct iwn_softc *); void iwn_mem_unlock(struct iwn_softc *); uint32_t iwn_mem_read(struct iwn_softc *, uint32_t); void iwn_mem_write(struct iwn_softc *, uint32_t, uint32_t); void iwn_mem_write_region_4(struct iwn_softc *, uint32_t, const uint32_t *, int); int iwn_eeprom_lock(struct iwn_softc *); void iwn_eeprom_unlock(struct iwn_softc *); int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int); int iwn_transfer_microcode(struct iwn_softc *, const uint8_t *, int); int iwn_transfer_firmware(struct iwn_softc *); int iwn_load_firmware(struct iwn_softc *); void iwn_unload_firmware(struct iwn_softc *); static void iwn_timer_timeout(void *); static void iwn_calib_reset(struct iwn_softc *); void iwn_ampdu_rx_start(struct iwn_softc *, struct iwn_rx_desc *); void iwn_rx_intr(struct iwn_softc *, struct iwn_rx_desc *, struct iwn_rx_data *); void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *); void iwn_tx_intr(struct iwn_softc *, struct iwn_rx_desc *); void iwn_cmd_intr(struct iwn_softc *, struct iwn_rx_desc *); static void iwn_bmiss(void *, int); void iwn_notif_intr(struct iwn_softc *); void iwn_intr(void *); void iwn_read_eeprom(struct iwn_softc *, uint8_t macaddr[IEEE80211_ADDR_LEN]); static void iwn_read_eeprom_channels(struct iwn_softc *); void iwn_print_power_group(struct iwn_softc *, int); uint8_t iwn_plcp_signal(int); int iwn_tx_data(struct iwn_softc *, struct mbuf *, struct ieee80211_node *, struct iwn_tx_ring *); void iwn_start(struct ifnet *); void iwn_start_locked(struct ifnet *); static int iwn_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static void iwn_watchdog(struct iwn_softc *); int iwn_ioctl(struct ifnet *, u_long, caddr_t); int iwn_cmd(struct iwn_softc *, int, const void *, int, int); int iwn_set_link_quality(struct iwn_softc *, uint8_t, const struct ieee80211_channel *, int); int iwn_set_key(struct ieee80211com *, struct ieee80211_node *, const struct ieee80211_key *); int iwn_wme_update(struct ieee80211com *); void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t); int iwn_set_critical_temp(struct iwn_softc *); void iwn_enable_tsf(struct iwn_softc *, struct ieee80211_node *); void iwn_power_calibration(struct iwn_softc *, int); int iwn_set_txpower(struct iwn_softc *, struct ieee80211_channel *, int); int8_t iwn_get_rssi(struct iwn_softc *, const struct iwn_rx_stat *); int iwn_get_noise(const struct iwn_rx_general_stats *); int iwn_get_temperature(struct iwn_softc *); int iwn_init_sensitivity(struct iwn_softc *); void iwn_compute_differential_gain(struct iwn_softc *, const struct iwn_rx_general_stats *); void iwn_tune_sensitivity(struct iwn_softc *, const struct iwn_rx_stats *); int iwn_send_sensitivity(struct iwn_softc *); int iwn_auth(struct iwn_softc *); int iwn_run(struct iwn_softc *); int iwn_scan(struct iwn_softc *); int iwn_config(struct iwn_softc *); void iwn_post_alive(struct iwn_softc *); void iwn_stop_master(struct iwn_softc *); int iwn_reset(struct iwn_softc *); void iwn_hw_config(struct iwn_softc *); void iwn_init_locked(struct iwn_softc *); void iwn_init(void *); void iwn_stop_locked(struct iwn_softc *); void iwn_stop(struct iwn_softc *); static void iwn_scan_start(struct ieee80211com *); static void iwn_scan_end(struct ieee80211com *); static void iwn_set_channel(struct ieee80211com *); static void iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long); static void iwn_scan_mindwell(struct ieee80211_scan_state *); static void iwn_ops(void *, int); static int iwn_queue_cmd( struct iwn_softc *, int, int, int); static void iwn_bpfattach(struct iwn_softc *); static void iwn_sysctlattach(struct iwn_softc *); #define IWN_DEBUG #ifdef IWN_DEBUG enum { IWN_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ IWN_DEBUG_RECV = 0x00000002, /* basic recv operation */ IWN_DEBUG_STATE = 0x00000004, /* 802.11 state transitions */ IWN_DEBUG_TXPOW = 0x00000008, /* tx power processing */ IWN_DEBUG_RESET = 0x00000010, /* reset processing */ IWN_DEBUG_OPS = 0x00000020, /* iwn_ops processing */ IWN_DEBUG_BEACON = 0x00000040, /* beacon handling */ IWN_DEBUG_WATCHDOG = 0x00000080, /* watchdog timeout */ IWN_DEBUG_INTR = 0x00000100, /* ISR */ IWN_DEBUG_CALIBRATE = 0x00000200, /* periodic calibration */ IWN_DEBUG_NODE = 0x00000400, /* node management */ IWN_DEBUG_LED = 0x00000800, /* led management */ IWN_DEBUG_CMD = 0x00001000, /* cmd submission */ IWN_DEBUG_FATAL = 0x80000000, /* fatal errors */ IWN_DEBUG_ANY = 0xffffffff }; #define DPRINTF(sc, m, fmt, ...) do { \ if (sc->sc_debug & (m)) \ printf(fmt, __VA_ARGS__); \ } while (0) static const char *iwn_ops_str(int); static const char *iwn_intr_str(uint8_t); #else #define DPRINTF(sc, m, fmt, ...) do { (void) sc; } while (0) #endif struct iwn_ident { uint16_t vendor; uint16_t device; const char *name; }; static const struct iwn_ident iwn_ident_table [] = { { 0x8086, 0x4229, "Intel(R) PRO/Wireless 4965BGN" }, { 0x8086, 0x422D, "Intel(R) PRO/Wireless 4965BGN" }, { 0x8086, 0x4230, "Intel(R) PRO/Wireless 4965BGN" }, { 0x8086, 0x4233, "Intel(R) PRO/Wireless 4965BGN" }, { 0, 0, NULL } }; static int iwn_probe(device_t dev) { const struct iwn_ident *ident; for (ident = iwn_ident_table; ident->name != NULL; ident++) { if (pci_get_vendor(dev) == ident->vendor && pci_get_device(dev) == ident->device) { device_set_desc(dev, ident->name); return 0; } } return ENXIO; } static int iwn_attach(device_t dev) { struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev); struct ieee80211com *ic; struct ifnet *ifp; int i, error, result; uint8_t macaddr[IEEE80211_ADDR_LEN]; sc->sc_dev = dev; /* XXX */ if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { device_printf(dev, "chip is in D%d power mode " "-- setting to D0\n", pci_get_powerstate(dev)); pci_set_powerstate(dev, PCI_POWERSTATE_D0); } /* clear device specific PCI configuration register 0x41 */ pci_write_config(dev, 0x41, 0, 1); /* enable bus-mastering */ pci_enable_busmaster(dev); sc->mem_rid= PCIR_BAR(0); sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, RF_ACTIVE); if (sc->mem == NULL ) { device_printf(dev, "could not allocate memory resources\n"); error = ENOMEM; return error; } sc->sc_st = rman_get_bustag(sc->mem); sc->sc_sh = rman_get_bushandle(sc->mem); sc->irq_rid = 0; if ((result = pci_msi_count(dev)) == 1 && pci_alloc_msi(dev, &result) == 0) sc->irq_rid = 1; sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, RF_ACTIVE | RF_SHAREABLE); if (sc->irq == NULL) { device_printf(dev, "could not allocate interrupt resource\n"); error = ENOMEM; return error; } IWN_LOCK_INIT(sc); IWN_CMD_LOCK_INIT(sc); callout_init_mtx(&sc->sc_timer_to, &sc->sc_mtx, 0); /* * Create the taskqueues used by the driver. Primarily * sc_tq handles most the task */ sc->sc_tq = taskqueue_create("iwn_taskq", M_NOWAIT | M_ZERO, taskqueue_thread_enqueue, &sc->sc_tq); taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", device_get_nameunit(dev)); TASK_INIT(&sc->sc_ops_task, 0, iwn_ops, sc ); TASK_INIT(&sc->sc_bmiss_task, 0, iwn_bmiss, sc); /* * Put adapter into a known state. */ error = iwn_reset(sc); if (error != 0) { device_printf(dev, "could not reset adapter, error %d\n", error); goto fail; } /* * Allocate DMA memory for firmware transfers. */ error = iwn_alloc_fwmem(sc); if (error != 0) { device_printf(dev, "could not allocate firmware memory, error %d\n", error); goto fail; } /* * Allocate a "keep warm" page. */ error = iwn_alloc_kw(sc); if (error != 0) { device_printf(dev, "could not allocate keep-warm page, error %d\n", error); goto fail; } /* * Allocate shared area (communication area). */ error = iwn_alloc_shared(sc); if (error != 0) { device_printf(dev, "could not allocate shared area, error %d\n", error); goto fail; } /* * Allocate Tx rings. */ for (i = 0; i < IWN_NTXQUEUES; i++) { error = iwn_alloc_tx_ring(sc, &sc->txq[i], i); if (error != 0) { device_printf(dev, "could not allocate Tx ring %d, error %d\n", i, error); goto fail; } } error = iwn_alloc_rx_ring(sc, &sc->rxq); if (error != 0 ){ device_printf(dev, "could not allocate Rx ring, error %d\n", error); goto fail; } ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); if (ifp == NULL) { device_printf(dev, "can not allocate ifnet structure\n"); goto fail; } ic = ifp->if_l2com; ic->ic_ifp = ifp; ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ /* set device capabilities */ ic->ic_caps = IEEE80211_C_STA /* station mode supported */ | IEEE80211_C_MONITOR /* monitor mode supported */ | IEEE80211_C_TXPMGT /* tx power management */ | IEEE80211_C_SHSLOT /* short slot time supported */ | IEEE80211_C_WPA | IEEE80211_C_SHPREAMBLE /* short preamble supported */ #if 0 | IEEE80211_C_BGSCAN /* background scanning */ | IEEE80211_C_IBSS /* ibss/adhoc mode */ #endif | IEEE80211_C_WME /* WME */ ; #if 0 /* XXX disable until HT channel setup works */ ic->ic_htcaps = IEEE80211_HTCAP_SMPS_ENA /* SM PS mode enabled */ | IEEE80211_HTCAP_CHWIDTH40 /* 40MHz channel width */ | IEEE80211_HTCAP_SHORTGI20 /* short GI in 20MHz */ | IEEE80211_HTCAP_SHORTGI40 /* short GI in 40MHz */ | IEEE80211_HTCAP_RXSTBC_2STREAM/* 1-2 spatial streams */ | IEEE80211_HTCAP_MAXAMSDU_3839 /* max A-MSDU length */ /* s/w capabilities */ | IEEE80211_HTC_HT /* HT operation */ | IEEE80211_HTC_AMPDU /* tx A-MPDU */ | IEEE80211_HTC_AMSDU /* tx A-MSDU */ ; #endif /* read supported channels and MAC address from EEPROM */ iwn_read_eeprom(sc, macaddr); if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = iwn_init; ifp->if_ioctl = iwn_ioctl; ifp->if_start = iwn_start; IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; IFQ_SET_READY(&ifp->if_snd); ieee80211_ifattach(ic, macaddr); ic->ic_vap_create = iwn_vap_create; ic->ic_vap_delete = iwn_vap_delete; ic->ic_raw_xmit = iwn_raw_xmit; ic->ic_node_alloc = iwn_node_alloc; ic->ic_newassoc = iwn_newassoc; ic->ic_wme.wme_update = iwn_wme_update; ic->ic_scan_start = iwn_scan_start; ic->ic_scan_end = iwn_scan_end; ic->ic_set_channel = iwn_set_channel; ic->ic_scan_curchan = iwn_scan_curchan; ic->ic_scan_mindwell = iwn_scan_mindwell; iwn_bpfattach(sc); iwn_sysctlattach(sc); /* * Hook our interrupt after all initialization is complete. */ error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, NULL, iwn_intr, sc, &sc->sc_ih); if (error != 0) { device_printf(dev, "could not set up interrupt, error %d\n", error); goto fail; } ieee80211_announce(ic); return 0; fail: iwn_cleanup(dev); return error; } static int iwn_detach(device_t dev) { iwn_cleanup(dev); return 0; } /* * Cleanup any device resources that were allocated */ int iwn_cleanup(device_t dev) { struct iwn_softc *sc = device_get_softc(dev); struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; int i; if (ifp != NULL) { iwn_stop(sc); callout_drain(&sc->sc_timer_to); bpfdetach(ifp); ieee80211_ifdetach(ic); } iwn_unload_firmware(sc); iwn_free_rx_ring(sc, &sc->rxq); for (i = 0; i < IWN_NTXQUEUES; i++) iwn_free_tx_ring(sc, &sc->txq[i]); iwn_free_kw(sc); iwn_free_fwmem(sc); if (sc->irq != NULL) { bus_teardown_intr(dev, sc->irq, sc->sc_ih); bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); if (sc->irq_rid == 1) pci_release_msi(dev); } if (sc->mem != NULL) bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); if (ifp != NULL) if_free(ifp); taskqueue_free(sc->sc_tq); IWN_CMD_LOCK_DESTROY(sc); IWN_LOCK_DESTROY(sc); return 0; } static struct ieee80211vap * iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, int opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct iwn_vap *ivp; struct ieee80211vap *vap; if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ return NULL; ivp = (struct iwn_vap *) malloc(sizeof(struct iwn_vap), M_80211_VAP, M_NOWAIT | M_ZERO); if (ivp == NULL) return NULL; vap = &ivp->iv_vap; ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); vap->iv_bmissthreshold = 10; /* override default */ /* override with driver methods */ ivp->iv_newstate = vap->iv_newstate; vap->iv_newstate = iwn_newstate; ieee80211_amrr_init(&ivp->iv_amrr, vap, IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD, IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD, 500 /*ms*/); /* complete setup */ ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status); ic->ic_opmode = opmode; return vap; } static void iwn_vap_delete(struct ieee80211vap *vap) { struct iwn_vap *ivp = IWN_VAP(vap); ieee80211_amrr_cleanup(&ivp->iv_amrr); ieee80211_vap_detach(vap); free(ivp, M_80211_VAP); } static int iwn_shutdown(device_t dev) { struct iwn_softc *sc = device_get_softc(dev); iwn_stop(sc); return 0; } static int iwn_suspend(device_t dev) { struct iwn_softc *sc = device_get_softc(dev); iwn_stop(sc); return 0; } static int iwn_resume(device_t dev) { struct iwn_softc *sc = device_get_softc(dev); struct ifnet *ifp = sc->sc_ifp; pci_write_config(dev, 0x41, 0, 1); if (ifp->if_flags & IFF_UP) iwn_init(sc); return 0; } static void iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { if (error != 0) return; KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); *(bus_addr_t *)arg = segs[0].ds_addr; } static int iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma, void **kvap, bus_size_t size, bus_size_t alignment, int flags) { int error, lalignment, i; /* * FreeBSD can't guarrenty 16k alignment at the moment (11/2007) so * we allocate an extra 12k with 4k alignement and walk through * it trying to find where the alignment is. It's a nasty fix for * a bigger problem. */ DPRINTF(sc, IWN_DEBUG_RESET, "Size: %zd - alignment %zd\n", size, alignment); if (alignment == 0x4000) { size += 12*1024; lalignment = 4096; DPRINTF(sc, IWN_DEBUG_RESET, "%s\n", "Attempting to find a 16k boundary"); } else lalignment = alignment; dma->size = size; dma->tag = NULL; error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), lalignment, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size, 1, size, flags, NULL, NULL, &dma->tag); if (error != 0) { device_printf(sc->sc_dev, "%s: bus_dma_tag_create failed, error %d\n", __func__, error); goto fail; } error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr, flags | BUS_DMA_ZERO, &dma->map); if (error != 0) { device_printf(sc->sc_dev, "%s: bus_dmamem_alloc failed, error %d\n", __func__, error); goto fail; } if (alignment == 0x4000) { for (i = 0; i < 3 && (((uintptr_t)dma->vaddr) & 0x3fff); i++) { DPRINTF(sc, IWN_DEBUG_RESET, "%s\n", "Memory Unaligned, shifting pointer by 4k"); dma->vaddr += 4096; size -= 4096; } if ((((uintptr_t)dma->vaddr ) & (alignment-1))) { DPRINTF(sc, IWN_DEBUG_ANY, "%s: failed to align memory, vaddr %p, align %zd\n", __func__, dma->vaddr, alignment); error = ENOMEM; goto fail; } } error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size, iwn_dma_map_addr, &dma->paddr, flags); if (error != 0) { device_printf(sc->sc_dev, "%s: bus_dmamap_load failed, error %d\n", __func__, error); goto fail; } if (kvap != NULL) *kvap = dma->vaddr; return 0; fail: iwn_dma_contig_free(dma); return error; } static void iwn_dma_contig_free(struct iwn_dma_info *dma) { if (dma->tag != NULL) { if (dma->map != NULL) { if (dma->paddr == 0) { bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(dma->tag, dma->map); } bus_dmamem_free(dma->tag, &dma->vaddr, dma->map); } bus_dma_tag_destroy(dma->tag); } } int iwn_alloc_shared(struct iwn_softc *sc) { /* must be aligned on a 1KB boundary */ return iwn_dma_contig_alloc(sc, &sc->shared_dma, (void **)&sc->shared, sizeof (struct iwn_shared), 1024, BUS_DMA_NOWAIT); } void iwn_free_shared(struct iwn_softc *sc) { iwn_dma_contig_free(&sc->shared_dma); } int iwn_alloc_kw(struct iwn_softc *sc) { /* must be aligned on a 4k boundary */ return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, PAGE_SIZE, PAGE_SIZE, BUS_DMA_NOWAIT); } void iwn_free_kw(struct iwn_softc *sc) { iwn_dma_contig_free(&sc->kw_dma); } int iwn_alloc_fwmem(struct iwn_softc *sc) { /* allocate enough contiguous space to store text and data */ return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, IWN_FW_MAIN_TEXT_MAXSZ + IWN_FW_MAIN_DATA_MAXSZ, 16, BUS_DMA_NOWAIT); } void iwn_free_fwmem(struct iwn_softc *sc) { iwn_dma_contig_free(&sc->fw_dma); } int iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) { int i, error; ring->cur = 0; error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc, IWN_RX_RING_COUNT * sizeof (uint32_t), IWN_RING_DMA_ALIGN, BUS_DMA_NOWAIT); if (error != 0) { device_printf(sc->sc_dev, "%s: could not allocate rx ring DMA memory, error %d\n", __func__, error); goto fail; } error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1, MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat); if (error != 0) { device_printf(sc->sc_dev, "%s: bus_dma_tag_create_failed, error %d\n", __func__, error); goto fail; } /* * Setup Rx buffers. */ for (i = 0; i < IWN_RX_RING_COUNT; i++) { struct iwn_rx_data *data = &ring->data[i]; struct mbuf *m; bus_addr_t paddr; error = bus_dmamap_create(ring->data_dmat, 0, &data->map); if (error != 0) { device_printf(sc->sc_dev, "%s: bus_dmamap_create failed, error %d\n", __func__, error); goto fail; } m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); if (m == NULL) { device_printf(sc->sc_dev, "%s: could not allocate rx mbuf\n", __func__); error = ENOMEM; goto fail; } /* map page */ error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m, caddr_t), MJUMPAGESIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT); if (error != 0 && error != EFBIG) { device_printf(sc->sc_dev, "%s: bus_dmamap_load failed, error %d\n", __func__, error); m_freem(m); error = ENOMEM; /* XXX unique code */ goto fail; } bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); data->m = m; /* Rx buffers are aligned on a 256-byte boundary */ ring->desc[i] = htole32(paddr >> 8); } bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, BUS_DMASYNC_PREWRITE); return 0; fail: iwn_free_rx_ring(sc, ring); return error; } void iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) { int ntries; iwn_mem_lock(sc); IWN_WRITE(sc, IWN_RX_CONFIG, 0); for (ntries = 0; ntries < 100; ntries++) { if (IWN_READ(sc, IWN_RX_STATUS) & IWN_RX_IDLE) break; DELAY(10); } #ifdef IWN_DEBUG if (ntries == 100) DPRINTF(sc, IWN_DEBUG_ANY, "%s\n", "timeout resetting Rx ring"); #endif iwn_mem_unlock(sc); ring->cur = 0; } void iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) { int i; iwn_dma_contig_free(&ring->desc_dma); for (i = 0; i < IWN_RX_RING_COUNT; i++) if (ring->data[i].m != NULL) m_freem(ring->data[i].m); } int iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid) { bus_size_t size; int i, error; ring->qid = qid; ring->queued = 0; ring->cur = 0; size = IWN_TX_RING_COUNT * sizeof(struct iwn_tx_desc); error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc, size, IWN_RING_DMA_ALIGN, BUS_DMA_NOWAIT); if (error != 0) { device_printf(sc->sc_dev, "%s: could not allocate tx ring DMA memory, error %d\n", __func__, error); goto fail; } size = IWN_TX_RING_COUNT * sizeof(struct iwn_tx_cmd); error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, size, 4, BUS_DMA_NOWAIT); if (error != 0) { device_printf(sc->sc_dev, "%s: could not allocate tx cmd DMA memory, error %d\n", __func__, error); goto fail; } error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IWN_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat); if (error != 0) { device_printf(sc->sc_dev, "%s: bus_dma_tag_create_failed, error %d\n", __func__, error); goto fail; } for (i = 0; i < IWN_TX_RING_COUNT; i++) { struct iwn_tx_data *data = &ring->data[i]; error = bus_dmamap_create(ring->data_dmat, 0, &data->map); if (error != 0) { device_printf(sc->sc_dev, "%s: bus_dmamap_create failed, error %d\n", __func__, error); goto fail; } bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); } return 0; fail: iwn_free_tx_ring(sc, ring); return error; } void iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) { uint32_t tmp; int i, ntries; iwn_mem_lock(sc); IWN_WRITE(sc, IWN_TX_CONFIG(ring->qid), 0); for (ntries = 0; ntries < 20; ntries++) { tmp = IWN_READ(sc, IWN_TX_STATUS); if ((tmp & IWN_TX_IDLE(ring->qid)) == IWN_TX_IDLE(ring->qid)) break; DELAY(10); } #ifdef IWN_DEBUG if (ntries == 20) DPRINTF(sc, IWN_DEBUG_RESET, "%s: timeout resetting Tx ring %d\n", __func__, ring->qid); #endif iwn_mem_unlock(sc); for (i = 0; i < IWN_TX_RING_COUNT; i++) { struct iwn_tx_data *data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); data->m = NULL; } } ring->queued = 0; ring->cur = 0; } void iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) { int i; iwn_dma_contig_free(&ring->desc_dma); iwn_dma_contig_free(&ring->cmd_dma); if (ring->data != NULL) { for (i = 0; i < IWN_TX_RING_COUNT; i++) { struct iwn_tx_data *data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); } } } } struct ieee80211_node * iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) { return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO); } void iwn_newassoc(struct ieee80211_node *ni, int isnew) { struct ieee80211vap *vap = ni->ni_vap; ieee80211_amrr_node_init(&IWN_VAP(vap)->iv_amrr, &IWN_NODE(ni)->amn, ni); } int iwn_media_change(struct ifnet *ifp) { int error = ieee80211_media_change(ifp); /* NB: only the fixed rate can change and that doesn't need a reset */ return (error == ENETRESET ? 0 : error); } int iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct iwn_vap *ivp = IWN_VAP(vap); struct ieee80211com *ic = vap->iv_ic; struct iwn_softc *sc = ic->ic_ifp->if_softc; int error; DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__, ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]); IWN_LOCK(sc); callout_stop(&sc->sc_timer_to); IWN_UNLOCK(sc); /* * Some state transitions require issuing a configure request * to the adapter. This must be done in a blocking context * so we toss control to the task q thread where the state * change will be finished after the command completes. */ if (nstate == IEEE80211_S_AUTH && vap->iv_state != IEEE80211_S_AUTH) { /* !AUTH -> AUTH requires adapter config */ error = iwn_queue_cmd(sc, IWN_AUTH, arg, IWN_QUEUE_NORMAL); return (error != 0 ? error : EINPROGRESS); } if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) { /* * !RUN -> RUN requires setting the association id * which is done with a firmware cmd. We also defer * starting the timers until that work is done. */ error = iwn_queue_cmd(sc, IWN_RUN, arg, IWN_QUEUE_NORMAL); return (error != 0 ? error : EINPROGRESS); } if (nstate == IEEE80211_S_RUN) { /* * RUN -> RUN transition; just restart the timers. */ iwn_calib_reset(sc); } return ivp->iv_newstate(vap, nstate, arg); } /* * Grab exclusive access to NIC memory. */ void iwn_mem_lock(struct iwn_softc *sc) { uint32_t tmp; int ntries; tmp = IWN_READ(sc, IWN_GPIO_CTL); IWN_WRITE(sc, IWN_GPIO_CTL, tmp | IWN_GPIO_MAC); /* spin until we actually get the lock */ for (ntries = 0; ntries < 1000; ntries++) { if ((IWN_READ(sc, IWN_GPIO_CTL) & (IWN_GPIO_CLOCK | IWN_GPIO_SLEEP)) == IWN_GPIO_CLOCK) break; DELAY(10); } if (ntries == 1000) device_printf(sc->sc_dev, "%s: could not lock memory\n", __func__); } /* * Release lock on NIC memory. */ void iwn_mem_unlock(struct iwn_softc *sc) { uint32_t tmp = IWN_READ(sc, IWN_GPIO_CTL); IWN_WRITE(sc, IWN_GPIO_CTL, tmp & ~IWN_GPIO_MAC); } uint32_t iwn_mem_read(struct iwn_softc *sc, uint32_t addr) { IWN_WRITE(sc, IWN_READ_MEM_ADDR, IWN_MEM_4 | addr); return IWN_READ(sc, IWN_READ_MEM_DATA); } void iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) { IWN_WRITE(sc, IWN_WRITE_MEM_ADDR, IWN_MEM_4 | addr); IWN_WRITE(sc, IWN_WRITE_MEM_DATA, data); } void iwn_mem_write_region_4(struct iwn_softc *sc, uint32_t addr, const uint32_t *data, int wlen) { for (; wlen > 0; wlen--, data++, addr += 4) iwn_mem_write(sc, addr, *data); } int iwn_eeprom_lock(struct iwn_softc *sc) { uint32_t tmp; int ntries; tmp = IWN_READ(sc, IWN_HWCONFIG); IWN_WRITE(sc, IWN_HWCONFIG, tmp | IWN_HW_EEPROM_LOCKED); /* spin until we actually get the lock */ for (ntries = 0; ntries < 100; ntries++) { if (IWN_READ(sc, IWN_HWCONFIG) & IWN_HW_EEPROM_LOCKED) return 0; DELAY(10); } return ETIMEDOUT; } void iwn_eeprom_unlock(struct iwn_softc *sc) { uint32_t tmp = IWN_READ(sc, IWN_HWCONFIG); IWN_WRITE(sc, IWN_HWCONFIG, tmp & ~IWN_HW_EEPROM_LOCKED); } /* * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC * instead of using the traditional bit-bang method. */ int iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int len) { uint8_t *out = data; uint32_t val; int ntries, tmp; iwn_mem_lock(sc); for (; len > 0; len -= 2, addr++) { IWN_WRITE(sc, IWN_EEPROM_CTL, addr << 2); tmp = IWN_READ(sc, IWN_EEPROM_CTL); IWN_WRITE(sc, IWN_EEPROM_CTL, tmp & ~IWN_EEPROM_MSK ); for (ntries = 0; ntries < 10; ntries++) { if ((val = IWN_READ(sc, IWN_EEPROM_CTL)) & IWN_EEPROM_READY) break; DELAY(5); } if (ntries == 10) { device_printf(sc->sc_dev,"could not read EEPROM\n"); return ETIMEDOUT; } *out++ = val >> 16; if (len > 1) *out++ = val >> 24; } iwn_mem_unlock(sc); return 0; } /* * The firmware boot code is small and is intended to be copied directly into * the NIC internal memory. */ int iwn_transfer_microcode(struct iwn_softc *sc, const uint8_t *ucode, int size) { int ntries; size /= sizeof (uint32_t); iwn_mem_lock(sc); /* copy microcode image into NIC memory */ iwn_mem_write_region_4(sc, IWN_MEM_UCODE_BASE, (const uint32_t *)ucode, size); iwn_mem_write(sc, IWN_MEM_UCODE_SRC, 0); iwn_mem_write(sc, IWN_MEM_UCODE_DST, IWN_FW_TEXT); iwn_mem_write(sc, IWN_MEM_UCODE_SIZE, size); /* run microcode */ iwn_mem_write(sc, IWN_MEM_UCODE_CTL, IWN_UC_RUN); /* wait for transfer to complete */ for (ntries = 0; ntries < 1000; ntries++) { if (!(iwn_mem_read(sc, IWN_MEM_UCODE_CTL) & IWN_UC_RUN)) break; DELAY(10); } if (ntries == 1000) { iwn_mem_unlock(sc); device_printf(sc->sc_dev, "%s: could not load boot firmware\n", __func__); return ETIMEDOUT; } iwn_mem_write(sc, IWN_MEM_UCODE_CTL, IWN_UC_ENABLE); iwn_mem_unlock(sc); return 0; } int iwn_load_firmware(struct iwn_softc *sc) { int error; KASSERT(sc->fw_fp == NULL, ("firmware already loaded")); IWN_UNLOCK(sc); /* load firmware image from disk */ sc->fw_fp = firmware_get("iwnfw"); if (sc->fw_fp == NULL) { device_printf(sc->sc_dev, "%s: could not load firmare image \"iwnfw\"\n", __func__); error = EINVAL; } else error = 0; IWN_LOCK(sc); return error; } int iwn_transfer_firmware(struct iwn_softc *sc) { struct iwn_dma_info *dma = &sc->fw_dma; const struct iwn_firmware_hdr *hdr; const uint8_t *init_text, *init_data, *main_text, *main_data; const uint8_t *boot_text; uint32_t init_textsz, init_datasz, main_textsz, main_datasz; uint32_t boot_textsz; int error = 0; const struct firmware *fp = sc->fw_fp; /* extract firmware header information */ if (fp->datasize < sizeof (struct iwn_firmware_hdr)) { device_printf(sc->sc_dev, "%s: truncated firmware header: %zu bytes, expecting %zu\n", __func__, fp->datasize, sizeof (struct iwn_firmware_hdr)); error = EINVAL; goto fail; } hdr = (const struct iwn_firmware_hdr *)fp->data; main_textsz = le32toh(hdr->main_textsz); main_datasz = le32toh(hdr->main_datasz); init_textsz = le32toh(hdr->init_textsz); init_datasz = le32toh(hdr->init_datasz); boot_textsz = le32toh(hdr->boot_textsz); /* sanity-check firmware segments sizes */ if (main_textsz > IWN_FW_MAIN_TEXT_MAXSZ || main_datasz > IWN_FW_MAIN_DATA_MAXSZ || init_textsz > IWN_FW_INIT_TEXT_MAXSZ || init_datasz > IWN_FW_INIT_DATA_MAXSZ || boot_textsz > IWN_FW_BOOT_TEXT_MAXSZ || (boot_textsz & 3) != 0) { device_printf(sc->sc_dev, "%s: invalid firmware header, main [%d,%d], init [%d,%d] " "boot %d\n", __func__, main_textsz, main_datasz, init_textsz, init_datasz, boot_textsz); error = EINVAL; goto fail; } /* check that all firmware segments are present */ if (fp->datasize < sizeof (struct iwn_firmware_hdr) + main_textsz + main_datasz + init_textsz + init_datasz + boot_textsz) { device_printf(sc->sc_dev, "%s: firmware file too short: " "%zu bytes, main [%d, %d], init [%d,%d] boot %d\n", __func__, fp->datasize, main_textsz, main_datasz, init_textsz, init_datasz, boot_textsz); error = EINVAL; goto fail; } /* get pointers to firmware segments */ main_text = (const uint8_t *)(hdr + 1); main_data = main_text + main_textsz; init_text = main_data + main_datasz; init_data = init_text + init_textsz; boot_text = init_data + init_datasz; /* copy initialization images into pre-allocated DMA-safe memory */ memcpy(dma->vaddr, init_data, init_datasz); memcpy(dma->vaddr + IWN_FW_INIT_DATA_MAXSZ, init_text, init_textsz); /* tell adapter where to find initialization images */ iwn_mem_lock(sc); iwn_mem_write(sc, IWN_MEM_DATA_BASE, dma->paddr >> 4); iwn_mem_write(sc, IWN_MEM_DATA_SIZE, init_datasz); iwn_mem_write(sc, IWN_MEM_TEXT_BASE, (dma->paddr + IWN_FW_INIT_DATA_MAXSZ) >> 4); iwn_mem_write(sc, IWN_MEM_TEXT_SIZE, init_textsz); iwn_mem_unlock(sc); /* load firmware boot code */ error = iwn_transfer_microcode(sc, boot_text, boot_textsz); if (error != 0) { device_printf(sc->sc_dev, "%s: could not load boot firmware, error %d\n", __func__, error); goto fail; } /* now press "execute" ;-) */ IWN_WRITE(sc, IWN_RESET, 0); /* wait at most one second for first alive notification */ error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz); if (error != 0) { /* this isn't what was supposed to happen.. */ device_printf(sc->sc_dev, "%s: timeout waiting for first alive notice, error %d\n", __func__, error); goto fail; } /* copy runtime images into pre-allocated DMA-safe memory */ memcpy(dma->vaddr, main_data, main_datasz); memcpy(dma->vaddr + IWN_FW_MAIN_DATA_MAXSZ, main_text, main_textsz); /* tell adapter where to find runtime images */ iwn_mem_lock(sc); iwn_mem_write(sc, IWN_MEM_DATA_BASE, dma->paddr >> 4); iwn_mem_write(sc, IWN_MEM_DATA_SIZE, main_datasz); iwn_mem_write(sc, IWN_MEM_TEXT_BASE, (dma->paddr + IWN_FW_MAIN_DATA_MAXSZ) >> 4); iwn_mem_write(sc, IWN_MEM_TEXT_SIZE, IWN_FW_UPDATED | main_textsz); iwn_mem_unlock(sc); /* wait at most one second for second alive notification */ error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz); if (error != 0) { /* this isn't what was supposed to happen.. */ device_printf(sc->sc_dev, "%s: timeout waiting for second alive notice, error %d\n", __func__, error); goto fail; } return 0; fail: return error; } void iwn_unload_firmware(struct iwn_softc *sc) { if (sc->fw_fp != NULL) { firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); sc->fw_fp = NULL; } } static void iwn_timer_timeout(void *arg) { struct iwn_softc *sc = arg; IWN_LOCK_ASSERT(sc); if (sc->calib_cnt && --sc->calib_cnt == 0) { DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n", "send statistics request"); (void) iwn_cmd(sc, IWN_CMD_GET_STATISTICS, NULL, 0, 1); sc->calib_cnt = 60; /* do calibration every 60s */ } iwn_watchdog(sc); /* NB: piggyback tx watchdog */ callout_reset(&sc->sc_timer_to, hz, iwn_timer_timeout, sc); } static void iwn_calib_reset(struct iwn_softc *sc) { callout_reset(&sc->sc_timer_to, hz, iwn_timer_timeout, sc); sc->calib_cnt = 60; /* do calibration every 60s */ } void iwn_ampdu_rx_start(struct iwn_softc *sc, struct iwn_rx_desc *desc) { struct iwn_rx_stat *stat; DPRINTF(sc, IWN_DEBUG_RECV, "%s\n", "received AMPDU stats"); /* save Rx statistics, they will be used on IWN_AMPDU_RX_DONE */ stat = (struct iwn_rx_stat *)(desc + 1); memcpy(&sc->last_rx_stat, stat, sizeof (*stat)); sc->last_rx_valid = 1; } static __inline int maprate(int iwnrate) { switch (iwnrate) { /* CCK rates */ case 10: return 2; case 20: return 4; case 55: return 11; case 110: return 22; /* OFDM rates */ case 0xd: return 12; case 0xf: return 18; case 0x5: return 24; case 0x7: return 36; case 0x9: return 48; case 0xb: return 72; case 0x1: return 96; case 0x3: return 108; /* XXX MCS */ } /* unknown rate: should not happen */ return 0; } void iwn_rx_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc, struct iwn_rx_data *data) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct iwn_rx_ring *ring = &sc->rxq; struct ieee80211_frame *wh; struct ieee80211_node *ni; struct mbuf *m, *mnew; struct iwn_rx_stat *stat; caddr_t head; uint32_t *tail; int8_t rssi, nf; int len, error; bus_addr_t paddr; if (desc->type == IWN_AMPDU_RX_DONE) { /* check for prior AMPDU_RX_START */ if (!sc->last_rx_valid) { DPRINTF(sc, IWN_DEBUG_ANY, "%s: missing AMPDU_RX_START\n", __func__); ifp->if_ierrors++; return; } sc->last_rx_valid = 0; stat = &sc->last_rx_stat; } else stat = (struct iwn_rx_stat *)(desc + 1); if (stat->cfg_phy_len > IWN_STAT_MAXLEN) { device_printf(sc->sc_dev, "%s: invalid rx statistic header, len %d\n", __func__, stat->cfg_phy_len); ifp->if_ierrors++; return; } if (desc->type == IWN_AMPDU_RX_DONE) { struct iwn_rx_ampdu *ampdu = (struct iwn_rx_ampdu *)(desc + 1); head = (caddr_t)(ampdu + 1); len = le16toh(ampdu->len); } else { head = (caddr_t)(stat + 1) + stat->cfg_phy_len; len = le16toh(stat->len); } /* discard Rx frames with bad CRC early */ tail = (uint32_t *)(head + len); if ((le32toh(*tail) & IWN_RX_NOERROR) != IWN_RX_NOERROR) { DPRINTF(sc, IWN_DEBUG_RECV, "%s: rx flags error %x\n", __func__, le32toh(*tail)); ifp->if_ierrors++; return; } if (len < sizeof (struct ieee80211_frame)) { DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n", __func__, len); ifp->if_ierrors++; return; } /* XXX don't need mbuf, just dma buffer */ mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); if (mnew == NULL) { DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n", __func__); ifp->if_ierrors++; return; } error = bus_dmamap_load(ring->data_dmat, data->map, mtod(mnew, caddr_t), MJUMPAGESIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT); if (error != 0 && error != EFBIG) { device_printf(sc->sc_dev, "%s: bus_dmamap_load failed, error %d\n", __func__, error); m_freem(mnew); ifp->if_ierrors++; return; } bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); /* finalize mbuf and swap in new one */ m = data->m; m->m_pkthdr.rcvif = ifp; m->m_data = head; m->m_pkthdr.len = m->m_len = len; data->m = mnew; /* update Rx descriptor */ ring->desc[ring->cur] = htole32(paddr >> 8); rssi = iwn_get_rssi(sc, stat); /* grab a reference to the source node */ wh = mtod(m, struct ieee80211_frame *); ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN && (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95; if (bpf_peers_present(ifp->if_bpf)) { struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; tap->wr_dbm_antsignal = rssi; tap->wr_dbm_antnoise = nf; tap->wr_rate = maprate(stat->rate); tap->wr_tsft = htole64(stat->tstamp); if (stat->flags & htole16(IWN_CONFIG_SHPREAMBLE)) tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; bpf_mtap2(ifp->if_bpf, tap, sc->sc_rxtap_len, m); } IWN_UNLOCK(sc); /* send the frame to the 802.11 layer */ if (ni != NULL) { (void) ieee80211_input(ni, m, rssi - nf, nf, 0); ieee80211_free_node(ni); } else (void) ieee80211_input_all(ic, m, rssi - nf, nf, 0); IWN_LOCK(sc); } void iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct iwn_calib_state *calib = &sc->calib; struct iwn_stats *stats = (struct iwn_stats *)(desc + 1); /* beacon stats are meaningful only when associated and not scanning */ if (vap->iv_state != IEEE80211_S_RUN || (ic->ic_flags & IEEE80211_F_SCAN)) return; DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: cmd %d\n", __func__, desc->type); iwn_calib_reset(sc); /* test if temperature has changed */ if (stats->general.temp != sc->rawtemp) { int temp; sc->rawtemp = stats->general.temp; temp = iwn_get_temperature(sc); DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n", __func__, temp); /* update Tx power if need be */ iwn_power_calibration(sc, temp); } if (desc->type != IWN_BEACON_STATISTICS) return; /* reply to a statistics request */ sc->noise = iwn_get_noise(&stats->rx.general); DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise); /* test that RSSI and noise are present in stats report */ if (stats->rx.general.flags != htole32(1)) { DPRINTF(sc, IWN_DEBUG_ANY, "%s\n", "received statistics without RSSI"); return; } if (calib->state == IWN_CALIB_STATE_ASSOC) iwn_compute_differential_gain(sc, &stats->rx.general); else if (calib->state == IWN_CALIB_STATE_RUN) iwn_tune_sensitivity(sc, &stats->rx); } void iwn_tx_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc) { struct ifnet *ifp = sc->sc_ifp; struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf]; struct iwn_tx_data *data = &ring->data[desc->idx]; struct iwn_tx_stat *stat = (struct iwn_tx_stat *)(desc + 1); struct iwn_node *wn = IWN_NODE(data->ni); struct mbuf *m; struct ieee80211_node *ni; uint32_t status; KASSERT(data->ni != NULL, ("no node")); DPRINTF(sc, IWN_DEBUG_XMIT, "%s: " "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n", __func__, desc->qid, desc->idx, stat->ntries, stat->nkill, stat->rate, le16toh(stat->duration), le32toh(stat->status)); /* * Update rate control statistics for the node. */ status = le32toh(stat->status) & 0xff; if (status & 0x80) { DPRINTF(sc, IWN_DEBUG_ANY, "%s: status 0x%x\n", __func__, le32toh(stat->status)); ifp->if_oerrors++; ieee80211_amrr_tx_complete(&wn->amn, IEEE80211_AMRR_FAILURE, stat->ntries); } else { ieee80211_amrr_tx_complete(&wn->amn, IEEE80211_AMRR_SUCCESS, stat->ntries); } bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m = data->m, data->m = NULL; ni = data->ni, data->ni = NULL; if (m->m_flags & M_TXCB) { /* * Channels marked for "radar" require traffic to be received * to unlock before we can transmit. Until traffic is seen * any attempt to transmit is returned immediately with status * set to IWN_TX_FAIL_TX_LOCKED. Unfortunately this can easily * happen on first authenticate after scanning. To workaround * this we ignore a failure of this sort in AUTH state so the * 802.11 layer will fall back to using a timeout to wait for * the AUTH reply. This allows the firmware time to see * traffic so a subsequent retry of AUTH succeeds. It's * unclear why the firmware does not maintain state for * channels recently visited as this would allow immediate * use of the channel after a scan (where we see traffic). */ if (status == IWN_TX_FAIL_TX_LOCKED && ni->ni_vap->iv_state == IEEE80211_S_AUTH) ieee80211_process_callback(ni, m, 0); else ieee80211_process_callback(ni, m, (status & IWN_TX_FAIL) != 0); } m_freem(m); ieee80211_free_node(ni); ring->queued--; sc->sc_tx_timer = 0; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; iwn_start_locked(ifp); } void iwn_cmd_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc) { struct iwn_tx_ring *ring = &sc->txq[4]; struct iwn_tx_data *data; if ((desc->qid & 0xf) != 4) return; /* not a command ack */ data = &ring->data[desc->idx]; /* if the command was mapped in a mbuf, free it */ if (data->m != NULL) { bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); data->m = NULL; } wakeup(&ring->cmd[desc->idx]); } static void iwn_bmiss(void *arg, int npending) { struct iwn_softc *sc = arg; struct ieee80211com *ic = sc->sc_ifp->if_l2com; ieee80211_beacon_miss(ic); } void iwn_notif_intr(struct iwn_softc *sc) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint16_t hw; hw = le16toh(sc->shared->closed_count) & 0xfff; while (sc->rxq.cur != hw) { struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur]; struct iwn_rx_desc *desc = (void *)data->m->m_ext.ext_buf; DPRINTF(sc, IWN_DEBUG_RECV, "%s: qid %x idx %d flags %x type %d(%s) len %d\n", __func__, desc->qid, desc->idx, desc->flags, desc->type, iwn_intr_str(desc->type), le16toh(desc->len)); if (!(desc->qid & 0x80)) /* reply to a command */ iwn_cmd_intr(sc, desc); switch (desc->type) { case IWN_RX_DONE: case IWN_AMPDU_RX_DONE: iwn_rx_intr(sc, desc, data); break; case IWN_AMPDU_RX_START: iwn_ampdu_rx_start(sc, desc); break; case IWN_TX_DONE: /* a 802.11 frame has been transmitted */ iwn_tx_intr(sc, desc); break; case IWN_RX_STATISTICS: case IWN_BEACON_STATISTICS: iwn_rx_statistics(sc, desc); break; case IWN_BEACON_MISSED: { struct iwn_beacon_missed *miss = (struct iwn_beacon_missed *)(desc + 1); int misses = le32toh(miss->consecutive); /* XXX not sure why we're notified w/ zero */ if (misses == 0) break; DPRINTF(sc, IWN_DEBUG_STATE, "%s: beacons missed %d/%d\n", __func__, misses, le32toh(miss->total)); /* * If more than 5 consecutive beacons are missed, * reinitialize the sensitivity state machine. */ if (vap->iv_state == IEEE80211_S_RUN && misses > 5) (void) iwn_init_sensitivity(sc); if (misses >= vap->iv_bmissthreshold) taskqueue_enqueue(taskqueue_swi, &sc->sc_bmiss_task); break; } case IWN_UC_READY: { struct iwn_ucode_info *uc = (struct iwn_ucode_info *)(desc + 1); /* the microcontroller is ready */ DPRINTF(sc, IWN_DEBUG_RESET, "microcode alive notification version=%d.%d " "subtype=%x alive=%x\n", uc->major, uc->minor, uc->subtype, le32toh(uc->valid)); if (le32toh(uc->valid) != 1) { device_printf(sc->sc_dev, "microcontroller initialization failed"); break; } if (uc->subtype == IWN_UCODE_INIT) { /* save microcontroller's report */ memcpy(&sc->ucode_info, uc, sizeof (*uc)); } break; } case IWN_STATE_CHANGED: { uint32_t *status = (uint32_t *)(desc + 1); /* * State change allows hardware switch change to be * noted. However, we handle this in iwn_intr as we * get both the enable/disble intr. */ DPRINTF(sc, IWN_DEBUG_INTR, "state changed to %x\n", le32toh(*status)); break; } case IWN_START_SCAN: { struct iwn_start_scan *scan = (struct iwn_start_scan *)(desc + 1); DPRINTF(sc, IWN_DEBUG_ANY, "%s: scanning channel %d status %x\n", __func__, scan->chan, le32toh(scan->status)); break; } case IWN_STOP_SCAN: { struct iwn_stop_scan *scan = (struct iwn_stop_scan *)(desc + 1); DPRINTF(sc, IWN_DEBUG_STATE, "scan finished nchan=%d status=%d chan=%d\n", scan->nchan, scan->status, scan->chan); iwn_queue_cmd(sc, IWN_SCAN_NEXT, 0, IWN_QUEUE_NORMAL); break; } } sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT; } /* tell the firmware what we have processed */ hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1; IWN_WRITE(sc, IWN_RX_WIDX, hw & ~7); } void iwn_intr(void *arg) { struct iwn_softc *sc = arg; uint32_t r1, r2; IWN_LOCK(sc); /* disable interrupts */ IWN_WRITE(sc, IWN_MASK, 0); r1 = IWN_READ(sc, IWN_INTR); r2 = IWN_READ(sc, IWN_INTR_STATUS); if (r1 == 0 && r2 == 0) { IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK); goto done; /* not for us */ } if (r1 == 0xffffffff) goto done; /* hardware gone */ /* ack interrupts */ IWN_WRITE(sc, IWN_INTR, r1); IWN_WRITE(sc, IWN_INTR_STATUS, r2); DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=%x reg2=%x\n", r1, r2); if (r1 & IWN_RF_TOGGLED) { uint32_t tmp = IWN_READ(sc, IWN_GPIO_CTL); device_printf(sc->sc_dev, "RF switch: radio %s\n", (tmp & IWN_GPIO_RF_ENABLED) ? "enabled" : "disabled"); if (tmp & IWN_GPIO_RF_ENABLED) iwn_queue_cmd(sc, IWN_RADIO_ENABLE, 0, IWN_QUEUE_CLEAR); else iwn_queue_cmd(sc, IWN_RADIO_DISABLE, 0, IWN_QUEUE_CLEAR); } if (r1 & IWN_CT_REACHED) device_printf(sc->sc_dev, "critical temperature reached!\n"); if (r1 & (IWN_SW_ERROR | IWN_HW_ERROR)) { device_printf(sc->sc_dev, "error, INTR=%b STATUS=0x%x\n", r1, IWN_INTR_BITS, r2); iwn_queue_cmd(sc, IWN_REINIT, 0, IWN_QUEUE_CLEAR); goto done; } if ((r1 & (IWN_RX_INTR | IWN_SW_RX_INTR)) || (r2 & IWN_RX_STATUS_INTR)) iwn_notif_intr(sc); if (r1 & IWN_ALIVE_INTR) wakeup(sc); /* re-enable interrupts */ IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK); done: IWN_UNLOCK(sc); } uint8_t iwn_plcp_signal(int rate) { switch (rate) { /* CCK rates (returned values are device-dependent) */ case 2: return 10; case 4: return 20; case 11: return 55; case 22: return 110; /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ /* R1-R4, (u)ral is R4-R1 */ case 12: return 0xd; case 18: return 0xf; case 24: return 0x5; case 36: return 0x7; case 48: return 0x9; case 72: return 0xb; case 96: return 0x1; case 108: return 0x3; case 120: return 0x3; } /* unknown rate (should not get there) */ return 0; } /* determine if a given rate is CCK or OFDM */ #define IWN_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) int iwn_tx_data(struct iwn_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, struct iwn_tx_ring *ring) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ifnet *ifp = sc->sc_ifp; const struct ieee80211_txparam *tp; struct iwn_tx_desc *desc; struct iwn_tx_data *data; struct iwn_tx_cmd *cmd; struct iwn_cmd_data *tx; struct ieee80211_frame *wh; struct ieee80211_key *k; bus_addr_t paddr; uint32_t flags; uint16_t timeout; uint8_t type; u_int hdrlen; struct mbuf *mnew; int rate, error, pad, nsegs, i, ismcast, id; bus_dma_segment_t segs[IWN_MAX_SCATTER]; IWN_LOCK_ASSERT(sc); wh = mtod(m0, struct ieee80211_frame *); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); hdrlen = ieee80211_anyhdrsize(wh); /* pick a tx rate */ /* XXX ni_chan */ tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; if (type == IEEE80211_FC0_TYPE_MGT) rate = tp->mgmtrate; else if (ismcast) rate = tp->mcastrate; else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) rate = tp->ucastrate; else { (void) ieee80211_amrr_choose(ni, &IWN_NODE(ni)->amn); rate = ni->ni_txrate; } if (wh->i_fc[1] & IEEE80211_FC1_WEP) { k = ieee80211_crypto_encap(ni, m0); if (k == NULL) { m_freem(m0); return ENOBUFS; } /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } else k = NULL; if (bpf_peers_present(ifp->if_bpf)) { struct iwn_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; if (k != NULL) tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m0); } flags = IWN_TX_AUTO_SEQ; /* XXX honor ACM */ if (!ismcast) flags |= IWN_TX_NEED_ACK; if (ismcast || type != IEEE80211_FC0_TYPE_DATA) id = IWN_ID_BROADCAST; else id = IWN_ID_BSS; /* check if RTS/CTS or CTS-to-self protection must be used */ if (!ismcast) { /* multicast frames are not sent at OFDM rates in 802.11b/g */ if (m0->m_pkthdr.len+IEEE80211_CRC_LEN > vap->iv_rtsthreshold) { flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP; } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && IWN_RATE_IS_OFDM(rate)) { if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP; else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP; } } if (type == IEEE80211_FC0_TYPE_MGT) { uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; /* tell h/w to set timestamp in probe responses */ if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) flags |= IWN_TX_INSERT_TSTAMP; if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) timeout = htole16(3); else timeout = htole16(2); } else timeout = htole16(0); if (hdrlen & 3) { /* first segment's length must be a multiple of 4 */ flags |= IWN_TX_NEED_PADDING; pad = 4 - (hdrlen & 3); } else pad = 0; desc = &ring->desc[ring->cur]; data = &ring->data[ring->cur]; cmd = &ring->cmd[ring->cur]; cmd->code = IWN_CMD_TX_DATA; cmd->flags = 0; cmd->qid = ring->qid; cmd->idx = ring->cur; tx = (struct iwn_cmd_data *)cmd->data; /* NB: no need to bzero tx, all fields are reinitialized here */ tx->id = id; tx->flags = htole32(flags); tx->len = htole16(m0->m_pkthdr.len); tx->rate = iwn_plcp_signal(rate); tx->rts_ntries = 60; /* XXX? */ tx->data_ntries = 15; /* XXX? */ tx->lifetime = htole32(IWN_LIFETIME_INFINITE); tx->timeout = timeout; if (k != NULL) { /* XXX fill in */; } else tx->security = 0; /* XXX alternate between Ant A and Ant B ? */ tx->rflags = IWN_RFLAG_ANT_B; if (tx->id == IWN_ID_BROADCAST) { tx->ridx = IWN_MAX_TX_RETRIES - 1; if (!IWN_RATE_IS_OFDM(rate)) tx->rflags |= IWN_RFLAG_CCK; } else { tx->ridx = 0; /* tell adapter to ignore rflags */ tx->flags |= htole32(IWN_TX_USE_NODE_RATE); } /* copy and trim IEEE802.11 header */ memcpy((uint8_t *)(tx + 1), wh, hdrlen); m_adj(m0, hdrlen); error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { if (error == EFBIG) { /* too many fragments, linearize */ mnew = m_collapse(m0, M_DONTWAIT, IWN_MAX_SCATTER); if (mnew == NULL) { IWN_UNLOCK(sc); device_printf(sc->sc_dev, "%s: could not defrag mbuf\n", __func__); m_freem(m0); return ENOBUFS; } m0 = mnew; error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs, &nsegs, BUS_DMA_NOWAIT); } if (error != 0) { IWN_UNLOCK(sc); device_printf(sc->sc_dev, "%s: bus_dmamap_load_mbuf_sg failed, error %d\n", __func__, error); m_freem(m0); return error; } } data->m = m0; data->ni = ni; DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n", __func__, ring->qid, ring->cur, m0->m_pkthdr.len, nsegs); paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd); tx->loaddr = htole32(paddr + 4 + offsetof(struct iwn_cmd_data, ntries)); tx->hiaddr = 0; /* limit to 32-bit physical addresses */ /* first scatter/gather segment is used by the tx data command */ IWN_SET_DESC_NSEGS(desc, 1 + nsegs); IWN_SET_DESC_SEG(desc, 0, paddr, 4 + sizeof (*tx) + hdrlen + pad); for (i = 1; i <= nsegs; i++) { IWN_SET_DESC_SEG(desc, i, segs[i - 1].ds_addr, segs[i - 1].ds_len); } sc->shared->len[ring->qid][ring->cur] = htole16(hdrlen + m0->m_pkthdr.len + 8); if (ring->cur < IWN_TX_WINDOW) sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] = htole16(hdrlen + m0->m_pkthdr.len + 8); ring->queued++; /* kick Tx ring */ ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur); ifp->if_opackets++; sc->sc_tx_timer = 5; return 0; } void iwn_start(struct ifnet *ifp) { struct iwn_softc *sc = ifp->if_softc; IWN_LOCK(sc); iwn_start_locked(ifp); IWN_UNLOCK(sc); } void iwn_start_locked(struct ifnet *ifp) { struct iwn_softc *sc = ifp->if_softc; struct ieee80211_node *ni; struct iwn_tx_ring *txq; struct mbuf *m; int pri; IWN_LOCK_ASSERT(sc); for (;;) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m); if (m == NULL) break; ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; pri = M_WME_GETAC(m); txq = &sc->txq[pri]; if (txq->queued >= IWN_TX_RING_COUNT - 8) { /* XXX not right */ /* ring is nearly full, stop flow */ ifp->if_drv_flags |= IFF_DRV_OACTIVE; } if (iwn_tx_data(sc, m, ni, txq) != 0) { ifp->if_oerrors++; ieee80211_free_node(ni); break; } } } static int iwn_tx_handoff(struct iwn_softc *sc, struct iwn_tx_ring *ring, struct iwn_tx_cmd *cmd, struct iwn_cmd_data *tx, struct ieee80211_node *ni, struct mbuf *m0, u_int hdrlen, int pad) { struct ifnet *ifp = sc->sc_ifp; struct iwn_tx_desc *desc; struct iwn_tx_data *data; bus_addr_t paddr; struct mbuf *mnew; int error, nsegs, i; bus_dma_segment_t segs[IWN_MAX_SCATTER]; /* copy and trim IEEE802.11 header */ memcpy((uint8_t *)(tx + 1), mtod(m0, uint8_t *), hdrlen); m_adj(m0, hdrlen); desc = &ring->desc[ring->cur]; data = &ring->data[ring->cur]; error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { if (error == EFBIG) { /* too many fragments, linearize */ mnew = m_collapse(m0, M_DONTWAIT, IWN_MAX_SCATTER); if (mnew == NULL) { IWN_UNLOCK(sc); device_printf(sc->sc_dev, "%s: could not defrag mbuf\n", __func__); m_freem(m0); return ENOBUFS; } m0 = mnew; error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs, &nsegs, BUS_DMA_NOWAIT); } if (error != 0) { IWN_UNLOCK(sc); device_printf(sc->sc_dev, "%s: bus_dmamap_load_mbuf_sg failed, error %d\n", __func__, error); m_freem(m0); return error; } } data->m = m0; data->ni = ni; DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n", __func__, ring->qid, ring->cur, m0->m_pkthdr.len, nsegs); paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd); tx->loaddr = htole32(paddr + 4 + offsetof(struct iwn_cmd_data, ntries)); tx->hiaddr = 0; /* limit to 32-bit physical addresses */ /* first scatter/gather segment is used by the tx data command */ IWN_SET_DESC_NSEGS(desc, 1 + nsegs); IWN_SET_DESC_SEG(desc, 0, paddr, 4 + sizeof (*tx) + hdrlen + pad); for (i = 1; i <= nsegs; i++) { IWN_SET_DESC_SEG(desc, i, segs[i - 1].ds_addr, segs[i - 1].ds_len); } sc->shared->len[ring->qid][ring->cur] = htole16(hdrlen + m0->m_pkthdr.len + 8); if (ring->cur < IWN_TX_WINDOW) sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] = htole16(hdrlen + m0->m_pkthdr.len + 8); ring->queued++; /* kick Tx ring */ ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur); ifp->if_opackets++; sc->sc_tx_timer = 5; return 0; } static int iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, struct iwn_tx_ring *ring, const struct ieee80211_bpf_params *params) { struct ifnet *ifp = sc->sc_ifp; struct iwn_tx_cmd *cmd; struct iwn_cmd_data *tx; struct ieee80211_frame *wh; uint32_t flags; uint8_t type, subtype; u_int hdrlen; int rate, pad; IWN_LOCK_ASSERT(sc); wh = mtod(m0, struct ieee80211_frame *); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; hdrlen = ieee80211_anyhdrsize(wh); flags = IWN_TX_AUTO_SEQ; if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) flags |= IWN_TX_NEED_ACK; if (params->ibp_flags & IEEE80211_BPF_RTS) flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP; if (params->ibp_flags & IEEE80211_BPF_CTS) flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP; if (type == IEEE80211_FC0_TYPE_MGT && subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) { /* tell h/w to set timestamp in probe responses */ flags |= IWN_TX_INSERT_TSTAMP; } if (hdrlen & 3) { /* first segment's length must be a multiple of 4 */ flags |= IWN_TX_NEED_PADDING; pad = 4 - (hdrlen & 3); } else pad = 0; /* pick a tx rate */ rate = params->ibp_rate0; if (bpf_peers_present(ifp->if_bpf)) { struct iwn_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m0); } cmd = &ring->cmd[ring->cur]; cmd->code = IWN_CMD_TX_DATA; cmd->flags = 0; cmd->qid = ring->qid; cmd->idx = ring->cur; tx = (struct iwn_cmd_data *)cmd->data; /* NB: no need to bzero tx, all fields are reinitialized here */ tx->id = IWN_ID_BROADCAST; tx->flags = htole32(flags); tx->len = htole16(m0->m_pkthdr.len); tx->rate = iwn_plcp_signal(rate); tx->rts_ntries = params->ibp_try1; /* XXX? */ tx->data_ntries = params->ibp_try0; tx->lifetime = htole32(IWN_LIFETIME_INFINITE); /* XXX use try count? */ if (type == IEEE80211_FC0_TYPE_MGT) { if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) tx->timeout = htole16(3); else tx->timeout = htole16(2); } else tx->timeout = htole16(0); tx->security = 0; /* XXX alternate between Ant A and Ant B ? */ tx->rflags = IWN_RFLAG_ANT_B; /* XXX params->ibp_pri >> 2 */ tx->ridx = IWN_MAX_TX_RETRIES - 1; if (!IWN_RATE_IS_OFDM(rate)) tx->rflags |= IWN_RFLAG_CCK; return iwn_tx_handoff(sc, ring, cmd, tx, ni, m0, hdrlen, pad); } static int iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct ifnet *ifp = ic->ic_ifp; struct iwn_softc *sc = ifp->if_softc; struct iwn_tx_ring *txq; int error; if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { ieee80211_free_node(ni); m_freem(m); return ENETDOWN; } IWN_LOCK(sc); if (params == NULL) txq = &sc->txq[M_WME_GETAC(m)]; else txq = &sc->txq[params->ibp_pri & 3]; if (txq->queued >= IWN_TX_RING_COUNT - 8) { /* XXX not right */ /* ring is nearly full, stop flow */ ifp->if_drv_flags |= IFF_DRV_OACTIVE; } if (params == NULL) { /* * Legacy path; interpret frame contents to decide * precisely how to send the frame. */ error = iwn_tx_data(sc, m, ni, txq); } else { /* * Caller supplied explicit parameters to use in * sending the frame. */ error = iwn_tx_data_raw(sc, m, ni, txq, params); } if (error != 0) { /* NB: m is reclaimed on tx failure */ ieee80211_free_node(ni); ifp->if_oerrors++; } IWN_UNLOCK(sc); return error; } static void iwn_watchdog(struct iwn_softc *sc) { if (sc->sc_tx_timer > 0 && --sc->sc_tx_timer == 0) { struct ifnet *ifp = sc->sc_ifp; if_printf(ifp, "device timeout\n"); iwn_queue_cmd(sc, IWN_REINIT, 0, IWN_QUEUE_CLEAR); } } int iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct iwn_softc *sc = ifp->if_softc; struct ieee80211com *ic = ifp->if_l2com; struct ifreq *ifr = (struct ifreq *) data; int error = 0, startall = 0; switch (cmd) { case SIOCSIFFLAGS: IWN_LOCK(sc); if (ifp->if_flags & IFF_UP) { if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { iwn_init_locked(sc); startall = 1; } } else { if (ifp->if_drv_flags & IFF_DRV_RUNNING) iwn_stop_locked(sc); } IWN_UNLOCK(sc); if (startall) ieee80211_start_all(ic); break; case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); break; case SIOCGIFADDR: error = ether_ioctl(ifp, cmd, data); break; default: error = EINVAL; break; } return error; } void iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) { char domain[4]; uint16_t val; int i, error; if ((error = iwn_eeprom_lock(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not lock EEPROM, error %d\n", __func__, error); return; } /* read and print regulatory domain */ iwn_read_prom_data(sc, IWN_EEPROM_DOMAIN, domain, 4); device_printf(sc->sc_dev,"Reg Domain: %.4s", domain); /* read and print MAC address */ iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6); printf(", address %6D\n", macaddr, ":"); /* read the list of authorized channels */ iwn_read_eeprom_channels(sc); /* read maximum allowed Tx power for 2GHz and 5GHz bands */ iwn_read_prom_data(sc, IWN_EEPROM_MAXPOW, &val, 2); sc->maxpwr2GHz = val & 0xff; sc->maxpwr5GHz = val >> 8; /* check that EEPROM values are correct */ if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50) sc->maxpwr5GHz = 38; if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50) sc->maxpwr2GHz = 38; DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz); /* read voltage at which samples were taken */ iwn_read_prom_data(sc, IWN_EEPROM_VOLTAGE, &val, 2); sc->eeprom_voltage = (int16_t)le16toh(val); DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n", sc->eeprom_voltage); /* read power groups */ iwn_read_prom_data(sc, IWN_EEPROM_BANDS, sc->bands, sizeof sc->bands); #ifdef IWN_DEBUG if (sc->sc_debug & IWN_DEBUG_ANY) { for (i = 0; i < IWN_NBANDS; i++) iwn_print_power_group(sc, i); } #endif iwn_eeprom_unlock(sc); } struct iwn_chan_band { uint32_t addr; /* offset in EEPROM */ uint32_t flags; /* net80211 flags */ uint8_t nchan; #define IWN_MAX_CHAN_PER_BAND 14 uint8_t chan[IWN_MAX_CHAN_PER_BAND]; }; static void iwn_read_eeprom_band(struct iwn_softc *sc, const struct iwn_chan_band *band) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND]; struct ieee80211_channel *c; int i, chan, flags; iwn_read_prom_data(sc, band->addr, channels, band->nchan * sizeof (struct iwn_eeprom_chan)); for (i = 0; i < band->nchan; i++) { if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) { DPRINTF(sc, IWN_DEBUG_RESET, "skip chan %d flags 0x%x maxpwr %d\n", band->chan[i], channels[i].flags, channels[i].maxpwr); continue; } chan = band->chan[i]; /* translate EEPROM flags to net80211 */ flags = 0; if ((channels[i].flags & IWN_EEPROM_CHAN_ACTIVE) == 0) flags |= IEEE80211_CHAN_PASSIVE; if ((channels[i].flags & IWN_EEPROM_CHAN_IBSS) == 0) flags |= IEEE80211_CHAN_NOADHOC; if (channels[i].flags & IWN_EEPROM_CHAN_RADAR) { flags |= IEEE80211_CHAN_DFS; /* XXX apparently IBSS may still be marked */ flags |= IEEE80211_CHAN_NOADHOC; } DPRINTF(sc, IWN_DEBUG_RESET, "add chan %d flags 0x%x maxpwr %d\n", chan, channels[i].flags, channels[i].maxpwr); c = &ic->ic_channels[ic->ic_nchans++]; c->ic_ieee = chan; c->ic_freq = ieee80211_ieee2mhz(chan, band->flags); c->ic_maxregpower = channels[i].maxpwr; c->ic_maxpower = 2*c->ic_maxregpower; if (band->flags & IEEE80211_CHAN_2GHZ) { /* G =>'s B is supported */ c->ic_flags = IEEE80211_CHAN_B | flags; c = &ic->ic_channels[ic->ic_nchans++]; c[0] = c[-1]; c->ic_flags = IEEE80211_CHAN_G | flags; } else { /* 5GHz band */ c->ic_flags = IEEE80211_CHAN_A | flags; } /* XXX no constraints on using HT20 */ /* add HT20, HT40 added separately */ c = &ic->ic_channels[ic->ic_nchans++]; c[0] = c[-1]; c->ic_flags |= IEEE80211_CHAN_HT20; /* XXX NARROW =>'s 1/2 and 1/4 width? */ } } static void iwn_read_eeprom_ht40(struct iwn_softc *sc, const struct iwn_chan_band *band) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND]; struct ieee80211_channel *c, *cent, *extc; int i; iwn_read_prom_data(sc, band->addr, channels, band->nchan * sizeof (struct iwn_eeprom_chan)); for (i = 0; i < band->nchan; i++) { if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID) || !(channels[i].flags & IWN_EEPROM_CHAN_WIDE)) { DPRINTF(sc, IWN_DEBUG_RESET, "skip chan %d flags 0x%x maxpwr %d\n", band->chan[i], channels[i].flags, channels[i].maxpwr); continue; } /* * Each entry defines an HT40 channel pair; find the * center channel, then the extension channel above. */ cent = ieee80211_find_channel_byieee(ic, band->chan[i], band->flags & ~IEEE80211_CHAN_HT); if (cent == NULL) { /* XXX shouldn't happen */ device_printf(sc->sc_dev, "%s: no entry for channel %d\n", __func__, band->chan[i]); continue; } extc = ieee80211_find_channel(ic, cent->ic_freq+20, band->flags & ~IEEE80211_CHAN_HT); if (extc == NULL) { DPRINTF(sc, IWN_DEBUG_RESET, "skip chan %d, extension channel not found\n", band->chan[i]); continue; } DPRINTF(sc, IWN_DEBUG_RESET, "add ht40 chan %d flags 0x%x maxpwr %d\n", band->chan[i], channels[i].flags, channels[i].maxpwr); c = &ic->ic_channels[ic->ic_nchans++]; c[0] = cent[0]; c->ic_extieee = extc->ic_ieee; c->ic_flags &= ~IEEE80211_CHAN_HT; c->ic_flags |= IEEE80211_CHAN_HT40U; c = &ic->ic_channels[ic->ic_nchans++]; c[0] = extc[0]; c->ic_extieee = cent->ic_ieee; c->ic_flags &= ~IEEE80211_CHAN_HT; c->ic_flags |= IEEE80211_CHAN_HT40D; } } static void iwn_read_eeprom_channels(struct iwn_softc *sc) { #define N(a) (sizeof(a)/sizeof(a[0])) static const struct iwn_chan_band iwn_bands[] = { { IWN_EEPROM_BAND1, IEEE80211_CHAN_G, 14, { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 } }, { IWN_EEPROM_BAND2, IEEE80211_CHAN_A, 13, { 183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16 } }, { IWN_EEPROM_BAND3, IEEE80211_CHAN_A, 12, { 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64 } }, { IWN_EEPROM_BAND4, IEEE80211_CHAN_A, 11, { 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140 } }, { IWN_EEPROM_BAND5, IEEE80211_CHAN_A, 6, { 145, 149, 153, 157, 161, 165 } }, { IWN_EEPROM_BAND6, IEEE80211_CHAN_G | IEEE80211_CHAN_HT40, 7, { 1, 2, 3, 4, 5, 6, 7 } }, { IWN_EEPROM_BAND7, IEEE80211_CHAN_A | IEEE80211_CHAN_HT40, 11, { 36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157 } } }; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; int i; /* read the list of authorized channels */ for (i = 0; i < N(iwn_bands)-2; i++) iwn_read_eeprom_band(sc, &iwn_bands[i]); for (; i < N(iwn_bands); i++) iwn_read_eeprom_ht40(sc, &iwn_bands[i]); ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); #undef N } #ifdef IWN_DEBUG void iwn_print_power_group(struct iwn_softc *sc, int i) { struct iwn_eeprom_band *band = &sc->bands[i]; struct iwn_eeprom_chan_samples *chans = band->chans; int j, c; printf("===band %d===\n", i); printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi); printf("chan1 num=%d\n", chans[0].num); for (c = 0; c < IWN_NTXCHAINS; c++) { for (j = 0; j < IWN_NSAMPLES; j++) { printf("chain %d, sample %d: temp=%d gain=%d " "power=%d pa_det=%d\n", c, j, chans[0].samples[c][j].temp, chans[0].samples[c][j].gain, chans[0].samples[c][j].power, chans[0].samples[c][j].pa_det); } } printf("chan2 num=%d\n", chans[1].num); for (c = 0; c < IWN_NTXCHAINS; c++) { for (j = 0; j < IWN_NSAMPLES; j++) { printf("chain %d, sample %d: temp=%d gain=%d " "power=%d pa_det=%d\n", c, j, chans[1].samples[c][j].temp, chans[1].samples[c][j].gain, chans[1].samples[c][j].power, chans[1].samples[c][j].pa_det); } } } #endif /* * Send a command to the firmware. */ int iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async) { struct iwn_tx_ring *ring = &sc->txq[4]; struct iwn_tx_desc *desc; struct iwn_tx_cmd *cmd; bus_addr_t paddr; IWN_LOCK_ASSERT(sc); KASSERT(size <= sizeof cmd->data, ("Command too big")); desc = &ring->desc[ring->cur]; cmd = &ring->cmd[ring->cur]; cmd->code = code; cmd->flags = 0; cmd->qid = ring->qid; cmd->idx = ring->cur; memcpy(cmd->data, buf, size); paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd); IWN_SET_DESC_NSEGS(desc, 1); IWN_SET_DESC_SEG(desc, 0, paddr, 4 + size); sc->shared->len[ring->qid][ring->cur] = htole16(8); if (ring->cur < IWN_TX_WINDOW) { sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] = htole16(8); } DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n", __func__, iwn_intr_str(cmd->code), cmd->code, cmd->flags, cmd->qid, cmd->idx); /* kick cmd ring */ ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur); return async ? 0 : msleep(cmd, &sc->sc_mtx, PCATCH, "iwncmd", hz); } static const uint8_t iwn_ridx_to_plcp[] = { 10, 20, 55, 110, /* CCK */ 0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 0x3 /* OFDM R1-R4 */ }; static const uint8_t iwn_siso_mcs_to_plcp[] = { 0, 0, 0, 0, /* CCK */ 0, 0, 1, 2, 3, 4, 5, 6, 7 /* HT */ }; static const uint8_t iwn_mimo_mcs_to_plcp[] = { 0, 0, 0, 0, /* CCK */ 8, 8, 9, 10, 11, 12, 13, 14, 15 /* HT */ }; static const uint8_t iwn_prev_ridx[] = { /* NB: allow fallback from CCK11 to OFDM9 and from OFDM6 to CCK5 */ 0, 0, 1, 5, /* CCK */ 2, 4, 3, 6, 7, 8, 9, 10, 10 /* OFDM */ }; /* * Configure hardware link parameters for the specified * node operating on the specified channel. */ int iwn_set_link_quality(struct iwn_softc *sc, uint8_t id, const struct ieee80211_channel *c, int async) { struct iwn_cmd_link_quality lq; int i, ridx; memset(&lq, 0, sizeof(lq)); lq.id = id; if (IEEE80211_IS_CHAN_HT(c)) { lq.mimo = 1; lq.ssmask = 0x1; } else lq.ssmask = 0x2; if (id == IWN_ID_BSS) ridx = IWN_RATE_OFDM54; else if (IEEE80211_IS_CHAN_A(c)) ridx = IWN_RATE_OFDM6; else ridx = IWN_RATE_CCK1; for (i = 0; i < IWN_MAX_TX_RETRIES; i++) { /* XXX toggle antenna for retry patterns */ if (IEEE80211_IS_CHAN_HT40(c)) { lq.table[i].rate = iwn_mimo_mcs_to_plcp[ridx] | IWN_RATE_MCS; lq.table[i].rflags = IWN_RFLAG_HT | IWN_RFLAG_HT40 | IWN_RFLAG_ANT_A; /* XXX shortGI */ } else if (IEEE80211_IS_CHAN_HT(c)) { lq.table[i].rate = iwn_siso_mcs_to_plcp[ridx] | IWN_RATE_MCS; lq.table[i].rflags = IWN_RFLAG_HT | IWN_RFLAG_ANT_A; /* XXX shortGI */ } else { lq.table[i].rate = iwn_ridx_to_plcp[ridx]; if (ridx <= IWN_RATE_CCK11) lq.table[i].rflags = IWN_RFLAG_CCK; lq.table[i].rflags |= IWN_RFLAG_ANT_B; } ridx = iwn_prev_ridx[ridx]; } lq.dsmask = 0x3; lq.ampdu_disable = 3; lq.ampdu_limit = htole16(4000); #ifdef IWN_DEBUG if (sc->sc_debug & IWN_DEBUG_STATE) { printf("%s: set link quality for node %d, mimo %d ssmask %d\n", __func__, id, lq.mimo, lq.ssmask); printf("%s:", __func__); for (i = 0; i < IWN_MAX_TX_RETRIES; i++) printf(" %d:%x", lq.table[i].rate, lq.table[i].rflags); printf("\n"); } #endif return iwn_cmd(sc, IWN_CMD_TX_LINK_QUALITY, &lq, sizeof(lq), async); } #if 0 /* * Install a pairwise key into the hardware. */ int iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni, const struct ieee80211_key *k) { struct iwn_softc *sc = ic->ic_softc; struct iwn_node_info node; if (k->k_flags & IEEE80211_KEY_GROUP) return 0; memset(&node, 0, sizeof node); switch (k->k_cipher) { case IEEE80211_CIPHER_CCMP: node.security = htole16(IWN_CIPHER_CCMP); memcpy(node.key, k->k_key, k->k_len); break; default: return 0; } node.id = IWN_ID_BSS; IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); node.control = IWN_NODE_UPDATE; node.flags = IWN_FLAG_SET_KEY; return iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 1); } #endif int iwn_wme_update(struct ieee80211com *ic) { #define IWN_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */ #define IWN_TXOP_TO_US(v) (v<<5) struct iwn_softc *sc = ic->ic_ifp->if_softc; struct iwn_edca_params cmd; int i; memset(&cmd, 0, sizeof cmd); cmd.flags = htole32(IWN_EDCA_UPDATE); for (i = 0; i < WME_NUM_AC; i++) { const struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[i]; cmd.ac[i].aifsn = wmep->wmep_aifsn; cmd.ac[i].cwmin = htole16(IWN_EXP2(wmep->wmep_logcwmin)); cmd.ac[i].cwmax = htole16(IWN_EXP2(wmep->wmep_logcwmax)); cmd.ac[i].txoplimit = htole16(IWN_TXOP_TO_US(wmep->wmep_txopLimit)); } IWN_LOCK(sc); (void) iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1 /*async*/); IWN_UNLOCK(sc); return 0; #undef IWN_TXOP_TO_US #undef IWN_EXP2 } void iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on) { struct iwn_cmd_led led; led.which = which; led.unit = htole32(100000); /* on/off in unit of 100ms */ led.off = off; led.on = on; (void) iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1); } /* * Set the critical temperature at which the firmware will automatically stop * the radio transmitter. */ int iwn_set_critical_temp(struct iwn_softc *sc) { struct iwn_ucode_info *uc = &sc->ucode_info; struct iwn_critical_temp crit; uint32_t r1, r2, r3, temp; r1 = le32toh(uc->temp[0].chan20MHz); r2 = le32toh(uc->temp[1].chan20MHz); r3 = le32toh(uc->temp[2].chan20MHz); /* inverse function of iwn_get_temperature() */ temp = r2 + (IWN_CTOK(110) * (r3 - r1)) / 259; IWN_WRITE(sc, IWN_UCODE_CLR, IWN_CTEMP_STOP_RF); memset(&crit, 0, sizeof crit); crit.tempR = htole32(temp); DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %u\n", temp); return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0); } void iwn_enable_tsf(struct iwn_softc *sc, struct ieee80211_node *ni) { struct iwn_cmd_tsf tsf; uint64_t val, mod; memset(&tsf, 0, sizeof tsf); memcpy(&tsf.tstamp, ni->ni_tstamp.data, sizeof (uint64_t)); tsf.bintval = htole16(ni->ni_intval); tsf.lintval = htole16(10); /* XXX all wrong */ /* compute remaining time until next beacon */ val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */ DPRINTF(sc, IWN_DEBUG_ANY, "%s: val = %ju %s\n", __func__, val, val == 0 ? "correcting" : ""); if (val == 0) val = 1; mod = le64toh(tsf.tstamp) % val; tsf.binitval = htole32((uint32_t)(val - mod)); DPRINTF(sc, IWN_DEBUG_RESET, "TSF bintval=%u tstamp=%ju, init=%u\n", ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)); if (iwn_cmd(sc, IWN_CMD_TSF, &tsf, sizeof tsf, 1) != 0) device_printf(sc->sc_dev, "%s: could not enable TSF\n", __func__); } void iwn_power_calibration(struct iwn_softc *sc, int temp) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; #if 0 KASSERT(ic->ic_state == IEEE80211_S_RUN, ("not running")); #endif DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n", __func__, sc->temp, temp); /* adjust Tx power if need be (delta >= 3°C) */ if (abs(temp - sc->temp) < 3) return; sc->temp = temp; DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: set Tx power for channel %d\n", __func__, ieee80211_chan2ieee(ic, ic->ic_bsschan)); if (iwn_set_txpower(sc, ic->ic_bsschan, 1) != 0) { /* just warn, too bad for the automatic calibration... */ device_printf(sc->sc_dev, "%s: could not adjust Tx power\n", __func__); } } /* * Set Tx power for a given channel (each rate has its own power settings). * This function takes into account the regulatory information from EEPROM, * the current temperature and the current voltage. */ int iwn_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch, int async) { /* fixed-point arithmetic division using a n-bit fractional part */ #define fdivround(a, b, n) \ ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) /* linear interpolation */ #define interpolate(x, x1, y1, x2, y2, n) \ ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 }; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct iwn_ucode_info *uc = &sc->ucode_info; struct iwn_cmd_txpower cmd; struct iwn_eeprom_chan_samples *chans; const uint8_t *rf_gain, *dsp_gain; int32_t vdiff, tdiff; int i, c, grp, maxpwr; u_int chan; /* get channel number */ chan = ieee80211_chan2ieee(ic, ch); memset(&cmd, 0, sizeof cmd); cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1; cmd.chan = chan; if (IEEE80211_IS_CHAN_5GHZ(ch)) { maxpwr = sc->maxpwr5GHz; rf_gain = iwn_rf_gain_5ghz; dsp_gain = iwn_dsp_gain_5ghz; } else { maxpwr = sc->maxpwr2GHz; rf_gain = iwn_rf_gain_2ghz; dsp_gain = iwn_dsp_gain_2ghz; } /* compute voltage compensation */ vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7; if (vdiff > 0) vdiff *= 2; if (abs(vdiff) > 2) vdiff = 0; DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n", __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage); /* get channel's attenuation group */ if (chan <= 20) /* 1-20 */ grp = 4; else if (chan <= 43) /* 34-43 */ grp = 0; else if (chan <= 70) /* 44-70 */ grp = 1; else if (chan <= 124) /* 71-124 */ grp = 2; else /* 125-200 */ grp = 3; DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, "%s: chan %d, attenuation group=%d\n", __func__, chan, grp); /* get channel's sub-band */ for (i = 0; i < IWN_NBANDS; i++) if (sc->bands[i].lo != 0 && sc->bands[i].lo <= chan && chan <= sc->bands[i].hi) break; chans = sc->bands[i].chans; DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, "%s: chan %d sub-band=%d\n", __func__, chan, i); for (c = 0; c < IWN_NTXCHAINS; c++) { uint8_t power, gain, temp; int maxchpwr, pwr, ridx, idx; power = interpolate(chan, chans[0].num, chans[0].samples[c][1].power, chans[1].num, chans[1].samples[c][1].power, 1); gain = interpolate(chan, chans[0].num, chans[0].samples[c][1].gain, chans[1].num, chans[1].samples[c][1].gain, 1); temp = interpolate(chan, chans[0].num, chans[0].samples[c][1].temp, chans[1].num, chans[1].samples[c][1].temp, 1); DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, "%s: Tx chain %d: power=%d gain=%d temp=%d\n", __func__, c, power, gain, temp); /* compute temperature compensation */ tdiff = ((sc->temp - temp) * 2) / tdiv[grp]; DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n", __func__, tdiff, sc->temp, temp); for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) { maxchpwr = ch->ic_maxpower; if ((ridx / 8) & 1) { /* MIMO: decrease Tx power (-3dB) */ maxchpwr -= 6; } pwr = maxpwr - 10; /* decrease power for highest OFDM rates */ if ((ridx % 8) == 5) /* 48Mbit/s */ pwr -= 5; else if ((ridx % 8) == 6) /* 54Mbit/s */ pwr -= 7; else if ((ridx % 8) == 7) /* 60Mbit/s */ pwr -= 10; if (pwr > maxchpwr) pwr = maxchpwr; idx = gain - (pwr - power) - tdiff - vdiff; if ((ridx / 8) & 1) /* MIMO */ idx += (int32_t)le32toh(uc->atten[grp][c]); if (cmd.band == 0) idx += 9; /* 5GHz */ if (ridx == IWN_RIDX_MAX) idx += 5; /* CCK */ /* make sure idx stays in a valid range */ if (idx < 0) idx = 0; else if (idx > IWN_MAX_PWR_INDEX) idx = IWN_MAX_PWR_INDEX; DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, "%s: Tx chain %d, rate idx %d: power=%d\n", __func__, c, ridx, idx); cmd.power[ridx].rf_gain[c] = rf_gain[idx]; cmd.power[ridx].dsp_gain[c] = dsp_gain[idx]; } } DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, "%s: set tx power for chan %d\n", __func__, chan); return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async); #undef interpolate #undef fdivround } /* * Get the best (maximum) RSSI among the * connected antennas and convert to dBm. */ int8_t iwn_get_rssi(struct iwn_softc *sc, const struct iwn_rx_stat *stat) { int mask, agc, rssi; mask = (le16toh(stat->antenna) >> 4) & 0x7; agc = (le16toh(stat->agc) >> 7) & 0x7f; rssi = 0; #if 0 if (mask & (1 << 0)) /* Ant A */ rssi = max(rssi, stat->rssi[0]); if (mask & (1 << 1)) /* Ant B */ rssi = max(rssi, stat->rssi[2]); if (mask & (1 << 2)) /* Ant C */ rssi = max(rssi, stat->rssi[4]); #else rssi = max(rssi, stat->rssi[0]); rssi = max(rssi, stat->rssi[2]); rssi = max(rssi, stat->rssi[4]); #endif DPRINTF(sc, IWN_DEBUG_RECV, "%s: agc %d mask 0x%x rssi %d %d %d " "result %d\n", __func__, agc, mask, stat->rssi[0], stat->rssi[2], stat->rssi[4], rssi - agc - IWN_RSSI_TO_DBM); return rssi - agc - IWN_RSSI_TO_DBM; } /* * Get the average noise among Rx antennas (in dBm). */ int iwn_get_noise(const struct iwn_rx_general_stats *stats) { int i, total, nbant, noise; total = nbant = 0; for (i = 0; i < 3; i++) { noise = le32toh(stats->noise[i]) & 0xff; if (noise != 0) { total += noise; nbant++; } } /* there should be at least one antenna but check anyway */ return (nbant == 0) ? -127 : (total / nbant) - 107; } /* * Read temperature (in degC) from the on-board thermal sensor. */ int iwn_get_temperature(struct iwn_softc *sc) { struct iwn_ucode_info *uc = &sc->ucode_info; int32_t r1, r2, r3, r4, temp; r1 = le32toh(uc->temp[0].chan20MHz); r2 = le32toh(uc->temp[1].chan20MHz); r3 = le32toh(uc->temp[2].chan20MHz); r4 = le32toh(sc->rawtemp); if (r1 == r3) /* prevents division by 0 (should not happen) */ return 0; /* sign-extend 23-bit R4 value to 32-bit */ r4 = (r4 << 8) >> 8; /* compute temperature */ temp = (259 * (r4 - r2)) / (r3 - r1); temp = (temp * 97) / 100 + 8; return IWN_KTOC(temp); } /* * Initialize sensitivity calibration state machine. */ int iwn_init_sensitivity(struct iwn_softc *sc) { struct iwn_calib_state *calib = &sc->calib; struct iwn_phy_calib_cmd cmd; int error; /* reset calibration state */ memset(calib, 0, sizeof (*calib)); calib->state = IWN_CALIB_STATE_INIT; calib->cck_state = IWN_CCK_STATE_HIFA; /* initial values taken from the reference driver */ calib->corr_ofdm_x1 = 105; calib->corr_ofdm_mrc_x1 = 220; calib->corr_ofdm_x4 = 90; calib->corr_ofdm_mrc_x4 = 170; calib->corr_cck_x4 = 125; calib->corr_cck_mrc_x4 = 200; calib->energy_cck = 100; /* write initial sensitivity values */ error = iwn_send_sensitivity(sc); if (error != 0) return error; memset(&cmd, 0, sizeof cmd); cmd.code = IWN_SET_DIFF_GAIN; /* differential gains initially set to 0 for all 3 antennas */ DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: calibrate phy\n", __func__); return iwn_cmd(sc, IWN_PHY_CALIB, &cmd, sizeof cmd, 1); } /* * Collect noise and RSSI statistics for the first 20 beacons received * after association and use them to determine connected antennas and * set differential gains. */ void iwn_compute_differential_gain(struct iwn_softc *sc, const struct iwn_rx_general_stats *stats) { struct iwn_calib_state *calib = &sc->calib; struct iwn_phy_calib_cmd cmd; int i, val; /* accumulate RSSI and noise for all 3 antennas */ for (i = 0; i < 3; i++) { calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff; calib->noise[i] += le32toh(stats->noise[i]) & 0xff; } /* we update differential gain only once after 20 beacons */ if (++calib->nbeacons < 20) return; /* determine antenna with highest average RSSI */ val = max(calib->rssi[0], calib->rssi[1]); val = max(calib->rssi[2], val); /* determine which antennas are connected */ sc->antmsk = 0; for (i = 0; i < 3; i++) if (val - calib->rssi[i] <= 15 * 20) sc->antmsk |= 1 << i; /* if neither Ant A and Ant B are connected.. */ if ((sc->antmsk & (1 << 0 | 1 << 1)) == 0) sc->antmsk |= 1 << 1; /* ..mark Ant B as connected! */ /* get minimal noise among connected antennas */ val = INT_MAX; /* ok, there's at least one */ for (i = 0; i < 3; i++) if (sc->antmsk & (1 << i)) val = min(calib->noise[i], val); memset(&cmd, 0, sizeof cmd); cmd.code = IWN_SET_DIFF_GAIN; /* set differential gains for connected antennas */ for (i = 0; i < 3; i++) { if (sc->antmsk & (1 << i)) { cmd.gain[i] = (calib->noise[i] - val) / 30; /* limit differential gain to 3 */ cmd.gain[i] = min(cmd.gain[i], 3); cmd.gain[i] |= IWN_GAIN_SET; } } DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: set differential gains Ant A/B/C: %x/%x/%x (%x)\n", __func__,cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->antmsk); if (iwn_cmd(sc, IWN_PHY_CALIB, &cmd, sizeof cmd, 1) == 0) calib->state = IWN_CALIB_STATE_RUN; } /* * Tune RF Rx sensitivity based on the number of false alarms detected * during the last beacon period. */ void iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats) { #define inc_clip(val, inc, max) \ if ((val) < (max)) { \ if ((val) < (max) - (inc)) \ (val) += (inc); \ else \ (val) = (max); \ needs_update = 1; \ } #define dec_clip(val, dec, min) \ if ((val) > (min)) { \ if ((val) > (min) + (dec)) \ (val) -= (dec); \ else \ (val) = (min); \ needs_update = 1; \ } struct iwn_calib_state *calib = &sc->calib; uint32_t val, rxena, fa; uint32_t energy[3], energy_min; uint8_t noise[3], noise_ref; int i, needs_update = 0; /* check that we've been enabled long enough */ if ((rxena = le32toh(stats->general.load)) == 0) return; /* compute number of false alarms since last call for OFDM */ fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm; fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm; fa *= 200 * 1024; /* 200TU */ /* save counters values for next call */ calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp); calib->fa_ofdm = le32toh(stats->ofdm.fa); if (fa > 50 * rxena) { /* high false alarm count, decrease sensitivity */ DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: OFDM high false alarm count: %u\n", __func__, fa); inc_clip(calib->corr_ofdm_x1, 1, 140); inc_clip(calib->corr_ofdm_mrc_x1, 1, 270); inc_clip(calib->corr_ofdm_x4, 1, 120); inc_clip(calib->corr_ofdm_mrc_x4, 1, 210); } else if (fa < 5 * rxena) { /* low false alarm count, increase sensitivity */ DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: OFDM low false alarm count: %u\n", __func__, fa); dec_clip(calib->corr_ofdm_x1, 1, 105); dec_clip(calib->corr_ofdm_mrc_x1, 1, 220); dec_clip(calib->corr_ofdm_x4, 1, 85); dec_clip(calib->corr_ofdm_mrc_x4, 1, 170); } /* compute maximum noise among 3 antennas */ for (i = 0; i < 3; i++) noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff; val = max(noise[0], noise[1]); val = max(noise[2], val); /* insert it into our samples table */ calib->noise_samples[calib->cur_noise_sample] = val; calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20; /* compute maximum noise among last 20 samples */ noise_ref = calib->noise_samples[0]; for (i = 1; i < 20; i++) noise_ref = max(noise_ref, calib->noise_samples[i]); /* compute maximum energy among 3 antennas */ for (i = 0; i < 3; i++) energy[i] = le32toh(stats->general.energy[i]); val = min(energy[0], energy[1]); val = min(energy[2], val); /* insert it into our samples table */ calib->energy_samples[calib->cur_energy_sample] = val; calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10; /* compute minimum energy among last 10 samples */ energy_min = calib->energy_samples[0]; for (i = 1; i < 10; i++) energy_min = max(energy_min, calib->energy_samples[i]); energy_min += 6; /* compute number of false alarms since last call for CCK */ fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck; fa += le32toh(stats->cck.fa) - calib->fa_cck; fa *= 200 * 1024; /* 200TU */ /* save counters values for next call */ calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp); calib->fa_cck = le32toh(stats->cck.fa); if (fa > 50 * rxena) { /* high false alarm count, decrease sensitivity */ DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: CCK high false alarm count: %u\n", __func__, fa); calib->cck_state = IWN_CCK_STATE_HIFA; calib->low_fa = 0; if (calib->corr_cck_x4 > 160) { calib->noise_ref = noise_ref; if (calib->energy_cck > 2) dec_clip(calib->energy_cck, 2, energy_min); } if (calib->corr_cck_x4 < 160) { calib->corr_cck_x4 = 161; needs_update = 1; } else inc_clip(calib->corr_cck_x4, 3, 200); inc_clip(calib->corr_cck_mrc_x4, 3, 400); } else if (fa < 5 * rxena) { /* low false alarm count, increase sensitivity */ DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: CCK low false alarm count: %u\n", __func__, fa); calib->cck_state = IWN_CCK_STATE_LOFA; calib->low_fa++; if (calib->cck_state != 0 && ((calib->noise_ref - noise_ref) > 2 || calib->low_fa > 100)) { inc_clip(calib->energy_cck, 2, 97); dec_clip(calib->corr_cck_x4, 3, 125); dec_clip(calib->corr_cck_mrc_x4, 3, 200); } } else { /* not worth to increase or decrease sensitivity */ DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: CCK normal false alarm count: %u\n", __func__, fa); calib->low_fa = 0; calib->noise_ref = noise_ref; if (calib->cck_state == IWN_CCK_STATE_HIFA) { /* previous interval had many false alarms */ dec_clip(calib->energy_cck, 8, energy_min); } calib->cck_state = IWN_CCK_STATE_INIT; } if (needs_update) (void)iwn_send_sensitivity(sc); #undef dec_clip #undef inc_clip } int iwn_send_sensitivity(struct iwn_softc *sc) { struct iwn_calib_state *calib = &sc->calib; struct iwn_sensitivity_cmd cmd; memset(&cmd, 0, sizeof cmd); cmd.which = IWN_SENSITIVITY_WORKTBL; /* OFDM modulation */ cmd.corr_ofdm_x1 = htole16(calib->corr_ofdm_x1); cmd.corr_ofdm_mrc_x1 = htole16(calib->corr_ofdm_mrc_x1); cmd.corr_ofdm_x4 = htole16(calib->corr_ofdm_x4); cmd.corr_ofdm_mrc_x4 = htole16(calib->corr_ofdm_mrc_x4); cmd.energy_ofdm = htole16(100); cmd.energy_ofdm_th = htole16(62); /* CCK modulation */ cmd.corr_cck_x4 = htole16(calib->corr_cck_x4); cmd.corr_cck_mrc_x4 = htole16(calib->corr_cck_mrc_x4); cmd.energy_cck = htole16(calib->energy_cck); /* Barker modulation: use default values */ cmd.corr_barker = htole16(190); cmd.corr_barker_mrc = htole16(390); DPRINTF(sc, IWN_DEBUG_RESET, "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__, calib->corr_ofdm_x1, calib->corr_ofdm_mrc_x1, calib->corr_ofdm_x4, calib->corr_ofdm_mrc_x4, calib->corr_cck_x4, calib->corr_cck_mrc_x4, calib->energy_cck); return iwn_cmd(sc, IWN_SENSITIVITY, &cmd, sizeof cmd, 1); } int iwn_auth(struct iwn_softc *sc) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); /*XXX*/ struct ieee80211_node *ni = vap->iv_bss; struct iwn_node_info node; int error; sc->calib.state = IWN_CALIB_STATE_INIT; /* update adapter's configuration */ sc->config.associd = 0; IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid); sc->config.chan = htole16(ieee80211_chan2ieee(ic, ni->ni_chan)); sc->config.flags = htole32(IWN_CONFIG_TSF); if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) sc->config.flags |= htole32(IWN_CONFIG_AUTO | IWN_CONFIG_24GHZ); if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { sc->config.cck_mask = 0; sc->config.ofdm_mask = 0x15; } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { sc->config.cck_mask = 0x03; sc->config.ofdm_mask = 0; } else { /* XXX assume 802.11b/g */ sc->config.cck_mask = 0x0f; sc->config.ofdm_mask = 0x15; } if (ic->ic_flags & IEEE80211_F_SHSLOT) sc->config.flags |= htole32(IWN_CONFIG_SHSLOT); if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) sc->config.flags |= htole32(IWN_CONFIG_SHPREAMBLE); sc->config.filter &= ~htole32(IWN_FILTER_BSS); DPRINTF(sc, IWN_DEBUG_STATE, "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x " "ht_single 0x%x ht_dual 0x%x rxchain 0x%x " "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n", __func__, le16toh(sc->config.chan), sc->config.mode, le32toh(sc->config.flags), sc->config.cck_mask, sc->config.ofdm_mask, sc->config.ht_single_mask, sc->config.ht_dual_mask, le16toh(sc->config.rxchain), sc->config.myaddr, ":", sc->config.wlap, ":", sc->config.bssid, ":", le16toh(sc->config.associd), le32toh(sc->config.filter)); error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config, sizeof (struct iwn_config), 1); if (error != 0) { device_printf(sc->sc_dev, "%s: could not configure, error %d\n", __func__, error); return error; } sc->sc_curchan = ic->ic_curchan; /* configuration has changed, set Tx power accordingly */ error = iwn_set_txpower(sc, ni->ni_chan, 1); if (error != 0) { device_printf(sc->sc_dev, "%s: could not set Tx power, error %d\n", __func__, error); return error; } /* * Reconfiguring clears the adapter's nodes table so we must * add the broadcast node again. */ memset(&node, 0, sizeof node); IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr); node.id = IWN_ID_BROADCAST; DPRINTF(sc, IWN_DEBUG_STATE, "%s: add broadcast node\n", __func__); error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 1); if (error != 0) { device_printf(sc->sc_dev, "%s: could not add broadcast node, error %d\n", __func__, error); return error; } error = iwn_set_link_quality(sc, node.id, ic->ic_curchan, 1); if (error != 0) { device_printf(sc->sc_dev, "%s: could not setup MRR for broadcast node, error %d\n", __func__, error); return error; } return 0; } /* * Configure the adapter for associated state. */ int iwn_run(struct iwn_softc *sc) { #define MS(v,x) (((v) & x) >> x##_S) struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); /*XXX*/ struct ieee80211_node *ni = vap->iv_bss; struct iwn_node_info node; int error, maxrxampdu, ampdudensity; sc->calib.state = IWN_CALIB_STATE_INIT; if (ic->ic_opmode == IEEE80211_M_MONITOR) { /* link LED blinks while monitoring */ iwn_set_led(sc, IWN_LED_LINK, 5, 5); return 0; } iwn_enable_tsf(sc, ni); /* update adapter's configuration */ sc->config.associd = htole16(IEEE80211_AID(ni->ni_associd)); /* short preamble/slot time are negotiated when associating */ sc->config.flags &= ~htole32(IWN_CONFIG_SHPREAMBLE | IWN_CONFIG_SHSLOT); if (ic->ic_flags & IEEE80211_F_SHSLOT) sc->config.flags |= htole32(IWN_CONFIG_SHSLOT); if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) sc->config.flags |= htole32(IWN_CONFIG_SHPREAMBLE); if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { sc->config.flags &= ~htole32(IWN_CONFIG_HT); if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) sc->config.flags |= htole32(IWN_CONFIG_HT40U); else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) sc->config.flags |= htole32(IWN_CONFIG_HT40D); else sc->config.flags |= htole32(IWN_CONFIG_HT20); sc->config.rxchain = htole16( (3 << IWN_RXCHAIN_VALID_S) | (3 << IWN_RXCHAIN_MIMO_CNT_S) | (1 << IWN_RXCHAIN_CNT_S) | IWN_RXCHAIN_MIMO_FORCE); maxrxampdu = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU); ampdudensity = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY); } else maxrxampdu = ampdudensity = 0; sc->config.filter |= htole32(IWN_FILTER_BSS); DPRINTF(sc, IWN_DEBUG_STATE, "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x " "ht_single 0x%x ht_dual 0x%x rxchain 0x%x " "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n", __func__, le16toh(sc->config.chan), sc->config.mode, le32toh(sc->config.flags), sc->config.cck_mask, sc->config.ofdm_mask, sc->config.ht_single_mask, sc->config.ht_dual_mask, le16toh(sc->config.rxchain), sc->config.myaddr, ":", sc->config.wlap, ":", sc->config.bssid, ":", le16toh(sc->config.associd), le32toh(sc->config.filter)); error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config, sizeof (struct iwn_config), 1); if (error != 0) { device_printf(sc->sc_dev, "%s: could not update configuration, error %d\n", __func__, error); return error; } sc->sc_curchan = ni->ni_chan; /* configuration has changed, set Tx power accordingly */ error = iwn_set_txpower(sc, ni->ni_chan, 1); if (error != 0) { device_printf(sc->sc_dev, "%s: could not set Tx power, error %d\n", __func__, error); return error; } /* add BSS node */ memset(&node, 0, sizeof node); IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); node.id = IWN_ID_BSS; node.htflags = htole32( (maxrxampdu << IWN_MAXRXAMPDU_S) | (ampdudensity << IWN_MPDUDENSITY_S)); DPRINTF(sc, IWN_DEBUG_STATE, "%s: add BSS node, id %d htflags 0x%x\n", __func__, node.id, le32toh(node.htflags)); error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 1); if (error != 0) { device_printf(sc->sc_dev,"could not add BSS node\n"); return error; } error = iwn_set_link_quality(sc, node.id, ni->ni_chan, 1); if (error != 0) { device_printf(sc->sc_dev, "%s: could not setup MRR for node %d, error %d\n", __func__, node.id, error); return error; } error = iwn_init_sensitivity(sc); if (error != 0) { device_printf(sc->sc_dev, "%s: could not set sensitivity, error %d\n", __func__, error); return error; } /* start/restart periodic calibration timer */ sc->calib.state = IWN_CALIB_STATE_ASSOC; iwn_calib_reset(sc); /* link LED always on while associated */ iwn_set_led(sc, IWN_LED_LINK, 0, 1); return 0; #undef MS } /* * Send a scan request to the firmware. Since this command is huge, we map it * into a mbuf instead of using the pre-allocated set of commands. */ int iwn_scan(struct iwn_softc *sc) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct ieee80211_scan_state *ss = ic->ic_scan; /*XXX*/ struct iwn_tx_ring *ring = &sc->txq[4]; struct iwn_tx_desc *desc; struct iwn_tx_data *data; struct iwn_tx_cmd *cmd; struct iwn_cmd_data *tx; struct iwn_scan_hdr *hdr; struct iwn_scan_essid *essid; struct iwn_scan_chan *chan; struct ieee80211_frame *wh; struct ieee80211_rateset *rs; struct ieee80211_channel *c; enum ieee80211_phymode mode; uint8_t *frm; int pktlen, error, nrates; bus_addr_t physaddr; desc = &ring->desc[ring->cur]; data = &ring->data[ring->cur]; /* XXX malloc */ data->m = m_getcl(M_DONTWAIT, MT_DATA, 0); if (data->m == NULL) { device_printf(sc->sc_dev, "%s: could not allocate mbuf for scan command\n", __func__); return ENOMEM; } cmd = mtod(data->m, struct iwn_tx_cmd *); cmd->code = IWN_CMD_SCAN; cmd->flags = 0; cmd->qid = ring->qid; cmd->idx = ring->cur; hdr = (struct iwn_scan_hdr *)cmd->data; memset(hdr, 0, sizeof (struct iwn_scan_hdr)); /* XXX use scan state */ /* * Move to the next channel if no packets are received within 5 msecs * after sending the probe request (this helps to reduce the duration * of active scans). */ hdr->quiet = htole16(5); /* timeout in milliseconds */ hdr->plcp_threshold = htole16(1); /* min # of packets */ /* select Ant B and Ant C for scanning */ hdr->rxchain = htole16(0x3e1 | (7 << IWN_RXCHAIN_VALID_S)); tx = (struct iwn_cmd_data *)(hdr + 1); memset(tx, 0, sizeof (struct iwn_cmd_data)); tx->flags = htole32(IWN_TX_AUTO_SEQ | 0x200); /* XXX */ tx->id = IWN_ID_BROADCAST; tx->lifetime = htole32(IWN_LIFETIME_INFINITE); tx->rflags = IWN_RFLAG_ANT_B; if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) { hdr->crc_threshold = htole16(1); /* send probe requests at 6Mbps */ tx->rate = iwn_ridx_to_plcp[IWN_RATE_OFDM6]; } else { hdr->flags = htole32(IWN_CONFIG_24GHZ | IWN_CONFIG_AUTO); /* send probe requests at 1Mbps */ tx->rate = iwn_ridx_to_plcp[IWN_RATE_CCK1]; tx->rflags |= IWN_RFLAG_CCK; } essid = (struct iwn_scan_essid *)(tx + 1); memset(essid, 0, 4 * sizeof (struct iwn_scan_essid)); essid[0].id = IEEE80211_ELEMID_SSID; essid[0].len = ss->ss_ssid[0].len; memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len); /* * Build a probe request frame. Most of the following code is a * copy & paste of what is done in net80211. */ wh = (struct ieee80211_frame *)&essid[4]; wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ; wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp)); IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr); *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */ *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */ frm = (uint8_t *)(wh + 1); /* add SSID IE */ *frm++ = IEEE80211_ELEMID_SSID; *frm++ = ss->ss_ssid[0].len; memcpy(frm, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len); frm += ss->ss_ssid[0].len; mode = ieee80211_chan2mode(ic->ic_curchan); rs = &ic->ic_sup_rates[mode]; /* add supported rates IE */ *frm++ = IEEE80211_ELEMID_RATES; nrates = rs->rs_nrates; if (nrates > IEEE80211_RATE_SIZE) nrates = IEEE80211_RATE_SIZE; *frm++ = nrates; memcpy(frm, rs->rs_rates, nrates); frm += nrates; /* add supported xrates IE */ if (rs->rs_nrates > IEEE80211_RATE_SIZE) { nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; *frm++ = IEEE80211_ELEMID_XRATES; *frm++ = (uint8_t)nrates; memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); frm += nrates; } /* setup length of probe request */ tx->len = htole16(frm - (uint8_t *)wh); c = ic->ic_curchan; chan = (struct iwn_scan_chan *)frm; chan->chan = ieee80211_chan2ieee(ic, c); chan->flags = 0; if ((c->ic_flags & IEEE80211_CHAN_PASSIVE) == 0) { chan->flags |= IWN_CHAN_ACTIVE; if (ss->ss_nssid > 0) chan->flags |= IWN_CHAN_DIRECT; } chan->dsp_gain = 0x6e; if (IEEE80211_IS_CHAN_5GHZ(c)) { chan->rf_gain = 0x3b; chan->active = htole16(10); chan->passive = htole16(110); } else { chan->rf_gain = 0x28; chan->active = htole16(20); chan->passive = htole16(120); } DPRINTF(sc, IWN_DEBUG_STATE, "%s: chan %u flags 0x%x rf_gain 0x%x " "dsp_gain 0x%x active 0x%x passive 0x%x\n", __func__, chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain, chan->active, chan->passive); hdr->nchan++; chan++; frm += sizeof (struct iwn_scan_chan); hdr->len = htole16(frm - (uint8_t *)hdr); pktlen = frm - (uint8_t *)cmd; error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen, iwn_dma_map_addr, &physaddr, BUS_DMA_NOWAIT); if (error != 0) { device_printf(sc->sc_dev, "%s: could not map scan command, error %d\n", __func__, error); m_freem(data->m); data->m = NULL; return error; } IWN_SET_DESC_NSEGS(desc, 1); IWN_SET_DESC_SEG(desc, 0, physaddr, pktlen); sc->shared->len[ring->qid][ring->cur] = htole16(8); if (ring->cur < IWN_TX_WINDOW) sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] = htole16(8); bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); /* kick cmd ring */ ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur); return 0; /* will be notified async. of failure/success */ } int iwn_config(struct iwn_softc *sc) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct iwn_power power; struct iwn_bluetooth bluetooth; struct iwn_node_info node; int error; /* set power mode */ memset(&power, 0, sizeof power); power.flags = htole16(IWN_POWER_CAM | 0x8); DPRINTF(sc, IWN_DEBUG_RESET, "%s: set power mode\n", __func__); error = iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &power, sizeof power, 0); if (error != 0) { device_printf(sc->sc_dev, "%s: could not set power mode, error %d\n", __func__, error); return error; } /* configure bluetooth coexistence */ memset(&bluetooth, 0, sizeof bluetooth); bluetooth.flags = 3; bluetooth.lead = 0xaa; bluetooth.kill = 1; DPRINTF(sc, IWN_DEBUG_RESET, "%s: config bluetooth coexistence\n", __func__); error = iwn_cmd(sc, IWN_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth, 0); if (error != 0) { device_printf(sc->sc_dev, "%s: could not configure bluetooth coexistence, error %d\n", __func__, error); return error; } /* configure adapter */ memset(&sc->config, 0, sizeof (struct iwn_config)); IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp)); IEEE80211_ADDR_COPY(sc->config.wlap, IF_LLADDR(ifp)); /* set default channel */ sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan)); sc->config.flags = htole32(IWN_CONFIG_TSF); if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) sc->config.flags |= htole32(IWN_CONFIG_AUTO | IWN_CONFIG_24GHZ); sc->config.filter = 0; switch (ic->ic_opmode) { case IEEE80211_M_STA: sc->config.mode = IWN_MODE_STA; sc->config.filter |= htole32(IWN_FILTER_MULTICAST); break; case IEEE80211_M_IBSS: case IEEE80211_M_AHDEMO: sc->config.mode = IWN_MODE_IBSS; break; case IEEE80211_M_HOSTAP: sc->config.mode = IWN_MODE_HOSTAP; break; case IEEE80211_M_MONITOR: sc->config.mode = IWN_MODE_MONITOR; sc->config.filter |= htole32(IWN_FILTER_MULTICAST | IWN_FILTER_CTL | IWN_FILTER_PROMISC); break; default: break; } sc->config.cck_mask = 0x0f; /* not yet negotiated */ sc->config.ofdm_mask = 0xff; /* not yet negotiated */ sc->config.ht_single_mask = 0xff; sc->config.ht_dual_mask = 0xff; sc->config.rxchain = htole16(0x2800 | (7 << IWN_RXCHAIN_VALID_S)); DPRINTF(sc, IWN_DEBUG_STATE, "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x " "ht_single 0x%x ht_dual 0x%x rxchain 0x%x " "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n", __func__, le16toh(sc->config.chan), sc->config.mode, le32toh(sc->config.flags), sc->config.cck_mask, sc->config.ofdm_mask, sc->config.ht_single_mask, sc->config.ht_dual_mask, le16toh(sc->config.rxchain), sc->config.myaddr, ":", sc->config.wlap, ":", sc->config.bssid, ":", le16toh(sc->config.associd), le32toh(sc->config.filter)); error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config, sizeof (struct iwn_config), 0); if (error != 0) { device_printf(sc->sc_dev, "%s: configure command failed, error %d\n", __func__, error); return error; } sc->sc_curchan = ic->ic_curchan; /* configuration has changed, set Tx power accordingly */ error = iwn_set_txpower(sc, ic->ic_curchan, 0); if (error != 0) { device_printf(sc->sc_dev, "%s: could not set Tx power, error %d\n", __func__, error); return error; } /* add broadcast node */ memset(&node, 0, sizeof node); IEEE80211_ADDR_COPY(node.macaddr, ic->ic_ifp->if_broadcastaddr); node.id = IWN_ID_BROADCAST; node.rate = iwn_plcp_signal(2); DPRINTF(sc, IWN_DEBUG_RESET, "%s: add broadcast node\n", __func__); error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 0); if (error != 0) { device_printf(sc->sc_dev, "%s: could not add broadcast node, error %d\n", __func__, error); return error; } error = iwn_set_link_quality(sc, node.id, ic->ic_curchan, 0); if (error != 0) { device_printf(sc->sc_dev, "%s: could not setup MRR for node %d, error %d\n", __func__, node.id, error); return error; } error = iwn_set_critical_temp(sc); if (error != 0) { device_printf(sc->sc_dev, "%s: could not set critical temperature, error %d\n", __func__, error); return error; } return 0; } /* * Do post-alive initialization of the NIC (after firmware upload). */ void iwn_post_alive(struct iwn_softc *sc) { uint32_t base; uint16_t offset; int qid; iwn_mem_lock(sc); /* clear SRAM */ base = iwn_mem_read(sc, IWN_SRAM_BASE); for (offset = 0x380; offset < 0x520; offset += 4) { IWN_WRITE(sc, IWN_MEM_WADDR, base + offset); IWN_WRITE(sc, IWN_MEM_WDATA, 0); } /* shared area is aligned on a 1K boundary */ iwn_mem_write(sc, IWN_SRAM_BASE, sc->shared_dma.paddr >> 10); iwn_mem_write(sc, IWN_SELECT_QCHAIN, 0); for (qid = 0; qid < IWN_NTXQUEUES; qid++) { iwn_mem_write(sc, IWN_QUEUE_RIDX(qid), 0); IWN_WRITE(sc, IWN_TX_WIDX, qid << 8 | 0); /* set sched. window size */ IWN_WRITE(sc, IWN_MEM_WADDR, base + IWN_QUEUE_OFFSET(qid)); IWN_WRITE(sc, IWN_MEM_WDATA, 64); /* set sched. frame limit */ IWN_WRITE(sc, IWN_MEM_WADDR, base + IWN_QUEUE_OFFSET(qid) + 4); IWN_WRITE(sc, IWN_MEM_WDATA, 10 << 16); } /* enable interrupts for all 16 queues */ iwn_mem_write(sc, IWN_QUEUE_INTR_MASK, 0xffff); /* identify active Tx rings (0-7) */ iwn_mem_write(sc, IWN_TX_ACTIVE, 0xff); /* mark Tx rings (4 EDCA + cmd + 2 HCCA) as active */ for (qid = 0; qid < 7; qid++) { iwn_mem_write(sc, IWN_TXQ_STATUS(qid), IWN_TXQ_STATUS_ACTIVE | qid << 1); } iwn_mem_unlock(sc); } void iwn_stop_master(struct iwn_softc *sc) { uint32_t tmp; int ntries; tmp = IWN_READ(sc, IWN_RESET); IWN_WRITE(sc, IWN_RESET, tmp | IWN_STOP_MASTER); tmp = IWN_READ(sc, IWN_GPIO_CTL); if ((tmp & IWN_GPIO_PWR_STATUS) == IWN_GPIO_PWR_SLEEP) return; /* already asleep */ for (ntries = 0; ntries < 100; ntries++) { if (IWN_READ(sc, IWN_RESET) & IWN_MASTER_DISABLED) break; DELAY(10); } if (ntries == 100) device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__); } int iwn_reset(struct iwn_softc *sc) { uint32_t tmp; int ntries; /* clear any pending interrupts */ IWN_WRITE(sc, IWN_INTR, 0xffffffff); tmp = IWN_READ(sc, IWN_CHICKEN); IWN_WRITE(sc, IWN_CHICKEN, tmp | IWN_CHICKEN_DISLOS); tmp = IWN_READ(sc, IWN_GPIO_CTL); IWN_WRITE(sc, IWN_GPIO_CTL, tmp | IWN_GPIO_INIT); /* wait for clock stabilization */ for (ntries = 0; ntries < 1000; ntries++) { if (IWN_READ(sc, IWN_GPIO_CTL) & IWN_GPIO_CLOCK) break; DELAY(10); } if (ntries == 1000) { device_printf(sc->sc_dev, "%s: timeout waiting for clock stabilization\n", __func__); return ETIMEDOUT; } return 0; } void iwn_hw_config(struct iwn_softc *sc) { uint32_t tmp, hw; /* enable interrupts mitigation */ IWN_WRITE(sc, IWN_INTR_MIT, 512 / 32); /* voodoo from the reference driver */ tmp = pci_read_config(sc->sc_dev, PCIR_REVID,1); if ((tmp & 0x80) && (tmp & 0x7f) < 8) { /* enable "no snoop" field */ tmp = pci_read_config(sc->sc_dev, 0xe8, 1); tmp &= ~IWN_DIS_NOSNOOP; /* clear device specific PCI configuration register 0x41 */ pci_write_config(sc->sc_dev, 0xe8, tmp, 1); } /* disable L1 entry to work around a hardware bug */ tmp = pci_read_config(sc->sc_dev, 0xf0, 1); tmp &= ~IWN_ENA_L1; pci_write_config(sc->sc_dev, 0xf0, tmp, 1 ); hw = IWN_READ(sc, IWN_HWCONFIG); IWN_WRITE(sc, IWN_HWCONFIG, hw | 0x310); iwn_mem_lock(sc); tmp = iwn_mem_read(sc, IWN_MEM_POWER); iwn_mem_write(sc, IWN_MEM_POWER, tmp | IWN_POWER_RESET); DELAY(5); tmp = iwn_mem_read(sc, IWN_MEM_POWER); iwn_mem_write(sc, IWN_MEM_POWER, tmp & ~IWN_POWER_RESET); iwn_mem_unlock(sc); } void iwn_init_locked(struct iwn_softc *sc) { struct ifnet *ifp = sc->sc_ifp; uint32_t tmp; int error, qid; IWN_LOCK_ASSERT(sc); /* load the firmware */ if (sc->fw_fp == NULL && (error = iwn_load_firmware(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not load firmware, error %d\n", __func__, error); return; } error = iwn_reset(sc); if (error != 0) { device_printf(sc->sc_dev, "%s: could not reset adapter, error %d\n", __func__, error); return; } iwn_mem_lock(sc); iwn_mem_read(sc, IWN_CLOCK_CTL); iwn_mem_write(sc, IWN_CLOCK_CTL, 0xa00); iwn_mem_read(sc, IWN_CLOCK_CTL); iwn_mem_unlock(sc); DELAY(20); iwn_mem_lock(sc); tmp = iwn_mem_read(sc, IWN_MEM_PCIDEV); iwn_mem_write(sc, IWN_MEM_PCIDEV, tmp | 0x800); iwn_mem_unlock(sc); iwn_mem_lock(sc); tmp = iwn_mem_read(sc, IWN_MEM_POWER); iwn_mem_write(sc, IWN_MEM_POWER, tmp & ~0x03000000); iwn_mem_unlock(sc); iwn_hw_config(sc); /* init Rx ring */ iwn_mem_lock(sc); IWN_WRITE(sc, IWN_RX_CONFIG, 0); IWN_WRITE(sc, IWN_RX_WIDX, 0); /* Rx ring is aligned on a 256-byte boundary */ IWN_WRITE(sc, IWN_RX_BASE, sc->rxq.desc_dma.paddr >> 8); /* shared area is aligned on a 16-byte boundary */ IWN_WRITE(sc, IWN_RW_WIDX_PTR, (sc->shared_dma.paddr + offsetof(struct iwn_shared, closed_count)) >> 4); IWN_WRITE(sc, IWN_RX_CONFIG, 0x80601000); iwn_mem_unlock(sc); IWN_WRITE(sc, IWN_RX_WIDX, (IWN_RX_RING_COUNT - 1) & ~7); iwn_mem_lock(sc); iwn_mem_write(sc, IWN_TX_ACTIVE, 0); /* set physical address of "keep warm" page */ IWN_WRITE(sc, IWN_KW_BASE, sc->kw_dma.paddr >> 4); /* init Tx rings */ for (qid = 0; qid < IWN_NTXQUEUES; qid++) { struct iwn_tx_ring *txq = &sc->txq[qid]; IWN_WRITE(sc, IWN_TX_BASE(qid), txq->desc_dma.paddr >> 8); IWN_WRITE(sc, IWN_TX_CONFIG(qid), 0x80000008); } iwn_mem_unlock(sc); /* clear "radio off" and "disable command" bits (reversed logic) */ IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF); IWN_WRITE(sc, IWN_UCODE_CLR, IWN_DISABLE_CMD); /* clear any pending interrupts */ IWN_WRITE(sc, IWN_INTR, 0xffffffff); /* enable interrupts */ IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK); /* not sure why/if this is necessary... */ IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF); IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF); /* check that the radio is not disabled by RF switch */ if (!(IWN_READ(sc, IWN_GPIO_CTL) & IWN_GPIO_RF_ENABLED)) { device_printf(sc->sc_dev, "radio is disabled by hardware switch\n"); return; } error = iwn_transfer_firmware(sc); if (error != 0) { device_printf(sc->sc_dev, "%s: could not load firmware, error %d\n", __func__, error); return; } /* firmware has notified us that it is alive.. */ iwn_post_alive(sc); /* ..do post alive initialization */ sc->rawtemp = sc->ucode_info.temp[3].chan20MHz; sc->temp = iwn_get_temperature(sc); DPRINTF(sc, IWN_DEBUG_RESET, "%s: temperature=%d\n", __func__, sc->temp); error = iwn_config(sc); if (error != 0) { device_printf(sc->sc_dev, "%s: could not configure device, error %d\n", __func__, error); return; } ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; ifp->if_drv_flags |= IFF_DRV_RUNNING; } void iwn_init(void *arg) { struct iwn_softc *sc = arg; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; IWN_LOCK(sc); iwn_init_locked(sc); IWN_UNLOCK(sc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) ieee80211_start_all(ic); } void iwn_stop_locked(struct iwn_softc *sc) { struct ifnet *ifp = sc->sc_ifp; uint32_t tmp; int i; IWN_LOCK_ASSERT(sc); IWN_WRITE(sc, IWN_RESET, IWN_NEVO_RESET); sc->sc_tx_timer = 0; callout_stop(&sc->sc_timer_to); ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); /* disable interrupts */ IWN_WRITE(sc, IWN_MASK, 0); IWN_WRITE(sc, IWN_INTR, 0xffffffff); IWN_WRITE(sc, IWN_INTR_STATUS, 0xffffffff); /* Clear any commands left in the taskq command buffer */ memset(sc->sc_cmd, 0, sizeof(sc->sc_cmd)); /* reset all Tx rings */ for (i = 0; i < IWN_NTXQUEUES; i++) iwn_reset_tx_ring(sc, &sc->txq[i]); /* reset Rx ring */ iwn_reset_rx_ring(sc, &sc->rxq); iwn_mem_lock(sc); iwn_mem_write(sc, IWN_MEM_CLOCK2, 0x200); iwn_mem_unlock(sc); DELAY(5); iwn_stop_master(sc); tmp = IWN_READ(sc, IWN_RESET); IWN_WRITE(sc, IWN_RESET, tmp | IWN_SW_RESET); } void iwn_stop(struct iwn_softc *sc) { IWN_LOCK(sc); iwn_stop_locked(sc); IWN_UNLOCK(sc); } /* * Callback from net80211 to start a scan. */ static void iwn_scan_start(struct ieee80211com *ic) { struct ifnet *ifp = ic->ic_ifp; struct iwn_softc *sc = ifp->if_softc; iwn_queue_cmd(sc, IWN_SCAN_START, 0, IWN_QUEUE_NORMAL); } /* * Callback from net80211 to terminate a scan. */ static void iwn_scan_end(struct ieee80211com *ic) { struct ifnet *ifp = ic->ic_ifp; struct iwn_softc *sc = ifp->if_softc; iwn_queue_cmd(sc, IWN_SCAN_STOP, 0, IWN_QUEUE_NORMAL); } /* * Callback from net80211 to force a channel change. */ static void iwn_set_channel(struct ieee80211com *ic) { struct ifnet *ifp = ic->ic_ifp; struct iwn_softc *sc = ifp->if_softc; const struct ieee80211_channel *c = ic->ic_curchan; if (c != sc->sc_curchan) { sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq); sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags); sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq); sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags); iwn_queue_cmd(sc, IWN_SET_CHAN, 0, IWN_QUEUE_NORMAL); } } /* * Callback from net80211 to start scanning of the current channel. */ static void iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) { struct ieee80211vap *vap = ss->ss_vap; struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc; iwn_queue_cmd(sc, IWN_SCAN_CURCHAN, 0, IWN_QUEUE_NORMAL); } /* * Callback from net80211 to handle the minimum dwell time being met. * The intent is to terminate the scan but we just let the firmware * notify us when it's finished as we have no safe way to abort it. */ static void iwn_scan_mindwell(struct ieee80211_scan_state *ss) { /* NB: don't try to abort scan; wait for firmware to finish */ } /* * Carry out work in the taskq context. */ static void iwn_ops(void *arg0, int pending) { struct iwn_softc *sc = arg0; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct ieee80211vap *vap; int cmd, arg, error; enum ieee80211_state nstate; for (;;) { IWN_CMD_LOCK(sc); cmd = sc->sc_cmd[sc->sc_cmd_cur]; if (cmd == 0) { /* No more commands to process */ IWN_CMD_UNLOCK(sc); return; } if ((sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 && cmd != IWN_RADIO_ENABLE ) { IWN_CMD_UNLOCK(sc); return; } arg = sc->sc_cmd_arg[sc->sc_cmd_cur]; sc->sc_cmd[sc->sc_cmd_cur] = 0; /* free the slot */ sc->sc_cmd_cur = (sc->sc_cmd_cur + 1) % IWN_CMD_MAXOPS; IWN_CMD_UNLOCK(sc); IWN_LOCK(sc); /* NB: sync debug printfs on smp */ DPRINTF(sc, IWN_DEBUG_OPS, "%s: %s (cmd 0x%x)\n", __func__, iwn_ops_str(cmd), cmd); vap = TAILQ_FIRST(&ic->ic_vaps); /* XXX */ switch (cmd) { case IWN_SCAN_START: /* make the link LED blink while we're scanning */ iwn_set_led(sc, IWN_LED_LINK, 20, 2); break; case IWN_SCAN_STOP: break; case IWN_SCAN_NEXT: ieee80211_scan_next(vap); break; case IWN_SCAN_CURCHAN: error = iwn_scan(sc); if (error != 0) { IWN_UNLOCK(sc); ieee80211_cancel_scan(vap); IWN_LOCK(sc); return; } break; case IWN_SET_CHAN: error = iwn_config(sc); if (error != 0) { DPRINTF(sc, IWN_DEBUG_STATE, "%s: set chan failed, cancel scan\n", __func__); IWN_UNLOCK(sc); //XXX Handle failed scan correctly ieee80211_cancel_scan(vap); return; } break; case IWN_AUTH: case IWN_RUN: if (cmd == IWN_AUTH) { error = iwn_auth(sc); nstate = IEEE80211_S_AUTH; } else { error = iwn_run(sc); nstate = IEEE80211_S_RUN; } if (error == 0) { IWN_UNLOCK(sc); IEEE80211_LOCK(ic); IWN_VAP(vap)->iv_newstate(vap, nstate, arg); if (vap->iv_newstate_cb != NULL) vap->iv_newstate_cb(vap, nstate, arg); IEEE80211_UNLOCK(ic); IWN_LOCK(sc); } else { device_printf(sc->sc_dev, "%s: %s state change failed, error %d\n", __func__, ieee80211_state_name[nstate], error); } break; case IWN_REINIT: IWN_UNLOCK(sc); iwn_init(sc); IWN_LOCK(sc); ieee80211_notify_radio(ic, 1); break; case IWN_RADIO_ENABLE: KASSERT(sc->fw_fp != NULL, ("Fware Not Loaded, can't load from tq")); IWN_UNLOCK(sc); iwn_init(sc); IWN_LOCK(sc); break; case IWN_RADIO_DISABLE: ieee80211_notify_radio(ic, 0); iwn_stop_locked(sc); break; } IWN_UNLOCK(sc); } } /* * Queue a command for execution in the taskq thread. * This is needed as the net80211 callbacks do not allow * sleeping, since we need to sleep to confirm commands have * been processed by the firmware, we must defer execution to * a sleep enabled thread. */ static int iwn_queue_cmd(struct iwn_softc *sc, int cmd, int arg, int clear) { IWN_CMD_LOCK(sc); if (clear) { sc->sc_cmd[0] = cmd; sc->sc_cmd_arg[0] = arg; sc->sc_cmd_cur = 0; sc->sc_cmd_next = 1; } else { if (sc->sc_cmd[sc->sc_cmd_next] != 0) { IWN_CMD_UNLOCK(sc); DPRINTF(sc, IWN_DEBUG_ANY, "%s: command %d dropped\n", __func__, cmd); return EBUSY; } sc->sc_cmd[sc->sc_cmd_next] = cmd; sc->sc_cmd_arg[sc->sc_cmd_next] = arg; sc->sc_cmd_next = (sc->sc_cmd_next + 1) % IWN_CMD_MAXOPS; } taskqueue_enqueue(sc->sc_tq, &sc->sc_ops_task); IWN_CMD_UNLOCK(sc); return 0; } static void iwn_bpfattach(struct iwn_softc *sc) { struct ifnet *ifp = sc->sc_ifp; bpfattach(ifp, DLT_IEEE802_11_RADIO, sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap)); sc->sc_rxtap_len = sizeof sc->sc_rxtap; sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT); sc->sc_txtap_len = sizeof sc->sc_txtap; sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT); } static void iwn_sysctlattach(struct iwn_softc *sc) { struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); #ifdef IWN_DEBUG sc->sc_debug = 0; SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "debug", CTLFLAG_RW, &sc->sc_debug, 0, "control debugging printfs"); #endif } #ifdef IWN_DEBUG static const char * iwn_ops_str(int cmd) { switch (cmd) { case IWN_SCAN_START: return "SCAN_START"; case IWN_SCAN_CURCHAN: return "SCAN_CURCHAN"; case IWN_SCAN_STOP: return "SCAN_STOP"; case IWN_SET_CHAN: return "SET_CHAN"; case IWN_AUTH: return "AUTH"; case IWN_SCAN_NEXT: return "SCAN_NEXT"; case IWN_RUN: return "RUN"; case IWN_RADIO_ENABLE: return "RADIO_ENABLE"; case IWN_RADIO_DISABLE: return "RADIO_DISABLE"; case IWN_REINIT: return "REINIT"; } return "UNKNOWN COMMAND"; } static const char * iwn_intr_str(uint8_t cmd) { switch (cmd) { /* Notifications */ case IWN_UC_READY: return "UC_READY"; case IWN_ADD_NODE_DONE: return "ADD_NODE_DONE"; case IWN_TX_DONE: return "TX_DONE"; case IWN_START_SCAN: return "START_SCAN"; case IWN_STOP_SCAN: return "STOP_SCAN"; case IWN_RX_STATISTICS: return "RX_STATS"; case IWN_BEACON_STATISTICS: return "BEACON_STATS"; case IWN_STATE_CHANGED: return "STATE_CHANGED"; case IWN_BEACON_MISSED: return "BEACON_MISSED"; case IWN_AMPDU_RX_START: return "AMPDU_RX_START"; case IWN_AMPDU_RX_DONE: return "AMPDU_RX_DONE"; case IWN_RX_DONE: return "RX_DONE"; /* Command Notifications */ case IWN_CMD_CONFIGURE: return "IWN_CMD_CONFIGURE"; case IWN_CMD_ASSOCIATE: return "IWN_CMD_ASSOCIATE"; case IWN_CMD_EDCA_PARAMS: return "IWN_CMD_EDCA_PARAMS"; case IWN_CMD_TSF: return "IWN_CMD_TSF"; case IWN_CMD_TX_LINK_QUALITY: return "IWN_CMD_TX_LINK_QUALITY"; case IWN_CMD_SET_LED: return "IWN_CMD_SET_LED"; case IWN_CMD_SET_POWER_MODE: return "IWN_CMD_SET_POWER_MODE"; case IWN_CMD_SCAN: return "IWN_CMD_SCAN"; case IWN_CMD_TXPOWER: return "IWN_CMD_TXPOWER"; case IWN_CMD_BLUETOOTH: return "IWN_CMD_BLUETOOTH"; case IWN_CMD_SET_CRITICAL_TEMP: return "IWN_CMD_SET_CRITICAL_TEMP"; case IWN_SENSITIVITY: return "IWN_SENSITIVITY"; case IWN_PHY_CALIB: return "IWN_PHY_CALIB"; } return "UNKNOWN INTR NOTIF/CMD"; } #endif /* IWN_DEBUG */ static device_method_t iwn_methods[] = { /* Device interface */ DEVMETHOD(device_probe, iwn_probe), DEVMETHOD(device_attach, iwn_attach), DEVMETHOD(device_detach, iwn_detach), DEVMETHOD(device_shutdown, iwn_shutdown), DEVMETHOD(device_suspend, iwn_suspend), DEVMETHOD(device_resume, iwn_resume), { 0, 0 } }; static driver_t iwn_driver = { "iwn", iwn_methods, sizeof (struct iwn_softc) }; static devclass_t iwn_devclass; DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, 0, 0); MODULE_DEPEND(iwn, pci, 1, 1, 1); MODULE_DEPEND(iwn, firmware, 1, 1, 1); MODULE_DEPEND(iwn, wlan, 1, 1, 1); MODULE_DEPEND(iwn, wlan_amrr, 1, 1, 1);