/* vinuminterrupt.c: bottom half of the driver */ /*- * Copyright (c) 1997, 1998, 1999 * Nan Yang Computer Services Limited. All rights reserved. * * Parts copyright (c) 1997, 1998 Cybernet Corporation, NetMAX project. * * Written by Greg Lehey * * This software is distributed under the so-called ``Berkeley * License'': * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Nan Yang Computer * Services Limited. * 4. Neither the name of the Company nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * This software is provided ``as is'', and any express or implied * warranties, including, but not limited to, the implied warranties of * merchantability and fitness for a particular purpose are disclaimed. * In no event shall the company or contributors be liable for any * direct, indirect, incidental, special, exemplary, or consequential * damages (including, but not limited to, procurement of substitute * goods or services; loss of use, data, or profits; or business * interruption) however caused and on any theory of liability, whether * in contract, strict liability, or tort (including negligence or * otherwise) arising in any way out of the use of this software, even if * advised of the possibility of such damage. * * $Id: vinuminterrupt.c,v 1.12 2000/11/24 03:41:42 grog Exp grog $ * $FreeBSD$ */ #include #include #include void complete_raid5_write(struct rqelement *); void complete_rqe(struct buf *bp); void sdio_done(struct buf *bp); /* * Take a completed buffer, transfer the data back if * it's a read, and complete the high-level request * if this is the last subrequest. * * The bp parameter is in fact a struct rqelement, which * includes a couple of extras at the end. */ void complete_rqe(struct buf *bp) { struct rqelement *rqe; struct request *rq; struct rqgroup *rqg; struct buf *ubp; /* user buffer */ struct drive *drive; struct sd *sd; char *gravity; /* for error messages */ rqe = (struct rqelement *) bp; /* point to the element element that completed */ rqg = rqe->rqg; /* and the request group */ rq = rqg->rq; /* and the complete request */ ubp = rq->bp; /* user buffer */ #ifdef VINUMDEBUG if (debug & DEBUG_LASTREQS) logrq(loginfo_iodone, (union rqinfou) rqe, ubp); #endif drive = &DRIVE[rqe->driveno]; drive->active--; /* one less outstanding I/O on this drive */ vinum_conf.active--; /* one less outstanding I/O globally */ if ((drive->active == (DRIVE_MAXACTIVE - 1)) /* we were at the drive limit */ ||(vinum_conf.active == VINUM_MAXACTIVE)) /* or the global limit */ wakeup(&launch_requests); /* let another one at it */ if ((bp->b_io.bio_flags & BIO_ERROR) != 0) { /* transfer in error */ gravity = ""; sd = &SD[rqe->sdno]; if (bp->b_error != 0) /* did it return a number? */ rq->error = bp->b_error; /* yes, put it in. */ else if (rq->error == 0) /* no: do we have one already? */ rq->error = EIO; /* no: catchall "I/O error" */ sd->lasterror = rq->error; if (bp->b_iocmd == BIO_READ) { /* read operation */ if ((rq->error == ENXIO) || (sd->flags & VF_RETRYERRORS) == 0) { gravity = " fatal"; set_sd_state(rqe->sdno, sd_crashed, setstate_force); /* subdisk is crashed */ } log(LOG_ERR, "%s:%s read error, block %d for %ld bytes\n", gravity, sd->name, bp->b_blkno, bp->b_bcount); } else { /* write operation */ if ((rq->error == ENXIO) || (sd->flags & VF_RETRYERRORS) == 0) { gravity = "fatal "; set_sd_state(rqe->sdno, sd_stale, setstate_force); /* subdisk is stale */ } log(LOG_ERR, "%s:%s write error, block %d for %ld bytes\n", gravity, sd->name, bp->b_blkno, bp->b_bcount); } log(LOG_ERR, "%s: user buffer block %d for %ld bytes\n", sd->name, ubp->b_blkno, ubp->b_bcount); if (rq->error == ENXIO) { /* the drive's down too */ log(LOG_ERR, "%s: fatal drive I/O error, block %d for %ld bytes\n", DRIVE[rqe->driveno].label.name, bp->b_blkno, bp->b_bcount); DRIVE[rqe->driveno].lasterror = rq->error; set_drive_state(rqe->driveno, /* take the drive down */ drive_down, setstate_force); } } /* Now update the statistics */ if (bp->b_iocmd == BIO_READ) { /* read operation */ DRIVE[rqe->driveno].reads++; DRIVE[rqe->driveno].bytes_read += bp->b_bcount; SD[rqe->sdno].reads++; SD[rqe->sdno].bytes_read += bp->b_bcount; PLEX[rqe->rqg->plexno].reads++; PLEX[rqe->rqg->plexno].bytes_read += bp->b_bcount; if (PLEX[rqe->rqg->plexno].volno >= 0) { /* volume I/O, not plex */ VOL[PLEX[rqe->rqg->plexno].volno].reads++; VOL[PLEX[rqe->rqg->plexno].volno].bytes_read += bp->b_bcount; } } else { /* write operation */ DRIVE[rqe->driveno].writes++; DRIVE[rqe->driveno].bytes_written += bp->b_bcount; SD[rqe->sdno].writes++; SD[rqe->sdno].bytes_written += bp->b_bcount; PLEX[rqe->rqg->plexno].writes++; PLEX[rqe->rqg->plexno].bytes_written += bp->b_bcount; if (PLEX[rqe->rqg->plexno].volno >= 0) { /* volume I/O, not plex */ VOL[PLEX[rqe->rqg->plexno].volno].writes++; VOL[PLEX[rqe->rqg->plexno].volno].bytes_written += bp->b_bcount; } } if (rqg->flags & XFR_RECOVERY_READ) { /* recovery read, */ int *sdata; /* source */ int *data; /* and group data */ int length; /* and count involved */ int count; /* loop counter */ struct rqelement *urqe = &rqg->rqe[rqg->badsdno]; /* rqe of the bad subdisk */ /* XOR destination is the user data */ sdata = (int *) &rqe->b.b_data[rqe->groupoffset << DEV_BSHIFT]; /* old data contents */ data = (int *) &urqe->b.b_data[urqe->groupoffset << DEV_BSHIFT]; /* destination */ length = urqe->grouplen * (DEV_BSIZE / sizeof(int)); /* and number of ints */ for (count = 0; count < length; count++) data[count] ^= sdata[count]; /* * In a normal read, we will normally read directly * into the user buffer. This doesn't work if * we're also doing a recovery, so we have to * copy it */ if (rqe->flags & XFR_NORMAL_READ) { /* normal read as well, */ char *src = &rqe->b.b_data[rqe->dataoffset << DEV_BSHIFT]; /* read data is here */ char *dst; dst = (char *) ubp->b_data + (rqe->useroffset << DEV_BSHIFT); /* where to put it in user buffer */ length = rqe->datalen << DEV_BSHIFT; /* and count involved */ bcopy(src, dst, length); /* move it */ } } else if ((rqg->flags & (XFR_NORMAL_WRITE | XFR_DEGRADED_WRITE)) /* RAID 4/5 group write operation */ &&(rqg->active == 1)) /* and this is the last active request */ complete_raid5_write(rqe); /* * This is the earliest place where we can be * sure that the request has really finished, * since complete_raid5_write can issue new * requests. */ rqg->active--; /* this request now finished */ if (rqg->active == 0) { /* request group finished, */ rq->active--; /* one less */ if (rqg->lock) { /* got a lock? */ unlockrange(rqg->plexno, rqg->lock); /* yes, free it */ rqg->lock = 0; } } if (rq->active == 0) { /* request finished, */ #if VINUMDEBUG if (debug & DEBUG_RESID) { if (ubp->b_resid != 0) /* still something to transfer? */ Debugger("resid"); } #endif if (rq->error) { /* did we have an error? */ if (rq->isplex) { /* plex operation, */ ubp->b_io.bio_flags |= BIO_ERROR; /* yes, propagate to user */ ubp->b_error = rq->error; } else /* try to recover */ queue_daemon_request(daemonrq_ioerror, (union daemoninfo) rq); /* let the daemon complete */ } else { ubp->b_resid = 0; /* completed our transfer */ if (rq->isplex == 0) /* volume request, */ VOL[rq->volplex.volno].active--; /* another request finished */ if (rq->flags & XFR_COPYBUF) { Free(ubp->b_data); ubp->b_data = rq->save_data; } bufdone(ubp); /* top level buffer completed */ freerq(rq); /* return the request storage */ } } } /* Free a request block and anything hanging off it */ void freerq(struct request *rq) { struct rqgroup *rqg; struct rqgroup *nrqg; /* next in chain */ int rqno; for (rqg = rq->rqg; rqg != NULL; rqg = nrqg) { /* through the whole request chain */ if (rqg->lock) /* got a lock? */ unlockrange(rqg->plexno, rqg->lock); /* yes, free it */ for (rqno = 0; rqno < rqg->count; rqno++) { if ((rqg->rqe[rqno].flags & XFR_MALLOCED) /* data buffer was malloced, */ &&rqg->rqe[rqno].b.b_data) /* and the allocation succeeded */ Free(rqg->rqe[rqno].b.b_data); /* free it */ if (rqg->rqe[rqno].flags & XFR_BUFLOCKED) { /* locked this buffer, */ BUF_UNLOCK(&rqg->rqe[rqno].b); /* unlock it again */ BUF_LOCKFREE(&rqg->rqe[rqno].b); } } nrqg = rqg->next; /* note the next one */ Free(rqg); /* and free this one */ } Free(rq); /* free the request itself */ } /* I/O on subdisk completed */ void sdio_done(struct buf *bp) { struct sdbuf *sbp; sbp = (struct sdbuf *) bp; if (sbp->b.b_io.bio_flags & BIO_ERROR) { /* had an error */ sbp->bp->b_io.bio_flags |= BIO_ERROR; /* propagate upwards */ sbp->bp->b_error = sbp->b.b_error; } #ifdef VINUMDEBUG if (debug & DEBUG_LASTREQS) logrq(loginfo_sdiodone, (union rqinfou) bp, bp); #endif sbp->bp->b_resid = sbp->b.b_resid; /* copy the resid field */ /* Now update the statistics */ if (bp->b_iocmd == BIO_READ) { /* read operation */ DRIVE[sbp->driveno].reads++; DRIVE[sbp->driveno].bytes_read += sbp->b.b_bcount; SD[sbp->sdno].reads++; SD[sbp->sdno].bytes_read += sbp->b.b_bcount; } else { /* write operation */ DRIVE[sbp->driveno].writes++; DRIVE[sbp->driveno].bytes_written += sbp->b.b_bcount; SD[sbp->sdno].writes++; SD[sbp->sdno].bytes_written += sbp->b.b_bcount; } bufdone(sbp->bp); /* complete the caller's I/O */ BUF_UNLOCK(&sbp->b); BUF_LOCKFREE(&sbp->b); Free(sbp); } /* Start the second phase of a RAID-4 or RAID-5 group write operation. */ void complete_raid5_write(struct rqelement *rqe) { int *sdata; /* source */ int *pdata; /* and parity block data */ int length; /* and count involved */ int count; /* loop counter */ int rqno; /* request index */ int rqoffset; /* offset of request data from parity data */ struct buf *ubp; /* user buffer header */ struct request *rq; /* pointer to our request */ struct rqgroup *rqg; /* and to the request group */ struct rqelement *prqe; /* point to the parity block */ struct drive *drive; /* drive to access */ rqg = rqe->rqg; /* and to our request group */ rq = rqg->rq; /* point to our request */ ubp = rq->bp; /* user's buffer header */ prqe = &rqg->rqe[0]; /* point to the parity block */ /* * If we get to this function, we have normal or * degraded writes, or a combination of both. We do * the same thing in each case: we perform an * exclusive or to the parity block. The only * difference is the origin of the data and the * address range. */ if (rqe->flags & XFR_DEGRADED_WRITE) { /* do the degraded write stuff */ pdata = (int *) (&prqe->b.b_data[(prqe->groupoffset) << DEV_BSHIFT]); /* parity data pointer */ bzero(pdata, prqe->grouplen << DEV_BSHIFT); /* start with nothing in the parity block */ /* Now get what data we need from each block */ for (rqno = 1; rqno < rqg->count; rqno++) { /* for all the data blocks */ rqe = &rqg->rqe[rqno]; /* this request */ sdata = (int *) (&rqe->b.b_data[rqe->groupoffset << DEV_BSHIFT]); /* old data */ length = rqe->grouplen << (DEV_BSHIFT - 2); /* and count involved */ /* * Add the data block to the parity block. Before * we started the request, we zeroed the parity * block, so the result of adding all the other * blocks and the block we want to write will be * the correct parity block. */ for (count = 0; count < length; count++) pdata[count] ^= sdata[count]; if ((rqe->flags & XFR_MALLOCED) /* the buffer was malloced, */ &&((rqg->flags & XFR_NORMAL_WRITE) == 0)) { /* and we have no normal write, */ Free(rqe->b.b_data); /* free it now */ rqe->flags &= ~XFR_MALLOCED; } } } if (rqg->flags & XFR_NORMAL_WRITE) { /* do normal write stuff */ /* Get what data we need from each block */ for (rqno = 1; rqno < rqg->count; rqno++) { /* for all the data blocks */ rqe = &rqg->rqe[rqno]; /* this request */ if ((rqe->flags & (XFR_DATA_BLOCK | XFR_BAD_SUBDISK | XFR_NORMAL_WRITE)) == (XFR_DATA_BLOCK | XFR_NORMAL_WRITE)) { /* good data block to write */ sdata = (int *) &rqe->b.b_data[rqe->dataoffset << DEV_BSHIFT]; /* old data contents */ rqoffset = rqe->dataoffset + rqe->sdoffset - prqe->sdoffset; /* corresponding parity block offset */ pdata = (int *) (&prqe->b.b_data[rqoffset << DEV_BSHIFT]); /* parity data pointer */ length = rqe->datalen * (DEV_BSIZE / sizeof(int)); /* and number of ints */ /* * "remove" the old data block * from the parity block */ if ((pdata < ((int *) prqe->b.b_data)) || (&pdata[length] > ((int *) (prqe->b.b_data + prqe->b.b_bcount))) || (sdata < ((int *) rqe->b.b_data)) || (&sdata[length] > ((int *) (rqe->b.b_data + rqe->b.b_bcount)))) panic("complete_raid5_write: bounds overflow"); for (count = 0; count < length; count++) pdata[count] ^= sdata[count]; /* "add" the new data block */ sdata = (int *) (&ubp->b_data[rqe->useroffset << DEV_BSHIFT]); /* new data */ if ((sdata < ((int *) ubp->b_data)) || (&sdata[length] > ((int *) (ubp->b_data + ubp->b_bcount)))) panic("complete_raid5_write: bounds overflow"); for (count = 0; count < length; count++) pdata[count] ^= sdata[count]; /* Free the malloced buffer */ if (rqe->flags & XFR_MALLOCED) { /* the buffer was malloced, */ Free(rqe->b.b_data); /* free it */ rqe->flags &= ~XFR_MALLOCED; } else panic("complete_raid5_write: malloc conflict"); if ((rqe->b.b_iocmd == BIO_READ) /* this was a read */ &&((rqe->flags & XFR_BAD_SUBDISK) == 0)) { /* and we can write this block */ rqe->b.b_flags &= ~B_DONE; /* start a new request */ rqe->b.b_iocmd = BIO_WRITE; /* we're writing now */ rqe->b.b_iodone = complete_rqe; /* call us here when done */ rqe->flags &= ~XFR_PARITYOP; /* reset flags that brought us here */ rqe->b.b_data = &ubp->b_data[rqe->useroffset << DEV_BSHIFT]; /* point to the user data */ rqe->b.b_bcount = rqe->datalen << DEV_BSHIFT; /* length to write */ rqe->b.b_bufsize = rqe->b.b_bcount; /* don't claim more */ rqe->b.b_resid = rqe->b.b_bcount; /* nothing transferred */ rqe->b.b_blkno += rqe->dataoffset; /* point to the correct block */ rqg->active++; /* another active request */ drive = &DRIVE[rqe->driveno]; /* drive to access */ /* We can't sleep here, so we just increment the counters. */ drive->active++; if (drive->active >= drive->maxactive) drive->maxactive = drive->active; vinum_conf.active++; if (vinum_conf.active >= vinum_conf.maxactive) vinum_conf.maxactive = vinum_conf.active; #if VINUMDEBUG if (debug & DEBUG_ADDRESSES) log(LOG_DEBUG, " %s dev %d.%d, sd %d, offset 0x%x, devoffset 0x%x, length %ld\n", rqe->b.b_iocmd == BIO_READ ? "Read" : "Write", major(rqe->b.b_dev), minor(rqe->b.b_dev), rqe->sdno, (u_int) (rqe->b.b_blkno - SD[rqe->sdno].driveoffset), rqe->b.b_blkno, rqe->b.b_bcount); if (debug & DEBUG_LASTREQS) logrq(loginfo_raid5_data, (union rqinfou) rqe, ubp); #endif DEV_STRATEGY(&rqe->b, 0); } } } } /* Finally, write the parity block */ rqe = &rqg->rqe[0]; rqe->b.b_flags &= ~B_DONE; /* we're not done */ rqe->b.b_iocmd = BIO_WRITE; /* we're writing now */ rqe->b.b_iodone = complete_rqe; /* call us here when done */ rqg->flags &= ~XFR_PARITYOP; /* reset flags that brought us here */ rqe->b.b_bcount = rqe->buflen << DEV_BSHIFT; /* length to write */ rqe->b.b_bufsize = rqe->b.b_bcount; /* don't claim we have more */ rqe->b.b_resid = rqe->b.b_bcount; /* nothing transferred */ rqg->active++; /* another active request */ drive = &DRIVE[rqe->driveno]; /* drive to access */ /* We can't sleep here, so we just increment the counters. */ drive->active++; if (drive->active >= drive->maxactive) drive->maxactive = drive->active; vinum_conf.active++; if (vinum_conf.active >= vinum_conf.maxactive) vinum_conf.maxactive = vinum_conf.active; #if VINUMDEBUG if (debug & DEBUG_ADDRESSES) log(LOG_DEBUG, " %s dev %d.%d, sd %d, offset 0x%x, devoffset 0x%x, length %ld\n", rqe->b.b_iocmd == BIO_READ ? "Read" : "Write", major(rqe->b.b_dev), minor(rqe->b.b_dev), rqe->sdno, (u_int) (rqe->b.b_blkno - SD[rqe->sdno].driveoffset), rqe->b.b_blkno, rqe->b.b_bcount); if (debug & DEBUG_LASTREQS) logrq(loginfo_raid5_parity, (union rqinfou) rqe, ubp); #endif DEV_STRATEGY(&rqe->b, 0); } /* Local Variables: */ /* fill-column: 50 */ /* End: */