/* $NetBSD: wi.c,v 1.109 2003/01/09 08:52:19 dyoung Exp $ */ /*- * Copyright (c) 1997, 1998, 1999 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /* * Lucent WaveLAN/IEEE 802.11 PCMCIA driver. * * Original FreeBSD driver written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The WaveLAN/IEEE adapter is the second generation of the WaveLAN * from Lucent. Unlike the older cards, the new ones are programmed * entirely via a firmware-driven controller called the Hermes. * Unfortunately, Lucent will not release the Hermes programming manual * without an NDA (if at all). What they do release is an API library * called the HCF (Hardware Control Functions) which is supposed to * do the device-specific operations of a device driver for you. The * publically available version of the HCF library (the 'HCF Light') is * a) extremely gross, b) lacks certain features, particularly support * for 802.11 frames, and c) is contaminated by the GNU Public License. * * This driver does not use the HCF or HCF Light at all. Instead, it * programs the Hermes controller directly, using information gleaned * from the HCF Light code and corresponding documentation. * * This driver supports the ISA, PCMCIA and PCI versions of the Lucent * WaveLan cards (based on the Hermes chipset), as well as the newer * Prism 2 chipsets with firmware from Intersil and Symbol. */ #include __FBSDID("$FreeBSD$"); #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */ #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */ #define NBPFILTER 1 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static void wi_start_locked(struct ifnet *); static void wi_start(struct ifnet *); static int wi_start_tx(struct ifnet *ifp, struct wi_frame *frmhdr, struct mbuf *m0); static int wi_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static int wi_reset(struct ifnet *); static void wi_watchdog(void *); static int wi_ioctl(struct ifnet *, u_long, caddr_t); static int wi_media_change(struct ifnet *); static void wi_media_status(struct ifnet *, struct ifmediareq *); static void wi_rx_intr(struct wi_softc *); static void wi_tx_intr(struct wi_softc *); static void wi_tx_ex_intr(struct wi_softc *); static void wi_info_intr(struct wi_softc *); static int wi_key_alloc(struct ieee80211com *, const struct ieee80211_key *, ieee80211_keyix *, ieee80211_keyix *); #if 0 static int wi_get_cfg(struct ifnet *, u_long, caddr_t); static int wi_set_cfg(struct ifnet *, u_long, caddr_t); #endif static int wi_write_txrate(struct wi_softc *); static int wi_write_wep(struct wi_softc *); static int wi_write_multi(struct wi_softc *); static int wi_alloc_fid(struct wi_softc *, int, int *); static void wi_read_nicid(struct wi_softc *); static int wi_write_ssid(struct wi_softc *, int, u_int8_t *, int); static int wi_cmd(struct wi_softc *, int, int, int, int); static int wi_seek_bap(struct wi_softc *, int, int); static int wi_read_bap(struct wi_softc *, int, int, void *, int); static int wi_write_bap(struct wi_softc *, int, int, void *, int); static int wi_mwrite_bap(struct wi_softc *, int, int, struct mbuf *, int); static int wi_read_rid(struct wi_softc *, int, void *, int *); static int wi_write_rid(struct wi_softc *, int, void *, int); static int wi_newstate(struct ieee80211com *, enum ieee80211_state, int); static int wi_scan_ap(struct wi_softc *, u_int16_t, u_int16_t); static void wi_scan_result(struct wi_softc *, int, int); static void wi_dump_pkt(struct wi_frame *, struct ieee80211_node *, int rssi); #if 0 static int wi_get_debug(struct wi_softc *, struct wi_req *); static int wi_set_debug(struct wi_softc *, struct wi_req *); #endif /* support to download firmware for symbol CF card */ static int wi_symbol_write_firm(struct wi_softc *, const void *, int, const void *, int); static int wi_symbol_set_hcr(struct wi_softc *, int); static void wi_scan_start(struct ieee80211com *); static void wi_scan_curchan(struct ieee80211com *, unsigned long); static void wi_scan_mindwell(struct ieee80211com *); static void wi_scan_end(struct ieee80211com *); static void wi_set_channel(struct ieee80211com *); static void wi_update_slot(struct ifnet *); static struct ieee80211_node *wi_node_alloc(struct ieee80211_node_table *); static int wi_ioctl_get(struct ifnet *ifp, u_long command, caddr_t data); static int wi_ioctl_set(struct ifnet *ifp, u_long command, caddr_t data); static __inline int wi_write_val(struct wi_softc *sc, int rid, u_int16_t val) { val = htole16(val); return wi_write_rid(sc, rid, &val, sizeof(val)); } SYSCTL_NODE(_hw, OID_AUTO, wi, CTLFLAG_RD, 0, "Wireless driver parameters"); static struct timeval lasttxerror; /* time of last tx error msg */ static int curtxeps; /* current tx error msgs/sec */ static int wi_txerate = 0; /* tx error rate: max msgs/sec */ SYSCTL_INT(_hw_wi, OID_AUTO, txerate, CTLFLAG_RW, &wi_txerate, 0, "max tx error msgs/sec; 0 to disable msgs"); #define WI_DEBUG #ifdef WI_DEBUG static int wi_debug = 0; SYSCTL_INT(_hw_wi, OID_AUTO, debug, CTLFLAG_RW, &wi_debug, 0, "control debugging printfs"); #define DPRINTF(X) if (wi_debug) printf X #define DPRINTF2(X) if (wi_debug > 1) printf X #define IFF_DUMPPKTS(_ifp) \ (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) #else #define DPRINTF(X) #define DPRINTF2(X) #define IFF_DUMPPKTS(_ifp) 0 #endif #define WI_INTRS (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO) struct wi_card_ident wi_card_ident[] = { /* CARD_ID CARD_NAME FIRM_TYPE */ { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT }, { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT }, { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT }, { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL }, { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL }, { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL }, { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL }, { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL }, { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL }, { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL }, { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL }, { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL }, { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL }, { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL }, { WI_NIC_3842_PCMCIA_ATL_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL }, { WI_NIC_3842_PCMCIA_ATS_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL }, { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL }, { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL }, { WI_NIC_3842_MINI_ATL_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL }, { WI_NIC_3842_MINI_ATS_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL }, { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL }, { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL }, { WI_NIC_3842_PCI_ATS_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL }, { WI_NIC_3842_PCI_ATL_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL }, { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL }, { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL }, { WI_NIC_P3_PCMCIA_ATL_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL }, { WI_NIC_P3_PCMCIA_ATS_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL }, { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL }, { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL }, { WI_NIC_P3_MINI_ATL_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL }, { WI_NIC_P3_MINI_ATS_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL }, { 0, NULL, 0 }, }; devclass_t wi_devclass; int wi_attach(device_t dev) { struct wi_softc *sc = device_get_softc(dev); struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp; int i, nrates, buflen; u_int16_t val; u_int8_t ratebuf[2 + IEEE80211_RATE_SIZE]; struct ieee80211_rateset *rs; static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; int error; ifp = sc->sc_ifp = if_alloc(IFT_ETHER); ifp->if_softc = sc; if (ifp == NULL) { device_printf(dev, "can not if_alloc\n"); wi_free(dev); return (ENOSPC); } /* * NB: no locking is needed here; don't put it here * unless you can prove it! */ error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, NULL, wi_intr, sc, &sc->wi_intrhand); if (error) { device_printf(dev, "bus_setup_intr() failed! (%d)\n", error); wi_free(dev); return (error); } mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF | MTX_RECURSE); callout_init_mtx(&sc->sc_watchdog, &sc->sc_mtx, 0); sc->sc_firmware_type = WI_NOTYPE; sc->wi_cmd_count = 500; /* Reset the NIC. */ if (wi_reset(ifp) != 0) return ENXIO; /* XXX */ /* * Read the station address. * And do it twice. I've seen PRISM-based cards that return * an error when trying to read it the first time, which causes * the probe to fail. */ buflen = IEEE80211_ADDR_LEN; error = wi_read_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, &buflen); if (error != 0) { buflen = IEEE80211_ADDR_LEN; error = wi_read_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, &buflen); } if (error || IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) { if (error != 0) device_printf(dev, "mac read failed %d\n", error); else { device_printf(dev, "mac read failed (all zeros)\n"); error = ENXIO; } wi_free(dev); return (error); } /* Read NIC identification */ wi_read_nicid(sc); if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = wi_ioctl; ifp->if_start = wi_start; ifp->if_init = wi_init; IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; IFQ_SET_READY(&ifp->if_snd); ic->ic_ifp = ifp; ic->ic_phytype = IEEE80211_T_DS; ic->ic_opmode = IEEE80211_M_STA; ic->ic_state = IEEE80211_S_INIT; ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_WEP /* everyone supports WEP */ ; ic->ic_max_aid = WI_MAX_AID; /* * Query the card for available channels and setup the * channel table. We assume these are all 11b channels. */ buflen = sizeof(val); if (wi_read_rid(sc, WI_RID_CHANNEL_LIST, &val, &buflen) != 0) val = htole16(0x1fff); /* assume 1-11 */ KASSERT(val != 0, ("wi_attach: no available channels listed!")); val <<= 1; /* shift for base 1 indices */ for (i = 1; i < 16; i++) { struct ieee80211_channel *c; if (!isset((u_int8_t*)&val, i)) continue; c = &ic->ic_channels[ic->ic_nchans++]; c->ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_B); c->ic_flags = IEEE80211_CHAN_B; c->ic_ieee = i; } /* * Read the default channel from the NIC. This may vary * depending on the country where the NIC was purchased, so * we can't hard-code a default and expect it to work for * everyone. * * If no channel is specified, let the 802.11 code select. */ buflen = sizeof(val); if (wi_read_rid(sc, WI_RID_OWN_CHNL, &val, &buflen) == 0) { val = le16toh(val); ic->ic_bsschan = ieee80211_find_channel(ic, ieee80211_ieee2mhz(val, IEEE80211_CHAN_B), IEEE80211_CHAN_B); if (ic->ic_bsschan == NULL) ic->ic_bsschan = &ic->ic_channels[0]; } else { device_printf(dev, "WI_RID_OWN_CHNL failed, using first channel!\n"); ic->ic_bsschan = &ic->ic_channels[0]; } /* * Set flags based on firmware version. */ switch (sc->sc_firmware_type) { case WI_LUCENT: sc->sc_ntxbuf = 1; sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE; #ifdef WI_HERMES_AUTOINC_WAR /* XXX: not confirmed, but never seen for recent firmware */ if (sc->sc_sta_firmware_ver < 40000) { sc->sc_flags |= WI_FLAGS_BUG_AUTOINC; } #endif if (sc->sc_sta_firmware_ver >= 60000) sc->sc_flags |= WI_FLAGS_HAS_MOR; if (sc->sc_sta_firmware_ver >= 60006) { ic->ic_caps |= IEEE80211_C_IBSS; ic->ic_caps |= IEEE80211_C_MONITOR; } sc->sc_ibss_port = htole16(1); sc->sc_min_rssi = WI_LUCENT_MIN_RSSI; sc->sc_max_rssi = WI_LUCENT_MAX_RSSI; sc->sc_dbm_offset = WI_LUCENT_DBM_OFFSET; break; case WI_INTERSIL: sc->sc_ntxbuf = WI_NTXBUF; sc->sc_flags |= WI_FLAGS_HAS_FRAGTHR; sc->sc_flags |= WI_FLAGS_HAS_ROAMING; sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE; /* * Old firmware are slow, so give peace a chance. */ if (sc->sc_sta_firmware_ver < 10000) sc->wi_cmd_count = 5000; if (sc->sc_sta_firmware_ver > 10101) sc->sc_flags |= WI_FLAGS_HAS_DBMADJUST; if (sc->sc_sta_firmware_ver >= 800) { ic->ic_caps |= IEEE80211_C_IBSS; ic->ic_caps |= IEEE80211_C_MONITOR; } /* * version 0.8.3 and newer are the only ones that are known * to currently work. Earlier versions can be made to work, * at least according to the Linux driver. */ if (sc->sc_sta_firmware_ver >= 803) ic->ic_caps |= IEEE80211_C_HOSTAP; sc->sc_ibss_port = htole16(0); sc->sc_min_rssi = WI_PRISM_MIN_RSSI; sc->sc_max_rssi = WI_PRISM_MAX_RSSI; sc->sc_dbm_offset = WI_PRISM_DBM_OFFSET; break; case WI_SYMBOL: sc->sc_ntxbuf = 1; sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY; if (sc->sc_sta_firmware_ver >= 25000) ic->ic_caps |= IEEE80211_C_IBSS; sc->sc_ibss_port = htole16(4); sc->sc_min_rssi = WI_PRISM_MIN_RSSI; sc->sc_max_rssi = WI_PRISM_MAX_RSSI; sc->sc_dbm_offset = WI_PRISM_DBM_OFFSET; break; } /* * Find out if we support WEP on this card. */ buflen = sizeof(val); if (wi_read_rid(sc, WI_RID_WEP_AVAIL, &val, &buflen) == 0 && val != htole16(0)) ic->ic_caps |= IEEE80211_C_WEP; /* Find supported rates. */ buflen = sizeof(ratebuf); rs = &ic->ic_sup_rates[IEEE80211_MODE_11B]; if (wi_read_rid(sc, WI_RID_DATA_RATES, ratebuf, &buflen) == 0) { nrates = le16toh(*(u_int16_t *)ratebuf); if (nrates > IEEE80211_RATE_MAXSIZE) nrates = IEEE80211_RATE_MAXSIZE; rs->rs_nrates = 0; for (i = 0; i < nrates; i++) if (ratebuf[2+i]) rs->rs_rates[rs->rs_nrates++] = ratebuf[2+i]; } else { /* XXX fallback on error? */ } buflen = sizeof(val); if ((sc->sc_flags & WI_FLAGS_HAS_DBMADJUST) && wi_read_rid(sc, WI_RID_DBM_ADJUST, &val, &buflen) == 0) { sc->sc_dbm_offset = le16toh(val); } sc->sc_max_datalen = 2304; sc->sc_system_scale = 1; sc->sc_cnfauthmode = IEEE80211_AUTH_OPEN; sc->sc_roaming_mode = 1; sc->wi_channel = IEEE80211_CHAN_ANYC; sc->sc_portnum = WI_DEFAULT_PORT; sc->sc_authtype = WI_DEFAULT_AUTHTYPE; bzero(sc->sc_nodename, sizeof(sc->sc_nodename)); sc->sc_nodelen = sizeof(WI_DEFAULT_NODENAME) - 1; bcopy(WI_DEFAULT_NODENAME, sc->sc_nodename, sc->sc_nodelen); bzero(sc->sc_net_name, sizeof(sc->sc_net_name)); bcopy(WI_DEFAULT_NETNAME, sc->sc_net_name, sizeof(WI_DEFAULT_NETNAME) - 1); /* * Call MI attach routine. */ ieee80211_ifattach(ic); /* override state transition method */ sc->sc_newstate = ic->ic_newstate; sc->sc_key_alloc = ic->ic_crypto.cs_key_alloc; ic->ic_crypto.cs_key_alloc = wi_key_alloc; ic->ic_newstate = wi_newstate; ic->ic_raw_xmit = wi_raw_xmit; ic->ic_scan_start = wi_scan_start; ic->ic_scan_curchan = wi_scan_curchan; ic->ic_scan_mindwell = wi_scan_mindwell; ic->ic_scan_end = wi_scan_end; ic->ic_set_channel = wi_set_channel; ic->ic_node_alloc = wi_node_alloc; ic->ic_updateslot = wi_update_slot; ic->ic_reset = wi_reset; ieee80211_media_init(ic, wi_media_change, wi_media_status); #if NBPFILTER > 0 bpfattach2(ifp, DLT_IEEE802_11_RADIO, sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th), &sc->sc_drvbpf); /* * Initialize constant fields. * XXX make header lengths a multiple of 32-bits so subsequent * headers are properly aligned; this is a kludge to keep * certain applications happy. * * NB: the channel is setup each time we transition to the * RUN state to avoid filling it in for each frame. */ sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t)); sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len); sc->sc_tx_th.wt_ihdr.it_present = htole32(WI_TX_RADIOTAP_PRESENT); sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t)); sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len); sc->sc_rx_th.wr_ihdr.it_present = htole32(WI_RX_RADIOTAP_PRESENT); #endif if (bootverbose) ieee80211_announce(ic); return (0); } int wi_detach(device_t dev) { struct wi_softc *sc = device_get_softc(dev); struct ifnet *ifp = sc->sc_ifp; WI_LOCK(sc); /* check if device was removed */ sc->wi_gone |= !bus_child_present(dev); wi_stop(ifp, 0); WI_UNLOCK(sc); #if NBPFILTER > 0 bpfdetach(ifp); #endif ieee80211_ifdetach(&sc->sc_ic); bus_teardown_intr(dev, sc->irq, sc->wi_intrhand); if_free(sc->sc_ifp); wi_free(dev); mtx_destroy(&sc->sc_mtx); return (0); } #ifdef __NetBSD__ int wi_activate(struct device *self, enum devact act) { struct wi_softc *sc = (struct wi_softc *)self; int rv = 0, s; s = splnet(); switch (act) { case DVACT_ACTIVATE: rv = EOPNOTSUPP; break; case DVACT_DEACTIVATE: if_deactivate(sc->sc_ifp); break; } splx(s); return rv; } void wi_power(struct wi_softc *sc, int why) { struct ifnet *ifp = sc->sc_ifp; int s; s = splnet(); switch (why) { case PWR_SUSPEND: case PWR_STANDBY: wi_stop(ifp, 1); break; case PWR_RESUME: if (ifp->if_flags & IFF_UP) { wi_init(ifp); (void)wi_intr(sc); } break; case PWR_SOFTSUSPEND: case PWR_SOFTSTANDBY: case PWR_SOFTRESUME: break; } splx(s); } #endif /* __NetBSD__ */ void wi_shutdown(device_t dev) { struct wi_softc *sc = device_get_softc(dev); wi_stop(sc->sc_ifp, 1); } void wi_intr(void *arg) { struct wi_softc *sc = arg; struct ifnet *ifp = sc->sc_ifp; u_int16_t status; WI_LOCK(sc); if (sc->wi_gone || !sc->sc_enabled || (ifp->if_flags & IFF_UP) == 0) { CSR_WRITE_2(sc, WI_INT_EN, 0); CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF); WI_UNLOCK(sc); return; } /* Disable interrupts. */ CSR_WRITE_2(sc, WI_INT_EN, 0); status = CSR_READ_2(sc, WI_EVENT_STAT); if (status & WI_EV_RX) wi_rx_intr(sc); if (status & WI_EV_ALLOC) wi_tx_intr(sc); if (status & WI_EV_TX_EXC) wi_tx_ex_intr(sc); if (status & WI_EV_INFO) wi_info_intr(sc); if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 && (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0 && !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) wi_start_locked(ifp); /* Re-enable interrupts. */ CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS); WI_UNLOCK(sc); return; } void wi_init(void *arg) { struct wi_softc *sc = arg; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = &sc->sc_ic; struct wi_joinreq join; struct ieee80211_channel *chan; int i; int error = 0, wasenabled; if (sc->wi_gone) return; if ((wasenabled = sc->sc_enabled)) wi_stop(ifp, 1); WI_LOCK(sc); wi_reset(ifp); /* common 802.11 configuration */ ic->ic_flags &= ~IEEE80211_F_IBSSON; sc->sc_flags &= ~WI_FLAGS_OUTRANGE; switch (ic->ic_opmode) { case IEEE80211_M_STA: wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS); break; case IEEE80211_M_IBSS: wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port); ic->ic_flags |= IEEE80211_F_IBSSON; break; case IEEE80211_M_AHDEMO: wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC); break; case IEEE80211_M_HOSTAP: /* * For PRISM cards, override the empty SSID, because in * HostAP mode the controller will lock up otherwise. */ if (sc->sc_firmware_type == WI_INTERSIL && ic->ic_des_ssid[0].len == 0) { ic->ic_des_ssid[0].ssid[0] = ' '; ic->ic_des_ssid[0].len = 1; } wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP); break; case IEEE80211_M_MONITOR: switch (sc->sc_firmware_type) { case WI_LUCENT: wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC); break; case WI_INTERSIL: wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_APSILENT); break; } wi_cmd(sc, WI_CMD_DEBUG | (WI_TEST_MONITOR << 8), 0, 0, 0); break; case IEEE80211_M_WDS: /* XXXX */ break; } /* Intersil interprets this RID as joining ESS even in IBSS mode */ if (sc->sc_firmware_type == WI_LUCENT && (ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_ssid[0].len > 0) wi_write_val(sc, WI_RID_CREATE_IBSS, 1); else wi_write_val(sc, WI_RID_CREATE_IBSS, 0); wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval); wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_ssid[0].ssid, ic->ic_des_ssid[0].len); wi_write_val(sc, WI_RID_OWN_CHNL, ieee80211_chan2ieee(ic, ic->ic_bsschan)); wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_ssid[0].ssid, ic->ic_des_ssid[0].len); IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp)); wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN); if (ic->ic_caps & IEEE80211_C_PMGT) wi_write_val(sc, WI_RID_PM_ENABLED, (ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0); /* not yet common 802.11 configuration */ wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen); wi_write_val(sc, WI_RID_RTS_THRESH, ic->ic_rtsthreshold); if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) wi_write_val(sc, WI_RID_FRAG_THRESH, ic->ic_fragthreshold); /* driver specific 802.11 configuration */ if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale); if (sc->sc_flags & WI_FLAGS_HAS_ROAMING) wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode); if (sc->sc_flags & WI_FLAGS_HAS_MOR) wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven); wi_write_txrate(sc); wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen); wi_write_val(sc, WI_RID_ALT_RETRY_CNT, 0); /* for IEEE80211_BPF_NOACK */ if (ic->ic_opmode == IEEE80211_M_HOSTAP && sc->sc_firmware_type == WI_INTERSIL) { wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_bintval); wi_write_val(sc, WI_RID_BASIC_RATE, 0x03); /* 1, 2 */ wi_write_val(sc, WI_RID_SUPPORT_RATE, 0x0f); /* 1, 2, 5.5, 11 */ wi_write_val(sc, WI_RID_DTIM_PERIOD, ic->ic_dtim_period); } /* * Initialize promisc mode. * Being in the Host-AP mode causes a great * deal of pain if primisc mode is set. * Therefore we avoid confusing the firmware * and always reset promisc mode in Host-AP * mode. Host-AP sees all the packets anyway. */ if (ic->ic_opmode != IEEE80211_M_HOSTAP && (ifp->if_flags & IFF_PROMISC) != 0) { wi_write_val(sc, WI_RID_PROMISC, 1); } else { wi_write_val(sc, WI_RID_PROMISC, 0); } /* Configure WEP. */ if (ic->ic_caps & IEEE80211_C_WEP) { sc->sc_cnfauthmode = ic->ic_bss->ni_authmode; wi_write_wep(sc); } else sc->sc_encryption = 0; /* Set multicast filter. */ wi_write_multi(sc); /* Allocate fids for the card */ if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) { sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame); if (sc->sc_firmware_type == WI_SYMBOL) sc->sc_buflen = 1585; /* XXX */ for (i = 0; i < sc->sc_ntxbuf; i++) { error = wi_alloc_fid(sc, sc->sc_buflen, &sc->sc_txd[i].d_fid); if (error) { device_printf(sc->sc_dev, "tx buffer allocation failed (error %u)\n", error); goto out; } sc->sc_txd[i].d_len = 0; } } sc->sc_txcur = sc->sc_txnext = 0; /* Enable desired port */ wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0); sc->sc_enabled = 1; ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; if (ic->ic_opmode == IEEE80211_M_AHDEMO || ic->ic_opmode == IEEE80211_M_IBSS || ic->ic_opmode == IEEE80211_M_MONITOR || ic->ic_opmode == IEEE80211_M_HOSTAP) { chan = (sc->wi_channel == IEEE80211_CHAN_ANYC) ? ic->ic_curchan : sc->wi_channel; ieee80211_create_ibss(ic, chan); } /* Enable interrupts */ CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS); if (!wasenabled && ic->ic_opmode == IEEE80211_M_HOSTAP && sc->sc_firmware_type == WI_INTERSIL) { /* XXX: some card need to be re-enabled for hostap */ wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0); wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0); } if (ic->ic_opmode == IEEE80211_M_STA && ((ic->ic_flags & IEEE80211_F_DESBSSID) || ic->ic_des_chan != IEEE80211_CHAN_ANYC)) { memset(&join, 0, sizeof(join)); if (ic->ic_flags & IEEE80211_F_DESBSSID) IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid); if (ic->ic_des_chan != IEEE80211_CHAN_ANYC) join.wi_chan = htole16( ieee80211_chan2ieee(ic, ic->ic_des_chan)); /* Lucent firmware does not support the JOIN RID. */ if (sc->sc_firmware_type != WI_LUCENT) wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join)); } callout_reset(&sc->sc_watchdog, hz, wi_watchdog, sc); WI_UNLOCK(sc); return; out: if (error) { if_printf(ifp, "interface not running\n"); wi_stop(ifp, 1); } WI_UNLOCK(sc); DPRINTF(("wi_init: return %d\n", error)); return; } void wi_stop(struct ifnet *ifp, int disable) { struct wi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; ieee80211_new_state(ic, IEEE80211_S_INIT, -1); DELAY(100000); WI_LOCK(sc); if (sc->sc_enabled && !sc->wi_gone) { CSR_WRITE_2(sc, WI_INT_EN, 0); wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0); if (disable) { #ifdef __NetBSD__ if (sc->sc_disable) (*sc->sc_disable)(sc); #endif sc->sc_enabled = 0; } } else if (sc->wi_gone && disable) /* gone --> not enabled */ sc->sc_enabled = 0; callout_stop(&sc->sc_watchdog); /* XXX drain */ sc->sc_tx_timer = 0; sc->sc_scan_timer = 0; sc->sc_false_syns = 0; sc->sc_naps = 0; ifp->if_drv_flags &= ~(IFF_DRV_OACTIVE | IFF_DRV_RUNNING); WI_UNLOCK(sc); } static void wi_start_locked(struct ifnet *ifp) { struct wi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni; struct ieee80211_frame *wh; struct ether_header *eh; struct mbuf *m0; struct wi_frame frmhdr; int cur; WI_LOCK_ASSERT(sc); if (sc->wi_gone) return; if (sc->sc_flags & WI_FLAGS_OUTRANGE) return; memset(&frmhdr, 0, sizeof(frmhdr)); cur = sc->sc_txnext; for (;;) { IF_POLL(&ic->ic_mgtq, m0); if (m0 != NULL) { if (sc->sc_txd[cur].d_len != 0) { ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } IF_DEQUEUE(&ic->ic_mgtq, m0); /* * Hack! The referenced node pointer is in the * rcvif field of the packet header. This is * placed there by ieee80211_mgmt_output because * we need to hold the reference with the frame * and there's no other way (other than packet * tags which we consider too expensive to use) * to pass it along. */ ni = (struct ieee80211_node *) m0->m_pkthdr.rcvif; m0->m_pkthdr.rcvif = NULL; m_copydata(m0, 4, ETHER_ADDR_LEN * 2, (caddr_t)&frmhdr.wi_ehdr); frmhdr.wi_ehdr.ether_type = 0; wh = mtod(m0, struct ieee80211_frame *); } else { if (ic->ic_state != IEEE80211_S_RUN) break; IFQ_DRV_DEQUEUE(&ifp->if_snd, m0); if (m0 == NULL) break; if (sc->sc_txd[cur].d_len != 0) { IFQ_DRV_PREPEND(&ifp->if_snd, m0); ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } if (m0->m_len < sizeof(struct ether_header) && (m0 = m_pullup(m0, sizeof(struct ether_header))) == NULL) { ifp->if_oerrors++; continue; } eh = mtod(m0, struct ether_header *); ni = ieee80211_find_txnode(ic, eh->ether_dhost); if (ni == NULL) { m_freem(m0); continue; } ifp->if_opackets++; m_copydata(m0, 0, ETHER_HDR_LEN, (caddr_t)&frmhdr.wi_ehdr); #if NBPFILTER > 0 BPF_MTAP(ifp, m0); #endif m0 = ieee80211_encap(ic, m0, ni); if (m0 == NULL) { ifp->if_oerrors++; ieee80211_free_node(ni); continue; } wh = mtod(m0, struct ieee80211_frame *); } #if NBPFILTER > 0 if (bpf_peers_present(ic->ic_rawbpf)) bpf_mtap(ic->ic_rawbpf, m0); #endif frmhdr.wi_tx_ctl = htole16(WI_ENC_TX_802_11|WI_TXCNTL_TX_EX); /* XXX check key for SWCRYPT instead of using operating mode */ if ((wh->i_fc[1] & IEEE80211_FC1_WEP) && (sc->sc_encryption & HOST_ENCRYPT)) { struct ieee80211_key *k; k = ieee80211_crypto_encap(ic, ni, m0); if (k == NULL) { ieee80211_free_node(ni); m_freem(m0); continue; } frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT); } #if NBPFILTER > 0 if (bpf_peers_present(sc->sc_drvbpf)) { sc->sc_tx_th.wt_rate = ni->ni_rates.rs_rates[ni->ni_txrate]; bpf_mtap2(sc->sc_drvbpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0); } #endif m_copydata(m0, 0, sizeof(struct ieee80211_frame), (caddr_t)&frmhdr.wi_whdr); m_adj(m0, sizeof(struct ieee80211_frame)); frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len); if (IFF_DUMPPKTS(ifp)) wi_dump_pkt(&frmhdr, NULL, -1); ieee80211_free_node(ni); if (wi_start_tx(ifp, &frmhdr, m0)) continue; sc->sc_txnext = cur = (cur + 1) % sc->sc_ntxbuf; } } static void wi_start(struct ifnet *ifp) { struct wi_softc *sc = ifp->if_softc; WI_LOCK(sc); wi_start_locked(ifp); WI_UNLOCK(sc); } static int wi_start_tx(struct ifnet *ifp, struct wi_frame *frmhdr, struct mbuf *m0) { struct wi_softc *sc = ifp->if_softc; int cur = sc->sc_txnext; int fid, off, error; fid = sc->sc_txd[cur].d_fid; off = sizeof(*frmhdr); error = wi_write_bap(sc, fid, 0, frmhdr, sizeof(*frmhdr)) != 0 || wi_mwrite_bap(sc, fid, off, m0, m0->m_pkthdr.len) != 0; m_freem(m0); if (error) { ifp->if_oerrors++; return -1; } sc->sc_txd[cur].d_len = off; if (sc->sc_txcur == cur) { if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) { if_printf(ifp, "xmit failed\n"); sc->sc_txd[cur].d_len = 0; return -1; } sc->sc_tx_timer = 5; } return 0; } static int wi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m0, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct ifnet *ifp = ic->ic_ifp; struct wi_softc *sc = ifp->if_softc; struct ieee80211_frame *wh; struct wi_frame frmhdr; int cur; int rc = 0; WI_LOCK(sc); if (sc->wi_gone) { rc = ENETDOWN; goto out; } if (sc->sc_flags & WI_FLAGS_OUTRANGE) { rc = ENETDOWN; goto out; } memset(&frmhdr, 0, sizeof(frmhdr)); cur = sc->sc_txnext; if (sc->sc_txd[cur].d_len != 0) { ifp->if_drv_flags |= IFF_DRV_OACTIVE; rc = ENOBUFS; goto out; } m0->m_pkthdr.rcvif = NULL; m_copydata(m0, 4, ETHER_ADDR_LEN * 2, (caddr_t)&frmhdr.wi_ehdr); frmhdr.wi_ehdr.ether_type = 0; wh = mtod(m0, struct ieee80211_frame *); #if NBPFILTER > 0 if (bpf_peers_present(ic->ic_rawbpf)) bpf_mtap(ic->ic_rawbpf, m0); #endif frmhdr.wi_tx_ctl = htole16(WI_ENC_TX_802_11|WI_TXCNTL_TX_EX); if (params && (params->ibp_flags & IEEE80211_BPF_NOACK)) frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_ALTRTRY); /* XXX check key for SWCRYPT instead of using operating mode */ if ((wh->i_fc[1] & IEEE80211_FC1_WEP) && (sc->sc_encryption & HOST_ENCRYPT)) { if (!params || (params && (params->ibp_flags & IEEE80211_BPF_CRYPTO))) { struct ieee80211_key *k; k = ieee80211_crypto_encap(ic, ni, m0); if (k == NULL) { rc = ENOMEM; goto out; } frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT); } } #if NBPFILTER > 0 if (bpf_peers_present(sc->sc_drvbpf)) { sc->sc_tx_th.wt_rate = ni->ni_rates.rs_rates[ni->ni_txrate]; bpf_mtap2(sc->sc_drvbpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0); } #endif m_copydata(m0, 0, sizeof(struct ieee80211_frame), (caddr_t)&frmhdr.wi_whdr); m_adj(m0, sizeof(struct ieee80211_frame)); frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len); if (IFF_DUMPPKTS(ifp)) wi_dump_pkt(&frmhdr, NULL, -1); if (wi_start_tx(ifp, &frmhdr, m0) < 0) { m0 = NULL; rc = EIO; goto out; } m0 = NULL; sc->sc_txnext = cur = (cur + 1) % sc->sc_ntxbuf; out: WI_UNLOCK(sc); if (m0 != NULL) m_freem(m0); ieee80211_free_node(ni); return rc; } static int wi_reset(struct ifnet *ifp) { struct wi_softc *sc = ifp->if_softc; #define WI_INIT_TRIES 3 int i; int error = 0; int tries; /* Symbol firmware cannot be initialized more than once */ if (sc->sc_firmware_type == WI_SYMBOL && sc->sc_reset) return (0); if (sc->sc_firmware_type == WI_SYMBOL) tries = 1; else tries = WI_INIT_TRIES; for (i = 0; i < tries; i++) { if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0) break; DELAY(WI_DELAY * 1000); } sc->sc_reset = 1; if (i == tries) { if_printf(ifp, "init failed\n"); return (error); } CSR_WRITE_2(sc, WI_INT_EN, 0); CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF); /* Calibrate timer. */ wi_write_val(sc, WI_RID_TICK_TIME, 8); return (0); #undef WI_INIT_TRIES } static void wi_watchdog(void *arg) { struct wi_softc *sc = arg; struct ifnet *ifp = sc->sc_ifp; if (!sc->sc_enabled) return; if (sc->sc_tx_timer) { if (--sc->sc_tx_timer == 0) { if_printf(ifp, "device timeout\n"); ifp->if_oerrors++; wi_init(ifp->if_softc); return; } } if (sc->sc_scan_timer) { if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT && sc->sc_firmware_type == WI_INTERSIL) { DPRINTF(("wi_watchdog: inquire scan\n")); wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0); } } /* TODO: rate control */ callout_reset(&sc->sc_watchdog, hz, wi_watchdog, sc); } static int wi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct wi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; int error = 0; struct thread *td = curthread; #if 0 struct ifreq *ifr = (struct ifreq *)data; struct wi_req wreq; #endif if (sc->wi_gone) return (ENODEV); switch (cmd) { case SIOCSIFFLAGS: /* * Can't do promisc and hostap at the same time. If all that's * changing is the promisc flag, try to short-circuit a call to * wi_init() by just setting PROMISC in the hardware. */ WI_LOCK(sc); if (ifp->if_flags & IFF_UP) { if (ic->ic_opmode != IEEE80211_M_HOSTAP && ifp->if_drv_flags & IFF_DRV_RUNNING) { if (ifp->if_flags & IFF_PROMISC && !(sc->sc_if_flags & IFF_PROMISC)) { wi_write_val(sc, WI_RID_PROMISC, 1); } else if (!(ifp->if_flags & IFF_PROMISC) && sc->sc_if_flags & IFF_PROMISC) { wi_write_val(sc, WI_RID_PROMISC, 0); } else { wi_init(sc); } } else { wi_init(sc); } } else { if (ifp->if_drv_flags & IFF_DRV_RUNNING) { wi_stop(ifp, 1); } sc->wi_gone = 0; } sc->sc_if_flags = ifp->if_flags; WI_UNLOCK(sc); error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: WI_LOCK(sc); error = wi_write_multi(sc); WI_UNLOCK(sc); break; #if 0 case SIOCGIFGENERIC: WI_LOCK(sc); error = wi_get_cfg(ifp, cmd, data); WI_UNLOCK(sc); break; case SIOCSIFGENERIC: error = priv_check(td, PRIV_DRIVER); if (error == 0) error = wi_set_cfg(ifp, cmd, data); break; case SIOCGPRISM2DEBUG: error = copyin(ifr->ifr_data, &wreq, sizeof(wreq)); if (error) break; if (!(ifp->if_drv_flags & IFF_DRV_RUNNING) || sc->sc_firmware_type == WI_LUCENT) { error = EIO; break; } error = wi_get_debug(sc, &wreq); if (error == 0) error = copyout(&wreq, ifr->ifr_data, sizeof(wreq)); break; case SIOCSPRISM2DEBUG: if ((error = priv_check(td, PRIV_DRIVER))) return (error); error = copyin(ifr->ifr_data, &wreq, sizeof(wreq)); if (error) break; WI_LOCK(sc); error = wi_set_debug(sc, &wreq); WI_UNLOCK(sc); break; #endif case SIOCG80211: error = wi_ioctl_get(ifp, cmd, data); break; case SIOCS80211: error = priv_check(td, PRIV_NET80211_MANAGE); if (error) break; error = wi_ioctl_set(ifp, cmd, data); break; default: error = ieee80211_ioctl(ic, cmd, data); WI_LOCK(sc); if (error == ENETRESET) { if (sc->sc_enabled) wi_init(sc); /* XXX no error return */ error = 0; } WI_UNLOCK(sc); break; } return (error); } static int wi_ioctl_get(struct ifnet *ifp, u_long cmd, caddr_t data) { int error; struct wi_softc *sc; struct ieee80211req *ireq; struct ieee80211com *ic; sc = ifp->if_softc; ic = &sc->sc_ic; ireq = (struct ieee80211req *) data; switch (ireq->i_type) { case IEEE80211_IOC_STATIONNAME: ireq->i_len = sc->sc_nodelen + 1; error = copyout(sc->sc_nodename, ireq->i_data, ireq->i_len); break; default: error = ieee80211_ioctl(ic, cmd, data); WI_LOCK(sc); if (error == ENETRESET) { if (sc->sc_enabled) wi_init(sc); /* XXX no error return */ error = 0; } WI_UNLOCK(sc); break; } return (error); } static int wi_ioctl_set(struct ifnet *ifp, u_long cmd, caddr_t data) { int error; struct wi_softc *sc; struct ieee80211req *ireq; u_int8_t nodename[IEEE80211_NWID_LEN]; sc = ifp->if_softc; ireq = (struct ieee80211req *) data; switch (ireq->i_type) { case IEEE80211_IOC_STATIONNAME: if (ireq->i_val != 0 || ireq->i_len > IEEE80211_NWID_LEN) { error = EINVAL; break; } memset(nodename, 0, IEEE80211_NWID_LEN); error = copyin(ireq->i_data, nodename, ireq->i_len); if (error) break; WI_LOCK(sc); if (sc->sc_enabled) { error = wi_write_ssid(sc, WI_RID_NODENAME, nodename, ireq->i_len); } if (error == 0) { memcpy(sc->sc_nodename, nodename, IEEE80211_NWID_LEN); sc->sc_nodelen = ireq->i_len; } WI_UNLOCK(sc); break; default: error = ieee80211_ioctl(&sc->sc_ic, cmd, data); WI_LOCK(sc); if (error == ENETRESET) { if (sc->sc_enabled) wi_init(sc); /* XXX no error return */ error = 0; } WI_UNLOCK(sc); break; } return (error); } static struct ieee80211_node * wi_node_alloc(struct ieee80211_node_table *nt) { struct wi_node *rn; rn = malloc(sizeof (struct wi_node), M_80211_NODE, M_NOWAIT | M_ZERO); return (rn != NULL) ? &rn->ni : NULL; } static int wi_media_change(struct ifnet *ifp) { struct wi_softc *sc = ifp->if_softc; int error; error = ieee80211_media_change(ifp); if (error == ENETRESET) { if (sc->sc_enabled) wi_init(sc); /* XXX no error return */ error = 0; } return error; } static void wi_media_status(struct ifnet *ifp, struct ifmediareq *imr) { struct wi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; u_int16_t val; int rate, len; if (sc->wi_gone) { /* hardware gone (e.g. ejected) */ imr->ifm_active = IFM_IEEE80211 | IFM_NONE; imr->ifm_status = 0; return; } imr->ifm_status = IFM_AVALID; imr->ifm_active = IFM_IEEE80211; if (!sc->sc_enabled) { /* port !enabled, have no status */ imr->ifm_active |= IFM_NONE; imr->ifm_status = IFM_AVALID; return; } if (ic->ic_state == IEEE80211_S_RUN && (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0) imr->ifm_status |= IFM_ACTIVE; len = sizeof(val); if (wi_read_rid(sc, WI_RID_CUR_TX_RATE, &val, &len) == 0 && len == sizeof(val)) { /* convert to 802.11 rate */ val = le16toh(val); rate = val * 2; if (sc->sc_firmware_type == WI_LUCENT) { if (rate == 10) rate = 11; /* 5.5Mbps */ } else { if (rate == 4*2) rate = 11; /* 5.5Mbps */ else if (rate == 8*2) rate = 22; /* 11Mbps */ } } else rate = 0; imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B); switch (ic->ic_opmode) { case IEEE80211_M_STA: break; case IEEE80211_M_IBSS: imr->ifm_active |= IFM_IEEE80211_ADHOC; break; case IEEE80211_M_AHDEMO: imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0; break; case IEEE80211_M_HOSTAP: imr->ifm_active |= IFM_IEEE80211_HOSTAP; break; case IEEE80211_M_MONITOR: imr->ifm_active |= IFM_IEEE80211_MONITOR; break; case IEEE80211_M_WDS: /* XXXX */ break; } } static void wi_sync_bssid(struct wi_softc *sc, u_int8_t new_bssid[IEEE80211_ADDR_LEN]) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni = ic->ic_bss; struct ifnet *ifp = sc->sc_ifp; if (IEEE80211_ADDR_EQ(new_bssid, ni->ni_bssid)) return; DPRINTF(("wi_sync_bssid: bssid %s -> ", ether_sprintf(ni->ni_bssid))); DPRINTF(("%s ?\n", ether_sprintf(new_bssid))); /* In promiscuous mode, the BSSID field is not a reliable * indicator of the firmware's BSSID. Damp spurious * change-of-BSSID indications. */ if ((ifp->if_flags & IFF_PROMISC) != 0 && !ppsratecheck(&sc->sc_last_syn, &sc->sc_false_syns, WI_MAX_FALSE_SYNS)) return; sc->sc_false_syns = MAX(0, sc->sc_false_syns - 1); #if 0 /* * XXX hack; we should create a new node with the new bssid * and replace the existing ic_bss with it but since we don't * process management frames to collect state we cheat by * reusing the existing node as we know wi_newstate will be * called and it will overwrite the node state. */ ieee80211_sta_join(ic, ieee80211_ref_node(ni)); #endif } static void wi_rx_monitor(struct wi_softc *sc, int fid) { struct ifnet *ifp = sc->sc_ifp; struct wi_frame *rx_frame; struct mbuf *m; int datlen, hdrlen; /* first allocate mbuf for packet storage */ m = m_getcl(M_DONTWAIT, MT_DATA, 0); if (m == NULL) { ifp->if_ierrors++; return; } m->m_pkthdr.rcvif = ifp; /* now read wi_frame first so we know how much data to read */ if (wi_read_bap(sc, fid, 0, mtod(m, caddr_t), sizeof(*rx_frame))) { ifp->if_ierrors++; goto done; } rx_frame = mtod(m, struct wi_frame *); switch ((rx_frame->wi_status & WI_STAT_MAC_PORT) >> 8) { case 7: switch (rx_frame->wi_whdr.i_fc[0] & IEEE80211_FC0_TYPE_MASK) { case IEEE80211_FC0_TYPE_DATA: hdrlen = WI_DATA_HDRLEN; datlen = rx_frame->wi_dat_len + WI_FCS_LEN; break; case IEEE80211_FC0_TYPE_MGT: hdrlen = WI_MGMT_HDRLEN; datlen = rx_frame->wi_dat_len + WI_FCS_LEN; break; case IEEE80211_FC0_TYPE_CTL: /* * prism2 cards don't pass control packets * down properly or consistently, so we'll only * pass down the header. */ hdrlen = WI_CTL_HDRLEN; datlen = 0; break; default: if_printf(ifp, "received packet of unknown type " "on port 7\n"); ifp->if_ierrors++; goto done; } break; case 0: hdrlen = WI_DATA_HDRLEN; datlen = rx_frame->wi_dat_len + WI_FCS_LEN; break; default: if_printf(ifp, "received packet on invalid " "port (wi_status=0x%x)\n", rx_frame->wi_status); ifp->if_ierrors++; goto done; } if (hdrlen + datlen + 2 > MCLBYTES) { if_printf(ifp, "oversized packet received " "(wi_dat_len=%d, wi_status=0x%x)\n", datlen, rx_frame->wi_status); ifp->if_ierrors++; goto done; } if (wi_read_bap(sc, fid, hdrlen, mtod(m, caddr_t) + hdrlen, datlen + 2) == 0) { m->m_pkthdr.len = m->m_len = hdrlen + datlen; ifp->if_ipackets++; BPF_MTAP(ifp, m); /* Handle BPF listeners. */ } else ifp->if_ierrors++; done: m_freem(m); } static void wi_rx_intr(struct wi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = sc->sc_ifp; struct wi_frame frmhdr; struct mbuf *m; struct ieee80211_frame *wh; struct ieee80211_node *ni; int fid, len, off, rssi; u_int8_t dir; u_int16_t status; u_int32_t rstamp; fid = CSR_READ_2(sc, WI_RX_FID); if (sc->wi_debug.wi_monitor) { /* * If we are in monitor mode just * read the data from the device. */ wi_rx_monitor(sc, fid); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX); return; } /* First read in the frame header */ if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) { CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX); ifp->if_ierrors++; DPRINTF(("wi_rx_intr: read fid %x failed\n", fid)); return; } if (IFF_DUMPPKTS(ifp)) wi_dump_pkt(&frmhdr, NULL, frmhdr.wi_rx_signal); /* * Drop undecryptable or packets with receive errors here */ status = le16toh(frmhdr.wi_status); if (status & WI_STAT_ERRSTAT) { CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX); ifp->if_ierrors++; DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status)); return; } rssi = frmhdr.wi_rx_signal; rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) | le16toh(frmhdr.wi_rx_tstamp1); len = le16toh(frmhdr.wi_dat_len); off = ALIGN(sizeof(struct ieee80211_frame)); /* * Sometimes the PRISM2.x returns bogusly large frames. Except * in monitor mode, just throw them away. */ if (off + len > MCLBYTES) { if (ic->ic_opmode != IEEE80211_M_MONITOR) { CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX); ifp->if_ierrors++; DPRINTF(("wi_rx_intr: oversized packet\n")); return; } else len = 0; } MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX); ifp->if_ierrors++; DPRINTF(("wi_rx_intr: MGET failed\n")); return; } if (off + len > MHLEN) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX); m_freem(m); ifp->if_ierrors++; DPRINTF(("wi_rx_intr: MCLGET failed\n")); return; } } m->m_data += off - sizeof(struct ieee80211_frame); memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame)); wi_read_bap(sc, fid, sizeof(frmhdr), m->m_data + sizeof(struct ieee80211_frame), len); m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len; m->m_pkthdr.rcvif = ifp; CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX); #if NBPFILTER > 0 if (bpf_peers_present(sc->sc_drvbpf)) { /* XXX replace divide by table */ sc->sc_rx_th.wr_rate = frmhdr.wi_rx_rate / 5; sc->sc_rx_th.wr_antsignal = frmhdr.wi_rx_signal; sc->sc_rx_th.wr_antnoise = frmhdr.wi_rx_silence; sc->sc_rx_th.wr_flags = 0; if (frmhdr.wi_status & WI_STAT_PCF) sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_CFP; /* XXX IEEE80211_RADIOTAP_F_WEP */ bpf_mtap2(sc->sc_drvbpf, &sc->sc_rx_th, sc->sc_rx_th_len, m); } #endif wh = mtod(m, struct ieee80211_frame *); if (wh->i_fc[1] & IEEE80211_FC1_WEP) { /* * WEP is decrypted by hardware and the IV * is stripped. Clear WEP bit so we don't * try to process it in ieee80211_input. * XXX fix for TKIP, et. al. */ wh->i_fc[1] &= ~IEEE80211_FC1_WEP; } /* synchronize driver's BSSID with firmware's BSSID */ dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK; if (ic->ic_opmode == IEEE80211_M_IBSS && dir == IEEE80211_FC1_DIR_NODS) wi_sync_bssid(sc, wh->i_addr3); WI_UNLOCK(sc); /* * Locate the node for sender, track state, and * then pass this node (referenced) up to the 802.11 * layer for its use. */ ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *) wh); /* * Send frame up for processing. */ ieee80211_input(ic, m, ni, rssi, -95/*XXXXwi_rx_silence?*/, rstamp); /* * The frame may have caused the node to be marked for * reclamation (e.g. in response to a DEAUTH message) * so use free_node here instead of unref_node. */ ieee80211_free_node(ni); WI_LOCK(sc); } static void wi_tx_ex_intr(struct wi_softc *sc) { struct ifnet *ifp = sc->sc_ifp; struct wi_frame frmhdr; int fid; fid = CSR_READ_2(sc, WI_TX_CMP_FID); /* Read in the frame header */ if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) == 0) { u_int16_t status = le16toh(frmhdr.wi_status); /* * Spontaneous station disconnects appear as xmit * errors. Don't announce them and/or count them * as an output error. */ if ((status & WI_TXSTAT_DISCONNECT) == 0) { if (ppsratecheck(&lasttxerror, &curtxeps, wi_txerate)) { if_printf(ifp, "tx failed"); if (status & WI_TXSTAT_RET_ERR) printf(", retry limit exceeded"); if (status & WI_TXSTAT_AGED_ERR) printf(", max transmit lifetime exceeded"); if (status & WI_TXSTAT_DISCONNECT) printf(", port disconnected"); if (status & WI_TXSTAT_FORM_ERR) printf(", invalid format (data len %u src %6D)", le16toh(frmhdr.wi_dat_len), frmhdr.wi_ehdr.ether_shost, ":"); if (status & ~0xf) printf(", status=0x%x", status); printf("\n"); } ifp->if_oerrors++; } else { DPRINTF(("port disconnected\n")); ifp->if_collisions++; /* XXX */ } } else DPRINTF(("wi_tx_ex_intr: read fid %x failed\n", fid)); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC); } static void wi_tx_intr(struct wi_softc *sc) { struct ifnet *ifp = sc->sc_ifp; int fid, cur; if (sc->wi_gone) return; fid = CSR_READ_2(sc, WI_ALLOC_FID); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC); cur = sc->sc_txcur; if (sc->sc_txd[cur].d_fid != fid) { if_printf(ifp, "bad alloc %x != %x, cur %d nxt %d\n", fid, sc->sc_txd[cur].d_fid, cur, sc->sc_txnext); return; } sc->sc_tx_timer = 0; sc->sc_txd[cur].d_len = 0; sc->sc_txcur = cur = (cur + 1) % sc->sc_ntxbuf; if (sc->sc_txd[cur].d_len == 0) ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; else { if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, sc->sc_txd[cur].d_fid, 0, 0)) { if_printf(ifp, "xmit failed\n"); sc->sc_txd[cur].d_len = 0; } else { sc->sc_tx_timer = 5; } } } static void wi_info_intr(struct wi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = sc->sc_ifp; int i, fid, len, off; u_int16_t ltbuf[2]; u_int16_t stat; u_int32_t *ptr; fid = CSR_READ_2(sc, WI_INFO_FID); wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf)); switch (le16toh(ltbuf[1])) { case WI_INFO_LINK_STAT: wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat)); DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat))); switch (le16toh(stat)) { case WI_INFO_LINK_STAT_CONNECTED: sc->sc_flags &= ~WI_FLAGS_OUTRANGE; if (ic->ic_state == IEEE80211_S_RUN && ic->ic_opmode != IEEE80211_M_IBSS) break; /* FALLTHROUGH */ case WI_INFO_LINK_STAT_AP_CHG: ieee80211_new_state(ic, IEEE80211_S_RUN, -1); break; case WI_INFO_LINK_STAT_AP_INR: sc->sc_flags &= ~WI_FLAGS_OUTRANGE; break; case WI_INFO_LINK_STAT_AP_OOR: if (sc->sc_firmware_type == WI_SYMBOL && sc->sc_scan_timer > 0) { if (wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0) sc->sc_scan_timer = 0; break; } if (ic->ic_opmode == IEEE80211_M_STA) sc->sc_flags |= WI_FLAGS_OUTRANGE; break; case WI_INFO_LINK_STAT_DISCONNECTED: case WI_INFO_LINK_STAT_ASSOC_FAILED: if (ic->ic_opmode == IEEE80211_M_STA) ieee80211_new_state(ic, IEEE80211_S_INIT, -1); break; } break; case WI_INFO_COUNTERS: /* some card versions have a larger stats structure */ len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4); ptr = (u_int32_t *)&sc->sc_stats; off = sizeof(ltbuf); for (i = 0; i < len; i++, off += 2, ptr++) { wi_read_bap(sc, fid, off, &stat, sizeof(stat)); #ifdef WI_HERMES_STATS_WAR if (stat & 0xf000) stat = ~stat; #endif *ptr += stat; } ifp->if_collisions = sc->sc_stats.wi_tx_single_retries + sc->sc_stats.wi_tx_multi_retries + sc->sc_stats.wi_tx_retry_limit; break; case WI_INFO_SCAN_RESULTS: case WI_INFO_HOST_SCAN_RESULTS: wi_scan_result(sc, fid, le16toh(ltbuf[0])); ieee80211_scan_done(ic); break; default: DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid, le16toh(ltbuf[1]), le16toh(ltbuf[0]))); break; } CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO); } static int wi_write_multi(struct wi_softc *sc) { struct ifnet *ifp = sc->sc_ifp; int n; struct ifmultiaddr *ifma; struct wi_mcast mlist; if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { allmulti: memset(&mlist, 0, sizeof(mlist)); return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist, sizeof(mlist)); } n = 0; IF_ADDR_LOCK(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; if (n >= 16) goto allmulti; IEEE80211_ADDR_COPY(&mlist.wi_mcast[n], (LLADDR((struct sockaddr_dl *)ifma->ifma_addr))); n++; } IF_ADDR_UNLOCK(ifp); return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist, IEEE80211_ADDR_LEN * n); } static void wi_read_nicid(struct wi_softc *sc) { struct wi_card_ident *id; char *p; int len; u_int16_t ver[4]; /* getting chip identity */ memset(ver, 0, sizeof(ver)); len = sizeof(ver); wi_read_rid(sc, WI_RID_CARD_ID, ver, &len); device_printf(sc->sc_dev, "using "); sc->sc_firmware_type = WI_NOTYPE; for (id = wi_card_ident; id->card_name != NULL; id++) { if (le16toh(ver[0]) == id->card_id) { printf("%s", id->card_name); sc->sc_firmware_type = id->firm_type; break; } } if (sc->sc_firmware_type == WI_NOTYPE) { if (le16toh(ver[0]) & 0x8000) { printf("Unknown PRISM2 chip"); sc->sc_firmware_type = WI_INTERSIL; } else { printf("Unknown Lucent chip"); sc->sc_firmware_type = WI_LUCENT; } } /* get primary firmware version (Only Prism chips) */ if (sc->sc_firmware_type != WI_LUCENT) { memset(ver, 0, sizeof(ver)); len = sizeof(ver); wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len); sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 + le16toh(ver[3]) * 100 + le16toh(ver[1]); } /* get station firmware version */ memset(ver, 0, sizeof(ver)); len = sizeof(ver); wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len); sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 + le16toh(ver[3]) * 100 + le16toh(ver[1]); if (sc->sc_firmware_type == WI_INTERSIL && (sc->sc_sta_firmware_ver == 10102 || sc->sc_sta_firmware_ver == 20102)) { char ident[12]; memset(ident, 0, sizeof(ident)); len = sizeof(ident); /* value should be the format like "V2.00-11" */ if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 && *(p = (char *)ident) >= 'A' && p[2] == '.' && p[5] == '-' && p[8] == '\0') { sc->sc_firmware_type = WI_SYMBOL; sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 + (p[3] - '0') * 1000 + (p[4] - '0') * 100 + (p[6] - '0') * 10 + (p[7] - '0'); } } printf("\n"); device_printf(sc->sc_dev, "%s Firmware: ", sc->sc_firmware_type == WI_LUCENT ? "Lucent" : (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil")); if (sc->sc_firmware_type != WI_LUCENT) /* XXX */ printf("Primary (%u.%u.%u), ", sc->sc_pri_firmware_ver / 10000, (sc->sc_pri_firmware_ver % 10000) / 100, sc->sc_pri_firmware_ver % 100); printf("Station (%u.%u.%u)\n", sc->sc_sta_firmware_ver / 10000, (sc->sc_sta_firmware_ver % 10000) / 100, sc->sc_sta_firmware_ver % 100); } static int wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen) { struct wi_ssid ssid; if (buflen > IEEE80211_NWID_LEN) return ENOBUFS; memset(&ssid, 0, sizeof(ssid)); ssid.wi_len = htole16(buflen); memcpy(ssid.wi_ssid, buf, buflen); return wi_write_rid(sc, rid, &ssid, sizeof(ssid)); } #if 0 static int wi_get_cfg(struct ifnet *ifp, u_long cmd, caddr_t data) { struct wi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ifreq *ifr = (struct ifreq *)data; struct wi_req wreq; struct wi_scan_res *res; size_t reslen; int len, n, error, mif, val, off, i; error = copyin(ifr->ifr_data, &wreq, sizeof(wreq)); if (error) return error; len = (wreq.wi_len - 1) * 2; if (len < sizeof(u_int16_t)) return ENOSPC; if (len > sizeof(wreq.wi_val)) len = sizeof(wreq.wi_val); switch (wreq.wi_type) { case WI_RID_IFACE_STATS: memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats)); if (len < sizeof(sc->sc_stats)) error = ENOSPC; else len = sizeof(sc->sc_stats); break; case WI_RID_ENCRYPTION: case WI_RID_TX_CRYPT_KEY: case WI_RID_DEFLT_CRYPT_KEYS: case WI_RID_TX_RATE: return ieee80211_ioctl(ic, cmd, data); case WI_RID_MICROWAVE_OVEN: if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) { error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, &len); break; } wreq.wi_val[0] = htole16(sc->sc_microwave_oven); len = sizeof(u_int16_t); break; case WI_RID_DBM_ADJUST: if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_DBMADJUST)) { error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, &len); break; } wreq.wi_val[0] = htole16(sc->sc_dbm_offset); len = sizeof(u_int16_t); break; case WI_RID_ROAMING_MODE: if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) { error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, &len); break; } wreq.wi_val[0] = htole16(sc->sc_roaming_mode); len = sizeof(u_int16_t); break; case WI_RID_SYSTEM_SCALE: if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) { error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, &len); break; } wreq.wi_val[0] = htole16(sc->sc_system_scale); len = sizeof(u_int16_t); break; case WI_RID_FRAG_THRESH: if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)) { error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, &len); break; } wreq.wi_val[0] = htole16(ic->ic_fragthreshold); len = sizeof(u_int16_t); break; case WI_RID_READ_APS: if (ic->ic_opmode == IEEE80211_M_HOSTAP) return ieee80211_ioctl(ic, cmd, data); if (sc->sc_scan_timer > 0) { error = EINPROGRESS; break; } n = sc->sc_naps; if (len < sizeof(n)) { error = ENOSPC; break; } if (len < sizeof(n) + sizeof(struct wi_apinfo) * n) n = (len - sizeof(n)) / sizeof(struct wi_apinfo); len = sizeof(n) + sizeof(struct wi_apinfo) * n; memcpy(wreq.wi_val, &n, sizeof(n)); memcpy((caddr_t)wreq.wi_val + sizeof(n), sc->sc_aps, sizeof(struct wi_apinfo) * n); break; case WI_RID_PRISM2: wreq.wi_val[0] = sc->sc_firmware_type != WI_LUCENT; len = sizeof(u_int16_t); break; case WI_RID_MIF: mif = wreq.wi_val[0]; error = wi_cmd(sc, WI_CMD_READMIF, mif, 0, 0); val = CSR_READ_2(sc, WI_RESP0); wreq.wi_val[0] = val; len = sizeof(u_int16_t); break; case WI_RID_ZERO_CACHE: case WI_RID_PROCFRAME: /* ignore for compatibility */ /* XXX ??? */ break; case WI_RID_READ_CACHE: return ieee80211_ioctl(ic, cmd, data); case WI_RID_SCAN_RES: /* compatibility interface */ if (ic->ic_opmode == IEEE80211_M_HOSTAP) return ieee80211_ioctl(ic, cmd, data); if (sc->sc_scan_timer > 0) { error = EINPROGRESS; break; } n = sc->sc_naps; if (sc->sc_firmware_type == WI_LUCENT) { off = 0; reslen = WI_WAVELAN_RES_SIZE; } else { off = sizeof(struct wi_scan_p2_hdr); reslen = WI_PRISM2_RES_SIZE; } if (len < off + reslen * n) n = (len - off) / reslen; len = off + reslen * n; if (off != 0) { struct wi_scan_p2_hdr *p2 = (struct wi_scan_p2_hdr *)wreq.wi_val; /* * Prepend Prism-specific header. */ if (len < sizeof(struct wi_scan_p2_hdr)) { error = ENOSPC; break; } p2 = (struct wi_scan_p2_hdr *)wreq.wi_val; p2->wi_rsvd = 0; p2->wi_reason = n; /* XXX */ } for (i = 0; i < n; i++, off += reslen) { const struct wi_apinfo *ap = &sc->sc_aps[i]; res = (struct wi_scan_res *)((char *)wreq.wi_val + off); res->wi_chan = ap->channel; res->wi_noise = ap->noise; res->wi_signal = ap->signal; IEEE80211_ADDR_COPY(res->wi_bssid, ap->bssid); res->wi_interval = ap->interval; res->wi_capinfo = ap->capinfo; res->wi_ssid_len = ap->namelen; memcpy(res->wi_ssid, ap->name, IEEE80211_NWID_LEN); if (sc->sc_firmware_type != WI_LUCENT) { /* XXX not saved from Prism cards */ memset(res->wi_srates, 0, sizeof(res->wi_srates)); res->wi_rate = ap->rate; res->wi_rsvd = 0; } } break; default: if (sc->sc_enabled) { error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, &len); break; } switch (wreq.wi_type) { case WI_RID_MAX_DATALEN: wreq.wi_val[0] = htole16(sc->sc_max_datalen); len = sizeof(u_int16_t); break; case WI_RID_RTS_THRESH: wreq.wi_val[0] = htole16(ic->ic_rtsthreshold); len = sizeof(u_int16_t); break; case WI_RID_CNFAUTHMODE: wreq.wi_val[0] = htole16(sc->sc_cnfauthmode); len = sizeof(u_int16_t); break; case WI_RID_NODENAME: if (len < sc->sc_nodelen + sizeof(u_int16_t)) { error = ENOSPC; break; } len = sc->sc_nodelen + sizeof(u_int16_t); wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2); memcpy(&wreq.wi_val[1], sc->sc_nodename, sc->sc_nodelen); break; default: return ieee80211_ioctl(ic, cmd, data); } break; } if (error) return error; wreq.wi_len = (len + 1) / 2 + 1; return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2); } static int wi_set_cfg(struct ifnet *ifp, u_long cmd, caddr_t data) { struct wi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ifreq *ifr = (struct ifreq *)data; struct wi_req wreq; struct mbuf *m; int i, len, error, mif, val; struct ieee80211_rateset *rs; error = copyin(ifr->ifr_data, &wreq, sizeof(wreq)); if (error) return error; len = wreq.wi_len ? (wreq.wi_len - 1) * 2 : 0; switch (wreq.wi_type) { case WI_RID_DBM_ADJUST: return ENODEV; case WI_RID_NODENAME: if (le16toh(wreq.wi_val[0]) * 2 > len || le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) { error = ENOSPC; break; } WI_LOCK(sc); if (sc->sc_enabled) error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val, len); if (error == 0) { sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2; memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen); } WI_UNLOCK(sc); break; case WI_RID_MICROWAVE_OVEN: case WI_RID_ROAMING_MODE: case WI_RID_SYSTEM_SCALE: case WI_RID_FRAG_THRESH: /* XXX unlocked reads */ if (wreq.wi_type == WI_RID_MICROWAVE_OVEN && (sc->sc_flags & WI_FLAGS_HAS_MOR) == 0) break; if (wreq.wi_type == WI_RID_ROAMING_MODE && (sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0) break; if (wreq.wi_type == WI_RID_SYSTEM_SCALE && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0) break; if (wreq.wi_type == WI_RID_FRAG_THRESH && (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) == 0) break; /* FALLTHROUGH */ case WI_RID_RTS_THRESH: case WI_RID_CNFAUTHMODE: case WI_RID_MAX_DATALEN: WI_LOCK(sc); if (sc->sc_enabled) { error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val, sizeof(u_int16_t)); if (error != 0) { WI_UNLOCK(sc); break; } } switch (wreq.wi_type) { case WI_RID_FRAG_THRESH: ic->ic_fragthreshold = le16toh(wreq.wi_val[0]); break; case WI_RID_RTS_THRESH: ic->ic_rtsthreshold = le16toh(wreq.wi_val[0]); break; case WI_RID_MICROWAVE_OVEN: sc->sc_microwave_oven = le16toh(wreq.wi_val[0]); break; case WI_RID_ROAMING_MODE: sc->sc_roaming_mode = le16toh(wreq.wi_val[0]); break; case WI_RID_SYSTEM_SCALE: sc->sc_system_scale = le16toh(wreq.wi_val[0]); break; case WI_RID_CNFAUTHMODE: sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]); break; case WI_RID_MAX_DATALEN: sc->sc_max_datalen = le16toh(wreq.wi_val[0]); break; } WI_UNLOCK(sc); break; case WI_RID_TX_RATE: WI_LOCK(sc); switch (le16toh(wreq.wi_val[0])) { case 3: ic->ic_fixed_rate = IEEE80211_FIXED_RATE_NONE; break; default: rs = &ic->ic_sup_rates[IEEE80211_MODE_11B]; for (i = 0; i < rs->rs_nrates; i++) { if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) / 2 == le16toh(wreq.wi_val[0])) break; } if (i == rs->rs_nrates) { WI_UNLOCK(sc); return EINVAL; } ic->ic_fixed_rate = rs->rs_rates[i] & IEEE80211_RATE_VAL; } if (sc->sc_enabled) error = wi_write_txrate(sc); WI_UNLOCK(sc); break; case WI_RID_SCAN_APS: WI_LOCK(sc); if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP) error = wi_scan_ap(sc, 0x3fff, 0x000f); WI_UNLOCK(sc); break; case WI_RID_SCAN_REQ: /* compatibility interface */ WI_LOCK(sc); if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP) error = wi_scan_ap(sc, wreq.wi_val[0], wreq.wi_val[1]); WI_UNLOCK(sc); break; case WI_RID_MGMT_XMIT: WI_LOCK(sc); if (!sc->sc_enabled) error = ENETDOWN; else if (ic->ic_mgtq.ifq_len > 5) error = EAGAIN; else { /* NB: m_devget uses M_DONTWAIT so can hold the lock */ /* XXX wi_len looks in u_int8_t, not in u_int16_t */ m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL); if (m != NULL) IF_ENQUEUE(&ic->ic_mgtq, m); else error = ENOMEM; } WI_UNLOCK(sc); break; case WI_RID_MIF: mif = wreq.wi_val[0]; val = wreq.wi_val[1]; WI_LOCK(sc); error = wi_cmd(sc, WI_CMD_WRITEMIF, mif, val, 0); WI_UNLOCK(sc); break; case WI_RID_PROCFRAME: /* ignore for compatibility */ break; case WI_RID_OWN_SSID: if (le16toh(wreq.wi_val[0]) * 2 > len || le16toh(wreq.wi_val[0]) > IEEE80211_NWID_LEN) { error = ENOSPC; break; } WI_LOCK(sc); memset(ic->ic_des_ssid[0].ssid, 0, IEEE80211_NWID_LEN); ic->ic_des_ssid[0].len = le16toh(wreq.wi_val[0]) * 2; memcpy(ic->ic_des_ssid[0].ssid, &wreq.wi_val[1], ic->ic_des_ssid[0].len); if (sc->sc_enabled) wi_init(sc); /* XXX no error return */ WI_UNLOCK(sc); break; default: WI_LOCK(sc); if (sc->sc_enabled) error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val, len); if (error == 0) { /* XXX ieee80211_ioctl does a copyin */ error = ieee80211_ioctl(ic, cmd, data); if (error == ENETRESET) { if (sc->sc_enabled) wi_init(sc); error = 0; } } WI_UNLOCK(sc); break; } return error; } #endif static int wi_write_txrate(struct wi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; int i; u_int16_t rate; if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) rate = 0; /* auto */ else rate = ic->ic_fixed_rate / 2; /* rate: 0, 1, 2, 5, 11 */ switch (sc->sc_firmware_type) { case WI_LUCENT: switch (rate) { case 0: /* auto == 11mbps auto */ rate = 3; break; /* case 1, 2 map to 1, 2*/ case 5: /* 5.5Mbps -> 4 */ rate = 4; break; case 11: /* 11mbps -> 5 */ rate = 5; break; default: break; } break; default: /* Choose a bit according to this table. * * bit | data rate * ----+------------------- * 0 | 1Mbps * 1 | 2Mbps * 2 | 5.5Mbps * 3 | 11Mbps */ for (i = 8; i > 0; i >>= 1) { if (rate >= i) break; } if (i == 0) rate = 0xf; /* auto */ else rate = i; break; } return wi_write_val(sc, WI_RID_TX_RATE, rate); } static int wi_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k, ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) { struct wi_softc *sc = ic->ic_ifp->if_softc; /* * When doing host encryption of outbound frames fail requests * for keys that are not marked w/ the SWCRYPT flag so the * net80211 layer falls back to s/w crypto. Note that we also * fixup existing keys below to handle mode changes. */ if ((sc->sc_encryption & HOST_ENCRYPT) && (k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) return 0; return sc->sc_key_alloc(ic, k, keyix, rxkeyix); } static int wi_write_wep(struct wi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; int error = 0; int i, keylen; u_int16_t val; struct wi_key wkey[IEEE80211_WEP_NKID]; switch (sc->sc_firmware_type) { case WI_LUCENT: val = (ic->ic_flags & IEEE80211_F_PRIVACY) ? 1 : 0; error = wi_write_val(sc, WI_RID_ENCRYPTION, val); if (error) break; if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0) break; error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_def_txkey); if (error) break; memset(wkey, 0, sizeof(wkey)); for (i = 0; i < IEEE80211_WEP_NKID; i++) { keylen = ic->ic_nw_keys[i].wk_keylen; wkey[i].wi_keylen = htole16(keylen); memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key, keylen); } error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS, wkey, sizeof(wkey)); sc->sc_encryption = 0; break; case WI_INTERSIL: case WI_SYMBOL: if (ic->ic_flags & IEEE80211_F_PRIVACY) { /* * ONLY HWB3163 EVAL-CARD Firmware version * less than 0.8 variant2 * * If promiscuous mode disable, Prism2 chip * does not work with WEP . * It is under investigation for details. * (ichiro@netbsd.org) */ if (sc->sc_firmware_type == WI_INTERSIL && sc->sc_sta_firmware_ver < 802 ) { /* firm ver < 0.8 variant 2 */ wi_write_val(sc, WI_RID_PROMISC, 1); } wi_write_val(sc, WI_RID_CNFAUTHMODE, sc->sc_cnfauthmode); /* XXX should honor IEEE80211_F_DROPUNENC */ val = PRIVACY_INVOKED | EXCLUDE_UNENCRYPTED; /* * Encryption firmware has a bug for HostAP mode. */ if (sc->sc_firmware_type == WI_INTERSIL && ic->ic_opmode == IEEE80211_M_HOSTAP) val |= HOST_ENCRYPT; } else { wi_write_val(sc, WI_RID_CNFAUTHMODE, IEEE80211_AUTH_OPEN); val = HOST_ENCRYPT | HOST_DECRYPT; } error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val); if (error) break; sc->sc_encryption = val; if ((val & PRIVACY_INVOKED) == 0) break; error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY, ic->ic_def_txkey); if (error) break; if (val & HOST_DECRYPT) break; /* * It seems that the firmware accept 104bit key only if * all the keys have 104bit length. We get the length of * the transmit key and use it for all other keys. * Perhaps we should use software WEP for such situation. */ if (ic->ic_def_txkey != IEEE80211_KEYIX_NONE) keylen = ic->ic_nw_keys[ic->ic_def_txkey].wk_keylen; else /* XXX should not hapen */ keylen = IEEE80211_WEP_KEYLEN; if (keylen > IEEE80211_WEP_KEYLEN) keylen = 13; /* 104bit keys */ else keylen = IEEE80211_WEP_KEYLEN; for (i = 0; i < IEEE80211_WEP_NKID; i++) { error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i, ic->ic_nw_keys[i].wk_key, keylen); if (error) break; } break; } /* * XXX horrible hack; insure pre-existing keys are * setup properly to do s/w crypto. */ for (i = 0; i < IEEE80211_WEP_NKID; i++) { struct ieee80211_key *k = &ic->ic_nw_keys[i]; if (k->wk_flags & IEEE80211_KEY_XMIT) { if (sc->sc_encryption & HOST_ENCRYPT) k->wk_flags |= IEEE80211_KEY_SWCRYPT; else k->wk_flags &= ~IEEE80211_KEY_SWCRYPT; } } return error; } static int wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2) { int i, s = 0; if (sc->wi_gone) return (ENODEV); /* wait for the busy bit to clear */ for (i = sc->wi_cmd_count; i > 0; i--) { /* 500ms */ if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY)) break; DELAY(1*1000); /* 1ms */ } if (i == 0) { device_printf(sc->sc_dev, "wi_cmd: busy bit won't clear.\n" ); sc->wi_gone = 1; return(ETIMEDOUT); } CSR_WRITE_2(sc, WI_PARAM0, val0); CSR_WRITE_2(sc, WI_PARAM1, val1); CSR_WRITE_2(sc, WI_PARAM2, val2); CSR_WRITE_2(sc, WI_COMMAND, cmd); if (cmd == WI_CMD_INI) { /* XXX: should sleep here. */ DELAY(100*1000); /* 100ms delay for init */ } for (i = 0; i < WI_TIMEOUT; i++) { /* * Wait for 'command complete' bit to be * set in the event status register. */ s = CSR_READ_2(sc, WI_EVENT_STAT); if (s & WI_EV_CMD) { /* Ack the event and read result code. */ s = CSR_READ_2(sc, WI_STATUS); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD); if (s & WI_STAT_CMD_RESULT) { return(EIO); } break; } DELAY(WI_DELAY); } if (i == WI_TIMEOUT) { device_printf(sc->sc_dev, "timeout in wi_cmd 0x%04x; event status 0x%04x\n", cmd, s); if (s == 0xffff) sc->wi_gone = 1; return(ETIMEDOUT); } return (0); } static int wi_seek_bap(struct wi_softc *sc, int id, int off) { int i, status; CSR_WRITE_2(sc, WI_SEL0, id); CSR_WRITE_2(sc, WI_OFF0, off); for (i = 0; ; i++) { status = CSR_READ_2(sc, WI_OFF0); if ((status & WI_OFF_BUSY) == 0) break; if (i == WI_TIMEOUT) { device_printf(sc->sc_dev, "timeout in wi_seek to %x/%x\n", id, off); sc->sc_bap_off = WI_OFF_ERR; /* invalidate */ if (status == 0xffff) sc->wi_gone = 1; return ETIMEDOUT; } DELAY(1); } if (status & WI_OFF_ERR) { device_printf(sc->sc_dev, "failed in wi_seek to %x/%x\n", id, off); sc->sc_bap_off = WI_OFF_ERR; /* invalidate */ return EIO; } sc->sc_bap_id = id; sc->sc_bap_off = off; return 0; } static int wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen) { u_int16_t *ptr; int i, error, cnt; if (buflen == 0) return 0; if (id != sc->sc_bap_id || off != sc->sc_bap_off) { if ((error = wi_seek_bap(sc, id, off)) != 0) return error; } cnt = (buflen + 1) / 2; ptr = (u_int16_t *)buf; for (i = 0; i < cnt; i++) *ptr++ = CSR_READ_2(sc, WI_DATA0); sc->sc_bap_off += cnt * 2; return 0; } static int wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen) { u_int16_t *ptr; int i, error, cnt; if (buflen == 0) return 0; #ifdef WI_HERMES_AUTOINC_WAR again: #endif if (id != sc->sc_bap_id || off != sc->sc_bap_off) { if ((error = wi_seek_bap(sc, id, off)) != 0) return error; } cnt = (buflen + 1) / 2; ptr = (u_int16_t *)buf; for (i = 0; i < cnt; i++) CSR_WRITE_2(sc, WI_DATA0, ptr[i]); sc->sc_bap_off += cnt * 2; #ifdef WI_HERMES_AUTOINC_WAR /* * According to the comments in the HCF Light code, there is a bug * in the Hermes (or possibly in certain Hermes firmware revisions) * where the chip's internal autoincrement counter gets thrown off * during data writes: the autoincrement is missed, causing one * data word to be overwritten and subsequent words to be written to * the wrong memory locations. The end result is that we could end * up transmitting bogus frames without realizing it. The workaround * for this is to write a couple of extra guard words after the end * of the transfer, then attempt to read then back. If we fail to * locate the guard words where we expect them, we preform the * transfer over again. */ if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) { CSR_WRITE_2(sc, WI_DATA0, 0x1234); CSR_WRITE_2(sc, WI_DATA0, 0x5678); wi_seek_bap(sc, id, sc->sc_bap_off); sc->sc_bap_off = WI_OFF_ERR; /* invalidate */ if (CSR_READ_2(sc, WI_DATA0) != 0x1234 || CSR_READ_2(sc, WI_DATA0) != 0x5678) { device_printf(sc->sc_dev, "detect auto increment bug, try again\n"); goto again; } } #endif return 0; } static int wi_mwrite_bap(struct wi_softc *sc, int id, int off, struct mbuf *m0, int totlen) { int error, len; struct mbuf *m; for (m = m0; m != NULL && totlen > 0; m = m->m_next) { if (m->m_len == 0) continue; len = min(m->m_len, totlen); if (((u_long)m->m_data) % 2 != 0 || len % 2 != 0) { m_copydata(m, 0, totlen, (caddr_t)&sc->sc_txbuf); return wi_write_bap(sc, id, off, (caddr_t)&sc->sc_txbuf, totlen); } if ((error = wi_write_bap(sc, id, off, m->m_data, len)) != 0) return error; off += m->m_len; totlen -= len; } return 0; } static int wi_alloc_fid(struct wi_softc *sc, int len, int *idp) { int i; if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) { device_printf(sc->sc_dev, "failed to allocate %d bytes on NIC\n", len); return ENOMEM; } for (i = 0; i < WI_TIMEOUT; i++) { if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC) break; DELAY(1); } if (i == WI_TIMEOUT) { device_printf(sc->sc_dev, "timeout in alloc\n"); return ETIMEDOUT; } *idp = CSR_READ_2(sc, WI_ALLOC_FID); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC); return 0; } static int wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp) { int error, len; u_int16_t ltbuf[2]; /* Tell the NIC to enter record read mode. */ error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0); if (error) return error; error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf)); if (error) return error; if (le16toh(ltbuf[1]) != rid) { device_printf(sc->sc_dev, "record read mismatch, rid=%x, got=%x\n", rid, le16toh(ltbuf[1])); return EIO; } len = (le16toh(ltbuf[0]) - 1) * 2; /* already got rid */ if (*buflenp < len) { device_printf(sc->sc_dev, "record buffer is too small, " "rid=%x, size=%d, len=%d\n", rid, *buflenp, len); return ENOSPC; } *buflenp = len; return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len); } static int wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen) { int error; u_int16_t ltbuf[2]; ltbuf[0] = htole16((buflen + 1) / 2 + 1); /* includes rid */ ltbuf[1] = htole16(rid); error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf)); if (error) return error; error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen); if (error) return error; return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0); } static int wi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct ifnet *ifp = ic->ic_ifp; struct wi_softc *sc = ifp->if_softc; struct ieee80211_node *ni; int buflen; u_int16_t val; struct wi_ssid ssid; u_int8_t old_bssid[IEEE80211_ADDR_LEN]; DPRINTF(("%s: %s -> %s\n", __func__, ieee80211_state_name[ic->ic_state], ieee80211_state_name[nstate])); /* * Internal to the driver the INIT and RUN states are used * so bypass the net80211 state machine for other states. * Beware however that this requires use to net80211 state * management that otherwise would be handled for us. */ switch (nstate) { case IEEE80211_S_INIT: sc->sc_flags &= ~WI_FLAGS_OUTRANGE; return (*sc->sc_newstate)(ic, nstate, arg); case IEEE80211_S_SCAN: return (*sc->sc_newstate)(ic, nstate, arg); case IEEE80211_S_AUTH: case IEEE80211_S_ASSOC: ic->ic_state = nstate; /* NB: skip normal ieee80211 handling */ break; case IEEE80211_S_RUN: ni = ic->ic_bss; sc->sc_flags &= ~WI_FLAGS_OUTRANGE; buflen = IEEE80211_ADDR_LEN; IEEE80211_ADDR_COPY(old_bssid, ni->ni_bssid); wi_read_rid(sc, WI_RID_CURRENT_BSSID, ni->ni_bssid, &buflen); IEEE80211_ADDR_COPY(ni->ni_macaddr, ni->ni_bssid); buflen = sizeof(val); wi_read_rid(sc, WI_RID_CURRENT_CHAN, &val, &buflen); ni->ni_chan = ieee80211_find_channel(ic, ieee80211_ieee2mhz(val, IEEE80211_CHAN_B), IEEE80211_CHAN_B); if (ni->ni_chan == NULL) ni->ni_chan = &ic->ic_channels[0]; ic->ic_curchan = ic->ic_bsschan = ni->ni_chan; #if NBPFILTER > 0 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq = htole16(ni->ni_chan->ic_freq); sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags = htole16(ni->ni_chan->ic_flags); #endif /* * XXX hack; unceremoniously clear * IEEE80211_F_DROPUNENC when operating with * wep enabled so we don't drop unencoded frames * at the 802.11 layer. This is necessary because * we must strip the WEP bit from the 802.11 header * before passing frames to ieee80211_input because * the card has already stripped the WEP crypto * header from the packet. */ if (ic->ic_flags & IEEE80211_F_PRIVACY) ic->ic_flags &= ~IEEE80211_F_DROPUNENC; if (ic->ic_opmode != IEEE80211_M_HOSTAP) { /* XXX check return value */ buflen = sizeof(ssid); wi_read_rid(sc, WI_RID_CURRENT_SSID, &ssid, &buflen); ni->ni_esslen = le16toh(ssid.wi_len); if (ni->ni_esslen > IEEE80211_NWID_LEN) ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/ memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen); } return (*sc->sc_newstate)(ic, nstate, arg); } return 0; } static int wi_scan_ap(struct wi_softc *sc, u_int16_t chanmask, u_int16_t txrate) { int error = 0; u_int16_t val[2]; if (!sc->sc_enabled) return ENXIO; switch (sc->sc_firmware_type) { case WI_LUCENT: (void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0); break; case WI_INTERSIL: val[0] = htole16(chanmask); /* channel */ val[1] = htole16(txrate); /* tx rate */ error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val)); break; case WI_SYMBOL: /* * XXX only supported on 3.x ? */ val[0] = BSCAN_BCAST | BSCAN_ONETIME; error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ, val, sizeof(val[0])); break; } if (error == 0) { sc->sc_scan_timer = WI_SCAN_WAIT; DPRINTF(("wi_scan_ap: start scanning, " "chamask 0x%x txrate 0x%x\n", chanmask, txrate)); } return error; } static void wi_scan_result(struct wi_softc *sc, int fid, int cnt) { #define N(a) (sizeof (a) / sizeof (a[0])) int i, naps, off, szbuf; struct wi_scan_header ws_hdr; /* Prism2 header */ struct wi_scan_data_p2 ws_dat; /* Prism2 scantable*/ struct wi_apinfo *ap; struct ieee80211_scanparams sp; struct ieee80211_frame wh; static long rstamp; struct ieee80211com *ic; uint8_t ssid[2+IEEE80211_NWID_LEN]; ic = &sc->sc_ic; rstamp++; memset(&sp, 0, sizeof(sp)); off = sizeof(u_int16_t) * 2; memset(&ws_hdr, 0, sizeof(ws_hdr)); switch (sc->sc_firmware_type) { case WI_INTERSIL: wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr)); off += sizeof(ws_hdr); szbuf = sizeof(struct wi_scan_data_p2); break; case WI_SYMBOL: szbuf = sizeof(struct wi_scan_data_p2) + 6; break; case WI_LUCENT: szbuf = sizeof(struct wi_scan_data); break; default: device_printf(sc->sc_dev, "wi_scan_result: unknown firmware type %u\n", sc->sc_firmware_type); naps = 0; goto done; } naps = (cnt * 2 + 2 - off) / szbuf; if (naps > N(sc->sc_aps)) naps = N(sc->sc_aps); sc->sc_naps = naps; /* Read Data */ ap = sc->sc_aps; memset(&ws_dat, 0, sizeof(ws_dat)); for (i = 0; i < naps; i++, ap++) { uint8_t rates[2 + IEEE80211_RATE_MAXSIZE]; uint16_t *bssid; wi_read_bap(sc, fid, off, &ws_dat, (sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf)); DPRINTF2(("wi_scan_result: #%d: off %d bssid %s\n", i, off, ether_sprintf(ws_dat.wi_bssid))); off += szbuf; ap->scanreason = le16toh(ws_hdr.wi_reason); memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid)); bssid = (uint16_t *)&ap->bssid; if (bssid[0] == 0 && bssid[1] == 0 && bssid[2] == 0) break; memcpy(wh.i_addr2, ws_dat.wi_bssid, sizeof(ap->bssid)); memcpy(wh.i_addr3, ws_dat.wi_bssid, sizeof(ap->bssid)); ap->channel = le16toh(ws_dat.wi_chid); ap->signal = le16toh(ws_dat.wi_signal); ap->noise = le16toh(ws_dat.wi_noise); ap->quality = ap->signal - ap->noise; sp.capinfo = ap->capinfo = le16toh(ws_dat.wi_capinfo); sp.bintval = ap->interval = le16toh(ws_dat.wi_interval); ap->rate = le16toh(ws_dat.wi_rate); rates[1] = 1; rates[2] = (uint8_t)ap->rate / 5; ap->namelen = le16toh(ws_dat.wi_namelen); if (ap->namelen > sizeof(ap->name)) ap->namelen = sizeof(ap->name); memcpy(ap->name, ws_dat.wi_name, ap->namelen); sp.ssid = (uint8_t *)&ssid[0]; memcpy(sp.ssid + 2, ap->name, ap->namelen); sp.ssid[1] = ap->namelen; sp.bchan = ap->channel; sp.curchan = ieee80211_find_channel(ic, ieee80211_ieee2mhz(ap->channel, IEEE80211_CHAN_B), IEEE80211_CHAN_B); if (sp.curchan == NULL) sp.curchan = &ic->ic_channels[0]; sp.rates = &rates[0]; sp.tstamp = (uint8_t *)&rstamp; DPRINTF(("calling add_scan, bssid %s chan %d signal %d\n", ether_sprintf(ws_dat.wi_bssid), ap->channel, ap->signal)); ieee80211_add_scan(ic, &sp, &wh, 0, ap->signal, ap->noise, rstamp); } done: /* Done scanning */ sc->sc_scan_timer = 0; DPRINTF(("wi_scan_result: scan complete: ap %d\n", naps)); #undef N } static void wi_dump_pkt(struct wi_frame *wh, struct ieee80211_node *ni, int rssi) { if (ni != NULL) ieee80211_dump_pkt(ni->ni_ic, (u_int8_t *) &wh->wi_whdr, sizeof(wh->wi_whdr), ni->ni_rates.rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL, rssi); printf(" status 0x%x rx_tstamp1 %u rx_tstamp0 0x%u rx_silence %u\n", le16toh(wh->wi_status), le16toh(wh->wi_rx_tstamp1), le16toh(wh->wi_rx_tstamp0), wh->wi_rx_silence); printf(" rx_signal %u rx_rate %u rx_flow %u\n", wh->wi_rx_signal, wh->wi_rx_rate, wh->wi_rx_flow); printf(" tx_rtry %u tx_rate %u tx_ctl 0x%x dat_len %u\n", wh->wi_tx_rtry, wh->wi_tx_rate, le16toh(wh->wi_tx_ctl), le16toh(wh->wi_dat_len)); printf(" ehdr dst %6D src %6D type 0x%x\n", wh->wi_ehdr.ether_dhost, ":", wh->wi_ehdr.ether_shost, ":", wh->wi_ehdr.ether_type); } int wi_alloc(device_t dev, int rid) { struct wi_softc *sc = device_get_softc(dev); if (sc->wi_bus_type != WI_BUS_PCI_NATIVE) { sc->iobase_rid = rid; sc->iobase = bus_alloc_resource(dev, SYS_RES_IOPORT, &sc->iobase_rid, 0, ~0, (1 << 6), rman_make_alignment_flags(1 << 6) | RF_ACTIVE); if (!sc->iobase) { device_printf(dev, "No I/O space?!\n"); return (ENXIO); } sc->wi_io_addr = rman_get_start(sc->iobase); sc->wi_btag = rman_get_bustag(sc->iobase); sc->wi_bhandle = rman_get_bushandle(sc->iobase); } else { sc->mem_rid = rid; sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, RF_ACTIVE); if (!sc->mem) { device_printf(dev, "No Mem space on prism2.5?\n"); return (ENXIO); } sc->wi_btag = rman_get_bustag(sc->mem); sc->wi_bhandle = rman_get_bushandle(sc->mem); } sc->irq_rid = 0; sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, RF_ACTIVE | ((sc->wi_bus_type == WI_BUS_PCCARD) ? 0 : RF_SHAREABLE)); if (!sc->irq) { wi_free(dev); device_printf(dev, "No irq?!\n"); return (ENXIO); } sc->sc_dev = dev; sc->sc_unit = device_get_unit(dev); return (0); } void wi_free(device_t dev) { struct wi_softc *sc = device_get_softc(dev); if (sc->iobase != NULL) { bus_release_resource(dev, SYS_RES_IOPORT, sc->iobase_rid, sc->iobase); sc->iobase = NULL; } if (sc->irq != NULL) { bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); sc->irq = NULL; } if (sc->mem != NULL) { bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); sc->mem = NULL; } return; } #if 0 static int wi_get_debug(struct wi_softc *sc, struct wi_req *wreq) { int error = 0; wreq->wi_len = 1; switch (wreq->wi_type) { case WI_DEBUG_SLEEP: wreq->wi_len++; wreq->wi_val[0] = sc->wi_debug.wi_sleep; break; case WI_DEBUG_DELAYSUPP: wreq->wi_len++; wreq->wi_val[0] = sc->wi_debug.wi_delaysupp; break; case WI_DEBUG_TXSUPP: wreq->wi_len++; wreq->wi_val[0] = sc->wi_debug.wi_txsupp; break; case WI_DEBUG_MONITOR: wreq->wi_len++; wreq->wi_val[0] = sc->wi_debug.wi_monitor; break; case WI_DEBUG_LEDTEST: wreq->wi_len += 3; wreq->wi_val[0] = sc->wi_debug.wi_ledtest; wreq->wi_val[1] = sc->wi_debug.wi_ledtest_param0; wreq->wi_val[2] = sc->wi_debug.wi_ledtest_param1; break; case WI_DEBUG_CONTTX: wreq->wi_len += 2; wreq->wi_val[0] = sc->wi_debug.wi_conttx; wreq->wi_val[1] = sc->wi_debug.wi_conttx_param0; break; case WI_DEBUG_CONTRX: wreq->wi_len++; wreq->wi_val[0] = sc->wi_debug.wi_contrx; break; case WI_DEBUG_SIGSTATE: wreq->wi_len += 2; wreq->wi_val[0] = sc->wi_debug.wi_sigstate; wreq->wi_val[1] = sc->wi_debug.wi_sigstate_param0; break; case WI_DEBUG_CONFBITS: wreq->wi_len += 2; wreq->wi_val[0] = sc->wi_debug.wi_confbits; wreq->wi_val[1] = sc->wi_debug.wi_confbits_param0; break; default: error = EIO; break; } return (error); } static int wi_set_debug(struct wi_softc *sc, struct wi_req *wreq) { int error = 0; u_int16_t cmd, param0 = 0, param1 = 0; switch (wreq->wi_type) { case WI_DEBUG_RESET: case WI_DEBUG_INIT: case WI_DEBUG_CALENABLE: break; case WI_DEBUG_SLEEP: sc->wi_debug.wi_sleep = 1; break; case WI_DEBUG_WAKE: sc->wi_debug.wi_sleep = 0; break; case WI_DEBUG_CHAN: param0 = wreq->wi_val[0]; break; case WI_DEBUG_DELAYSUPP: sc->wi_debug.wi_delaysupp = 1; break; case WI_DEBUG_TXSUPP: sc->wi_debug.wi_txsupp = 1; break; case WI_DEBUG_MONITOR: sc->wi_debug.wi_monitor = 1; break; case WI_DEBUG_LEDTEST: param0 = wreq->wi_val[0]; param1 = wreq->wi_val[1]; sc->wi_debug.wi_ledtest = 1; sc->wi_debug.wi_ledtest_param0 = param0; sc->wi_debug.wi_ledtest_param1 = param1; break; case WI_DEBUG_CONTTX: param0 = wreq->wi_val[0]; sc->wi_debug.wi_conttx = 1; sc->wi_debug.wi_conttx_param0 = param0; break; case WI_DEBUG_STOPTEST: sc->wi_debug.wi_delaysupp = 0; sc->wi_debug.wi_txsupp = 0; sc->wi_debug.wi_monitor = 0; sc->wi_debug.wi_ledtest = 0; sc->wi_debug.wi_ledtest_param0 = 0; sc->wi_debug.wi_ledtest_param1 = 0; sc->wi_debug.wi_conttx = 0; sc->wi_debug.wi_conttx_param0 = 0; sc->wi_debug.wi_contrx = 0; sc->wi_debug.wi_sigstate = 0; sc->wi_debug.wi_sigstate_param0 = 0; break; case WI_DEBUG_CONTRX: sc->wi_debug.wi_contrx = 1; break; case WI_DEBUG_SIGSTATE: param0 = wreq->wi_val[0]; sc->wi_debug.wi_sigstate = 1; sc->wi_debug.wi_sigstate_param0 = param0; break; case WI_DEBUG_CONFBITS: param0 = wreq->wi_val[0]; param1 = wreq->wi_val[1]; sc->wi_debug.wi_confbits = param0; sc->wi_debug.wi_confbits_param0 = param1; break; default: error = EIO; break; } if (error) return (error); cmd = WI_CMD_DEBUG | (wreq->wi_type << 8); error = wi_cmd(sc, cmd, param0, param1, 0); return (error); } #endif /* * Special routines to download firmware for Symbol CF card. * XXX: This should be modified generic into any PRISM-2 based card. */ #define WI_SBCF_PDIADDR 0x3100 /* unaligned load little endian */ #define GETLE32(p) ((p)[0] | ((p)[1]<<8) | ((p)[2]<<16) | ((p)[3]<<24)) #define GETLE16(p) ((p)[0] | ((p)[1]<<8)) int wi_symbol_load_firm(struct wi_softc *sc, const void *primsym, int primlen, const void *secsym, int seclen) { uint8_t ebuf[256]; int i; /* load primary code and run it */ wi_symbol_set_hcr(sc, WI_HCR_EEHOLD); if (wi_symbol_write_firm(sc, primsym, primlen, NULL, 0)) return EIO; wi_symbol_set_hcr(sc, WI_HCR_RUN); for (i = 0; ; i++) { if (i == 10) return ETIMEDOUT; tsleep(sc, PWAIT, "wiinit", 1); if (CSR_READ_2(sc, WI_CNTL) == WI_CNTL_AUX_ENA_STAT) break; /* write the magic key value to unlock aux port */ CSR_WRITE_2(sc, WI_PARAM0, WI_AUX_KEY0); CSR_WRITE_2(sc, WI_PARAM1, WI_AUX_KEY1); CSR_WRITE_2(sc, WI_PARAM2, WI_AUX_KEY2); CSR_WRITE_2(sc, WI_CNTL, WI_CNTL_AUX_ENA_CNTL); } /* issue read EEPROM command: XXX copied from wi_cmd() */ CSR_WRITE_2(sc, WI_PARAM0, 0); CSR_WRITE_2(sc, WI_PARAM1, 0); CSR_WRITE_2(sc, WI_PARAM2, 0); CSR_WRITE_2(sc, WI_COMMAND, WI_CMD_READEE); for (i = 0; i < WI_TIMEOUT; i++) { if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD) break; DELAY(1); } CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD); CSR_WRITE_2(sc, WI_AUX_PAGE, WI_SBCF_PDIADDR / WI_AUX_PGSZ); CSR_WRITE_2(sc, WI_AUX_OFFSET, WI_SBCF_PDIADDR % WI_AUX_PGSZ); CSR_READ_MULTI_STREAM_2(sc, WI_AUX_DATA, (uint16_t *)ebuf, sizeof(ebuf) / 2); if (GETLE16(ebuf) > sizeof(ebuf)) return EIO; if (wi_symbol_write_firm(sc, secsym, seclen, ebuf + 4, GETLE16(ebuf))) return EIO; return 0; } static int wi_symbol_write_firm(struct wi_softc *sc, const void *buf, int buflen, const void *ebuf, int ebuflen) { const uint8_t *p, *ep, *q, *eq; char *tp; uint32_t addr, id, eid; int i, len, elen, nblk, pdrlen; /* * Parse the header of the firmware image. */ p = buf; ep = p + buflen; while (p < ep && *p++ != ' '); /* FILE: */ while (p < ep && *p++ != ' '); /* filename */ while (p < ep && *p++ != ' '); /* type of the firmware */ nblk = strtoul(p, &tp, 10); p = tp; pdrlen = strtoul(p + 1, &tp, 10); p = tp; while (p < ep && *p++ != 0x1a); /* skip rest of header */ /* * Block records: address[4], length[2], data[length]; */ for (i = 0; i < nblk; i++) { addr = GETLE32(p); p += 4; len = GETLE16(p); p += 2; CSR_WRITE_2(sc, WI_AUX_PAGE, addr / WI_AUX_PGSZ); CSR_WRITE_2(sc, WI_AUX_OFFSET, addr % WI_AUX_PGSZ); CSR_WRITE_MULTI_STREAM_2(sc, WI_AUX_DATA, (const uint16_t *)p, len / 2); p += len; } /* * PDR: id[4], address[4], length[4]; */ for (i = 0; i < pdrlen; ) { id = GETLE32(p); p += 4; i += 4; addr = GETLE32(p); p += 4; i += 4; len = GETLE32(p); p += 4; i += 4; /* replace PDR entry with the values from EEPROM, if any */ for (q = ebuf, eq = q + ebuflen; q < eq; q += elen * 2) { elen = GETLE16(q); q += 2; eid = GETLE16(q); q += 2; elen--; /* elen includes eid */ if (eid == 0) break; if (eid != id) continue; CSR_WRITE_2(sc, WI_AUX_PAGE, addr / WI_AUX_PGSZ); CSR_WRITE_2(sc, WI_AUX_OFFSET, addr % WI_AUX_PGSZ); CSR_WRITE_MULTI_STREAM_2(sc, WI_AUX_DATA, (const uint16_t *)q, len / 2); break; } } return 0; } static int wi_symbol_set_hcr(struct wi_softc *sc, int mode) { uint16_t hcr; CSR_WRITE_2(sc, WI_COR, WI_COR_RESET); tsleep(sc, PWAIT, "wiinit", 1); hcr = CSR_READ_2(sc, WI_HCR); hcr = (hcr & WI_HCR_4WIRE) | (mode & ~WI_HCR_4WIRE); CSR_WRITE_2(sc, WI_HCR, hcr); tsleep(sc, PWAIT, "wiinit", 1); CSR_WRITE_2(sc, WI_COR, WI_COR_IOMODE); tsleep(sc, PWAIT, "wiinit", 1); return 0; } /* * This function can be called by ieee80211_set_shortslottime(). Refer to * IEEE Std 802.11-1999 pp. 85 to know how these values are computed. */ static void wi_update_slot(struct ifnet *ifp) { DPRINTF(("wi update slot unimplemented\n")); } static void wi_set_channel(struct ieee80211com *ic) { struct ifnet *ifp = ic->ic_ifp; struct wi_softc *sc = ifp->if_softc; WI_LOCK(sc); if (!(sc->sc_flags & WI_FLAGS_SCANNING)) { sc->wi_channel = ic->ic_curchan; } WI_UNLOCK(sc); } static void wi_scan_start(struct ieee80211com *ic) { struct ifnet *ifp = ic->ic_ifp; struct wi_softc *sc = ifp->if_softc; WI_LOCK(sc); sc->sc_flags |= WI_FLAGS_SCANNING; wi_scan_ap(sc, 0x3fff, 0x000f); WI_UNLOCK(sc); } static void wi_scan_curchan(struct ieee80211com *ic, unsigned long maxdwell) { /* The firmware is not capable of scanning a single channel */ } static void wi_scan_mindwell(struct ieee80211com *ic) { /* NB: don't try to abort scan; wait for firmware to finish */ } static void wi_scan_end(struct ieee80211com *ic) { struct ifnet *ifp = ic->ic_ifp; struct wi_softc *sc = ifp->if_softc; WI_LOCK(sc); sc->sc_flags &= ~WI_FLAGS_SCANNING; WI_UNLOCK(sc); }