/* * Copyright (c) 1991 Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * The Mach Operating System project at Carnegie-Mellon University. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 * $Id: vm_page.c,v 1.36 1995/09/03 20:40:43 dyson Exp $ */ /* * Copyright (c) 1987, 1990 Carnegie-Mellon University. * All rights reserved. * * Authors: Avadis Tevanian, Jr., Michael Wayne Young * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /* * Resident memory management module. */ #include #include #include #include #include #include #include #include /* * Associated with page of user-allocatable memory is a * page structure. */ struct pglist *vm_page_buckets; /* Array of buckets */ int vm_page_bucket_count; /* How big is array? */ int vm_page_hash_mask; /* Mask for hash function */ struct pglist vm_page_queue_free; struct pglist vm_page_queue_zero; struct pglist vm_page_queue_active; struct pglist vm_page_queue_inactive; struct pglist vm_page_queue_cache; /* has physical page allocation been initialized? */ boolean_t vm_page_startup_initialized; vm_page_t vm_page_array; int vm_page_array_size; long first_page; long last_page; vm_offset_t first_phys_addr; vm_offset_t last_phys_addr; vm_size_t page_mask; int page_shift; /* * map of contiguous valid DEV_BSIZE chunks in a page * (this list is valid for page sizes upto 16*DEV_BSIZE) */ static u_short vm_page_dev_bsize_chunks[] = { 0x0, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f, 0xff, 0x1ff, 0x3ff, 0x7ff, 0xfff, 0x1fff, 0x3fff, 0x7fff, 0xffff }; /* * vm_set_page_size: * * Sets the page size, perhaps based upon the memory * size. Must be called before any use of page-size * dependent functions. * * Sets page_shift and page_mask from cnt.v_page_size. */ void vm_set_page_size() { if (cnt.v_page_size == 0) cnt.v_page_size = DEFAULT_PAGE_SIZE; page_mask = cnt.v_page_size - 1; if ((page_mask & cnt.v_page_size) != 0) panic("vm_set_page_size: page size not a power of two"); for (page_shift = 0;; page_shift++) if ((1 << page_shift) == cnt.v_page_size) break; } /* * vm_page_startup: * * Initializes the resident memory module. * * Allocates memory for the page cells, and * for the object/offset-to-page hash table headers. * Each page cell is initialized and placed on the free list. */ vm_offset_t vm_page_startup(starta, enda, vaddr) register vm_offset_t starta; vm_offset_t enda; register vm_offset_t vaddr; { register vm_offset_t mapped; register vm_page_t m; register struct pglist *bucket; vm_size_t npages, page_range; register vm_offset_t new_start; int i; vm_offset_t pa; int nblocks; vm_offset_t first_managed_page; /* the biggest memory array is the second group of pages */ vm_offset_t start; vm_offset_t biggestone, biggestsize; vm_offset_t total; total = 0; biggestsize = 0; biggestone = 0; nblocks = 0; vaddr = round_page(vaddr); for (i = 0; phys_avail[i + 1]; i += 2) { phys_avail[i] = round_page(phys_avail[i]); phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); } for (i = 0; phys_avail[i + 1]; i += 2) { int size = phys_avail[i + 1] - phys_avail[i]; if (size > biggestsize) { biggestone = i; biggestsize = size; } ++nblocks; total += size; } start = phys_avail[biggestone]; /* * Initialize the queue headers for the free queue, the active queue * and the inactive queue. */ TAILQ_INIT(&vm_page_queue_free); TAILQ_INIT(&vm_page_queue_zero); TAILQ_INIT(&vm_page_queue_active); TAILQ_INIT(&vm_page_queue_inactive); TAILQ_INIT(&vm_page_queue_cache); /* * Allocate (and initialize) the hash table buckets. * * The number of buckets MUST BE a power of 2, and the actual value is * the next power of 2 greater than the number of physical pages in * the system. * * Note: This computation can be tweaked if desired. */ vm_page_buckets = (struct pglist *) vaddr; bucket = vm_page_buckets; if (vm_page_bucket_count == 0) { vm_page_bucket_count = 1; while (vm_page_bucket_count < atop(total)) vm_page_bucket_count <<= 1; } vm_page_hash_mask = vm_page_bucket_count - 1; /* * Validate these addresses. */ new_start = start + vm_page_bucket_count * sizeof(struct pglist); new_start = round_page(new_start); mapped = vaddr; vaddr = pmap_map(mapped, start, new_start, VM_PROT_READ | VM_PROT_WRITE); start = new_start; bzero((caddr_t) mapped, vaddr - mapped); mapped = vaddr; for (i = 0; i < vm_page_bucket_count; i++) { TAILQ_INIT(bucket); bucket++; } /* * round (or truncate) the addresses to our page size. */ /* * Pre-allocate maps and map entries that cannot be dynamically * allocated via malloc(). The maps include the kernel_map and * kmem_map which must be initialized before malloc() will work * (obviously). Also could include pager maps which would be * allocated before kmeminit. * * Allow some kernel map entries... this should be plenty since people * shouldn't be cluttering up the kernel map (they should use their * own maps). */ kentry_data_size = MAX_KMAP * sizeof(struct vm_map) + MAX_KMAPENT * sizeof(struct vm_map_entry); kentry_data_size = round_page(kentry_data_size); kentry_data = (vm_offset_t) vaddr; vaddr += kentry_data_size; /* * Validate these zone addresses. */ new_start = start + (vaddr - mapped); pmap_map(mapped, start, new_start, VM_PROT_READ | VM_PROT_WRITE); bzero((caddr_t) mapped, (vaddr - mapped)); start = round_page(new_start); /* * Compute the number of pages of memory that will be available for * use (taking into account the overhead of a page structure per * page). */ first_page = phys_avail[0] / PAGE_SIZE; last_page = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE; page_range = last_page - (phys_avail[0] / PAGE_SIZE); npages = (total - (page_range * sizeof(struct vm_page)) - (start - phys_avail[biggestone])) / PAGE_SIZE; /* * Initialize the mem entry structures now, and put them in the free * queue. */ vm_page_array = (vm_page_t) vaddr; mapped = vaddr; /* * Validate these addresses. */ new_start = round_page(start + page_range * sizeof(struct vm_page)); mapped = pmap_map(mapped, start, new_start, VM_PROT_READ | VM_PROT_WRITE); start = new_start; first_managed_page = start / PAGE_SIZE; /* * Clear all of the page structures */ bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); vm_page_array_size = page_range; cnt.v_page_count = 0; cnt.v_free_count = 0; for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) { if (i == biggestone) pa = ptoa(first_managed_page); else pa = phys_avail[i]; while (pa < phys_avail[i + 1] && npages-- > 0) { ++cnt.v_page_count; ++cnt.v_free_count; m = PHYS_TO_VM_PAGE(pa); m->flags = PG_FREE; m->phys_addr = pa; TAILQ_INSERT_TAIL(&vm_page_queue_free, m, pageq); pa += PAGE_SIZE; } } return (mapped); } /* * vm_page_hash: * * Distributes the object/offset key pair among hash buckets. * * NOTE: This macro depends on vm_page_bucket_count being a power of 2. */ inline const int vm_page_hash(object, offset) vm_object_t object; vm_offset_t offset; { return ((unsigned) object + (offset >> PAGE_SHIFT)) & vm_page_hash_mask; } /* * vm_page_insert: [ internal use only ] * * Inserts the given mem entry into the object/object-page * table and object list. * * The object and page must be locked, and must be splhigh. */ inline void vm_page_insert(mem, object, offset) register vm_page_t mem; register vm_object_t object; register vm_offset_t offset; { register struct pglist *bucket; if (mem->flags & PG_TABLED) panic("vm_page_insert: already inserted"); /* * Record the object/offset pair in this page */ mem->object = object; mem->offset = offset; /* * Insert it into the object_object/offset hash table */ bucket = &vm_page_buckets[vm_page_hash(object, offset)]; TAILQ_INSERT_TAIL(bucket, mem, hashq); /* * Now link into the object's list of backed pages. */ TAILQ_INSERT_TAIL(&object->memq, mem, listq); mem->flags |= PG_TABLED; /* * And show that the object has one more resident page. */ object->resident_page_count++; } /* * vm_page_remove: [ internal use only ] * NOTE: used by device pager as well -wfj * * Removes the given mem entry from the object/offset-page * table and the object page list. * * The object and page must be locked, and at splhigh. */ inline void vm_page_remove(mem) register vm_page_t mem; { register struct pglist *bucket; if (!(mem->flags & PG_TABLED)) return; /* * Remove from the object_object/offset hash table */ bucket = &vm_page_buckets[vm_page_hash(mem->object, mem->offset)]; TAILQ_REMOVE(bucket, mem, hashq); /* * Now remove from the object's list of backed pages. */ TAILQ_REMOVE(&mem->object->memq, mem, listq); /* * And show that the object has one fewer resident page. */ mem->object->resident_page_count--; mem->flags &= ~PG_TABLED; } /* * vm_page_lookup: * * Returns the page associated with the object/offset * pair specified; if none is found, NULL is returned. * * The object must be locked. No side effects. */ vm_page_t vm_page_lookup(object, offset) register vm_object_t object; register vm_offset_t offset; { register vm_page_t mem; register struct pglist *bucket; int s; /* * Search the hash table for this object/offset pair */ bucket = &vm_page_buckets[vm_page_hash(object, offset)]; s = splhigh(); for (mem = bucket->tqh_first; mem != NULL; mem = mem->hashq.tqe_next) { if ((mem->object == object) && (mem->offset == offset)) { splx(s); return (mem); } } splx(s); return (NULL); } /* * vm_page_rename: * * Move the given memory entry from its * current object to the specified target object/offset. * * The object must be locked. */ void vm_page_rename(mem, new_object, new_offset) register vm_page_t mem; register vm_object_t new_object; vm_offset_t new_offset; { int s; if (mem->object == new_object) return; s = splhigh(); vm_page_remove(mem); vm_page_insert(mem, new_object, new_offset); splx(s); } /* * vm_page_unqueue must be called at splhigh(); */ inline void vm_page_unqueue(vm_page_t mem) { int origflags; origflags = mem->flags; if ((origflags & (PG_ACTIVE|PG_INACTIVE|PG_CACHE)) == 0) return; if (origflags & PG_ACTIVE) { TAILQ_REMOVE(&vm_page_queue_active, mem, pageq); cnt.v_active_count--; mem->flags &= ~PG_ACTIVE; } else if (origflags & PG_INACTIVE) { TAILQ_REMOVE(&vm_page_queue_inactive, mem, pageq); cnt.v_inactive_count--; mem->flags &= ~PG_INACTIVE; } else if (origflags & PG_CACHE) { TAILQ_REMOVE(&vm_page_queue_cache, mem, pageq); cnt.v_cache_count--; mem->flags &= ~PG_CACHE; if (cnt.v_cache_count + cnt.v_free_count < cnt.v_free_reserved) pagedaemon_wakeup(); } return; } /* * vm_page_alloc: * * Allocate and return a memory cell associated * with this VM object/offset pair. * * page_req classes: * VM_ALLOC_NORMAL normal process request * VM_ALLOC_SYSTEM system *really* needs a page * VM_ALLOC_INTERRUPT interrupt time request * or in: * VM_ALLOC_ZERO zero page * * Object must be locked. */ vm_page_t vm_page_alloc(object, offset, page_req) vm_object_t object; vm_offset_t offset; int page_req; { register vm_page_t mem; int s; #ifdef DIAGNOSTIC if (offset != trunc_page(offset)) panic("vm_page_alloc: offset not page aligned"); #if 0 mem = vm_page_lookup(object, offset); if (mem) panic("vm_page_alloc: page already allocated"); #endif #endif if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) { page_req = VM_ALLOC_SYSTEM; }; s = splhigh(); switch ((page_req & ~(VM_ALLOC_ZERO))) { case VM_ALLOC_NORMAL: if (cnt.v_free_count >= cnt.v_free_reserved) { if (page_req & VM_ALLOC_ZERO) { mem = vm_page_queue_zero.tqh_first; if (mem) { TAILQ_REMOVE(&vm_page_queue_zero, mem, pageq); mem->flags = PG_BUSY|PG_ZERO; } else { mem = vm_page_queue_free.tqh_first; TAILQ_REMOVE(&vm_page_queue_free, mem, pageq); mem->flags = PG_BUSY; } } else { mem = vm_page_queue_free.tqh_first; if (mem) { TAILQ_REMOVE(&vm_page_queue_free, mem, pageq); mem->flags = PG_BUSY; } else { mem = vm_page_queue_zero.tqh_first; TAILQ_REMOVE(&vm_page_queue_zero, mem, pageq); mem->flags = PG_BUSY|PG_ZERO; } } cnt.v_free_count--; } else { mem = vm_page_queue_cache.tqh_first; if (mem != NULL) { TAILQ_REMOVE(&vm_page_queue_cache, mem, pageq); vm_page_remove(mem); mem->flags = PG_BUSY; cnt.v_cache_count--; } else { splx(s); pagedaemon_wakeup(); return (NULL); } } break; case VM_ALLOC_SYSTEM: if ((cnt.v_free_count >= cnt.v_free_reserved) || ((cnt.v_cache_count == 0) && (cnt.v_free_count >= cnt.v_interrupt_free_min))) { if (page_req & VM_ALLOC_ZERO) { mem = vm_page_queue_zero.tqh_first; if (mem) { TAILQ_REMOVE(&vm_page_queue_zero, mem, pageq); mem->flags = PG_BUSY|PG_ZERO; } else { mem = vm_page_queue_free.tqh_first; TAILQ_REMOVE(&vm_page_queue_free, mem, pageq); mem->flags = PG_BUSY; } } else { mem = vm_page_queue_free.tqh_first; if (mem) { TAILQ_REMOVE(&vm_page_queue_free, mem, pageq); mem->flags = PG_BUSY; } else { mem = vm_page_queue_zero.tqh_first; TAILQ_REMOVE(&vm_page_queue_zero, mem, pageq); mem->flags = PG_BUSY|PG_ZERO; } } cnt.v_free_count--; } else { mem = vm_page_queue_cache.tqh_first; if (mem != NULL) { TAILQ_REMOVE(&vm_page_queue_cache, mem, pageq); vm_page_remove(mem); mem->flags = PG_BUSY; cnt.v_cache_count--; } else { splx(s); pagedaemon_wakeup(); return (NULL); } } break; case VM_ALLOC_INTERRUPT: if (cnt.v_free_count > 0) { mem = vm_page_queue_free.tqh_first; if (mem) { TAILQ_REMOVE(&vm_page_queue_free, mem, pageq); mem->flags = PG_BUSY; } else { mem = vm_page_queue_zero.tqh_first; TAILQ_REMOVE(&vm_page_queue_zero, mem, pageq); mem->flags = PG_BUSY|PG_ZERO; } cnt.v_free_count--; } else { splx(s); pagedaemon_wakeup(); return NULL; } break; default: panic("vm_page_alloc: invalid allocation class"); } mem->wire_count = 0; mem->hold_count = 0; mem->act_count = 0; mem->busy = 0; mem->valid = 0; mem->dirty = 0; mem->bmapped = 0; /* XXX before splx until vm_page_insert is safe */ vm_page_insert(mem, object, offset); splx(s); /* * Don't wakeup too often - wakeup the pageout daemon when * we would be nearly out of memory. */ if (((cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min) || (cnt.v_free_count < cnt.v_pageout_free_min)) pagedaemon_wakeup(); return (mem); } vm_offset_t vm_page_alloc_contig(size, low, high, alignment) vm_offset_t size; vm_offset_t low; vm_offset_t high; vm_offset_t alignment; { int i, s, start; vm_offset_t addr, phys, tmp_addr; vm_page_t pga = vm_page_array; if ((alignment & (alignment - 1)) != 0) panic("vm_page_alloc_contig: alignment must be a power of 2"); start = 0; s = splhigh(); again: /* * Find first page in array that is free, within range, and aligned. */ for (i = start; i < cnt.v_page_count; i++) { phys = VM_PAGE_TO_PHYS(&pga[i]); if (((pga[i].flags & PG_FREE) == PG_FREE) && (phys >= low) && (phys < high) && ((phys & (alignment - 1)) == 0)) break; } /* * If the above failed or we will exceed the upper bound, fail. */ if ((i == cnt.v_page_count) || ((VM_PAGE_TO_PHYS(&pga[i]) + size) > high)) { splx(s); return (NULL); } start = i; /* * Check successive pages for contiguous and free. */ for (i = start + 1; i < (start + size / PAGE_SIZE); i++) { if ((VM_PAGE_TO_PHYS(&pga[i]) != (VM_PAGE_TO_PHYS(&pga[i - 1]) + PAGE_SIZE)) || ((pga[i].flags & PG_FREE) != PG_FREE)) { start++; goto again; } } /* * We've found a contiguous chunk that meets are requirements. * Allocate kernel VM, unfree and assign the physical pages to it and * return kernel VM pointer. */ tmp_addr = addr = kmem_alloc_pageable(kernel_map, size); for (i = start; i < (start + size / PAGE_SIZE); i++) { vm_page_t m = &pga[i]; TAILQ_REMOVE(&vm_page_queue_free, m, pageq); cnt.v_free_count--; m->valid = VM_PAGE_BITS_ALL; m->flags = 0; m->dirty = 0; m->wire_count = 0; m->act_count = 0; m->bmapped = 0; m->busy = 0; vm_page_insert(m, kernel_object, tmp_addr - VM_MIN_KERNEL_ADDRESS); vm_page_wire(m); pmap_kenter(tmp_addr, VM_PAGE_TO_PHYS(m)); tmp_addr += PAGE_SIZE; } splx(s); return (addr); } /* * vm_page_free: * * Returns the given page to the free list, * disassociating it with any VM object. * * Object and page must be locked prior to entry. */ void vm_page_free(mem) register vm_page_t mem; { int s; int flags; s = splhigh(); vm_page_remove(mem); vm_page_unqueue(mem); flags = mem->flags; if (mem->bmapped || mem->busy || flags & (PG_BUSY|PG_FREE)) { if (flags & PG_FREE) panic("vm_page_free: freeing free page"); printf("vm_page_free: offset(%d), bmapped(%d), busy(%d), PG_BUSY(%d)\n", mem->offset, mem->bmapped, mem->busy, (flags & PG_BUSY) ? 1 : 0); panic("vm_page_free: freeing busy page"); } if ((flags & PG_WANTED) != 0) wakeup(mem); if ((flags & PG_FICTITIOUS) == 0) { if (mem->wire_count) { if (mem->wire_count > 1) { printf("vm_page_free: wire count > 1 (%d)", mem->wire_count); panic("vm_page_free: invalid wire count"); } cnt.v_wire_count--; mem->wire_count = 0; } mem->flags |= PG_FREE; TAILQ_INSERT_TAIL(&vm_page_queue_free, mem, pageq); splx(s); /* * if pageout daemon needs pages, then tell it that there are * some free. */ if (vm_pageout_pages_needed) { wakeup(&vm_pageout_pages_needed); vm_pageout_pages_needed = 0; } cnt.v_free_count++; /* * wakeup processes that are waiting on memory if we hit a * high water mark. And wakeup scheduler process if we have * lots of memory. this process will swapin processes. */ if ((cnt.v_free_count + cnt.v_cache_count) == cnt.v_free_min) { wakeup(&cnt.v_free_count); wakeup(&proc0); } } else { splx(s); } cnt.v_tfree++; } /* * vm_page_wire: * * Mark this page as wired down by yet * another map, removing it from paging queues * as necessary. * * The page queues must be locked. */ void vm_page_wire(mem) register vm_page_t mem; { int s; if (mem->wire_count == 0) { s = splhigh(); vm_page_unqueue(mem); splx(s); cnt.v_wire_count++; } mem->flags |= PG_WRITEABLE|PG_MAPPED; mem->wire_count++; } /* * vm_page_unwire: * * Release one wiring of this page, potentially * enabling it to be paged again. * * The page queues must be locked. */ void vm_page_unwire(mem) register vm_page_t mem; { int s; s = splhigh(); if (mem->wire_count) mem->wire_count--; if (mem->wire_count == 0) { TAILQ_INSERT_TAIL(&vm_page_queue_active, mem, pageq); cnt.v_active_count++; mem->flags |= PG_ACTIVE; cnt.v_wire_count--; } splx(s); } /* * vm_page_activate: * * Put the specified page on the active list (if appropriate). * * The page queues must be locked. */ void vm_page_activate(m) register vm_page_t m; { int s; s = splhigh(); if (m->flags & PG_ACTIVE) panic("vm_page_activate: already active"); if (m->flags & PG_CACHE) cnt.v_reactivated++; vm_page_unqueue(m); if (m->wire_count == 0) { TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq); m->flags |= PG_ACTIVE; if (m->act_count < 5) m->act_count = 5; else if( m->act_count < ACT_MAX) m->act_count += 1; cnt.v_active_count++; } splx(s); } /* * vm_page_deactivate: * * Returns the given page to the inactive list, * indicating that no physical maps have access * to this page. [Used by the physical mapping system.] * * The page queues must be locked. */ void vm_page_deactivate(m) register vm_page_t m; { int spl; /* * Only move active pages -- ignore locked or already inactive ones. * * XXX: sometimes we get pages which aren't wired down or on any queue - * we need to put them on the inactive queue also, otherwise we lose * track of them. Paul Mackerras (paulus@cs.anu.edu.au) 9-Jan-93. */ spl = splhigh(); if (!(m->flags & PG_INACTIVE) && m->wire_count == 0 && m->hold_count == 0) { if (m->flags & PG_CACHE) cnt.v_reactivated++; vm_page_unqueue(m); TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq); m->flags |= PG_INACTIVE; cnt.v_inactive_count++; m->act_count = 0; } splx(spl); } /* * vm_page_cache * * Put the specified page onto the page cache queue (if appropriate). */ void vm_page_cache(m) register vm_page_t m; { int s; if ((m->flags & (PG_CACHE | PG_BUSY)) || m->busy || m->wire_count || m->bmapped) return; s = splhigh(); vm_page_unqueue(m); vm_page_protect(m, VM_PROT_NONE); TAILQ_INSERT_TAIL(&vm_page_queue_cache, m, pageq); m->flags |= PG_CACHE; cnt.v_cache_count++; if ((cnt.v_free_count + cnt.v_cache_count) == cnt.v_free_min) { wakeup(&cnt.v_free_count); wakeup(&proc0); } if (vm_pageout_pages_needed) { wakeup(&vm_pageout_pages_needed); vm_pageout_pages_needed = 0; } splx(s); } /* * vm_page_zero_fill: * * Zero-fill the specified page. * Written as a standard pagein routine, to * be used by the zero-fill object. */ boolean_t vm_page_zero_fill(m) vm_page_t m; { pmap_zero_page(VM_PAGE_TO_PHYS(m)); return (TRUE); } /* * vm_page_copy: * * Copy one page to another */ void vm_page_copy(src_m, dest_m) vm_page_t src_m; vm_page_t dest_m; { pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m)); dest_m->valid = VM_PAGE_BITS_ALL; } /* * mapping function for valid bits or for dirty bits in * a page */ inline int vm_page_bits(int base, int size) { u_short chunk; if ((base == 0) && (size >= PAGE_SIZE)) return VM_PAGE_BITS_ALL; size = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); base = (base % PAGE_SIZE) / DEV_BSIZE; chunk = vm_page_dev_bsize_chunks[size / DEV_BSIZE]; return (chunk << base) & VM_PAGE_BITS_ALL; } /* * set a page valid and clean */ void vm_page_set_validclean(m, base, size) vm_page_t m; int base; int size; { int pagebits = vm_page_bits(base, size); m->valid |= pagebits; m->dirty &= ~pagebits; if( base == 0 && size == PAGE_SIZE) pmap_clear_modify(VM_PAGE_TO_PHYS(m)); } /* * set a page (partially) valid */ void vm_page_set_valid(m, base, size) vm_page_t m; int base; int size; { m->valid |= vm_page_bits(base, size); } /* * set a page (partially) invalid */ void vm_page_set_invalid(m, base, size) vm_page_t m; int base; int size; { int bits; m->valid &= ~(bits = vm_page_bits(base, size)); if (m->valid == 0) m->dirty &= ~bits; } /* * is (partial) page valid? */ int vm_page_is_valid(m, base, size) vm_page_t m; int base; int size; { int bits = vm_page_bits(base, size); if (m->valid && ((m->valid & bits) == bits)) return 1; else return 0; } /* * set a page (partially) dirty */ void vm_page_set_dirty(m, base, size) vm_page_t m; int base; int size; { if ((base != 0) || (size != PAGE_SIZE)) { if (pmap_is_modified(VM_PAGE_TO_PHYS(m))) { m->dirty = VM_PAGE_BITS_ALL; pmap_clear_modify(VM_PAGE_TO_PHYS(m)); return; } m->dirty |= vm_page_bits(base, size); } else { m->dirty = VM_PAGE_BITS_ALL; pmap_clear_modify(VM_PAGE_TO_PHYS(m)); } } void vm_page_test_dirty(m) vm_page_t m; { if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(VM_PAGE_TO_PHYS(m))) { m->dirty = VM_PAGE_BITS_ALL; } } /* * set a page (partially) clean */ void vm_page_set_clean(m, base, size) vm_page_t m; int base; int size; { m->dirty &= ~vm_page_bits(base, size); if( base == 0 && size == PAGE_SIZE) pmap_clear_modify(VM_PAGE_TO_PHYS(m)); } /* * is (partial) page clean */ int vm_page_is_clean(m, base, size) vm_page_t m; int base; int size; { if (pmap_is_modified(VM_PAGE_TO_PHYS(m))) { m->dirty = VM_PAGE_BITS_ALL; pmap_clear_modify(VM_PAGE_TO_PHYS(m)); } if ((m->dirty & m->valid & vm_page_bits(base, size)) == 0) return 1; else return 0; } #ifdef DDB void print_page_info() { printf("cnt.v_free_count: %d\n", cnt.v_free_count); printf("cnt.v_cache_count: %d\n", cnt.v_cache_count); printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count); printf("cnt.v_active_count: %d\n", cnt.v_active_count); printf("cnt.v_wire_count: %d\n", cnt.v_wire_count); printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved); printf("cnt.v_free_min: %d\n", cnt.v_free_min); printf("cnt.v_free_target: %d\n", cnt.v_free_target); printf("cnt.v_cache_min: %d\n", cnt.v_cache_min); printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target); } #endif