/* $FreeBSD$ */ /* * Machine and OS Independent Target Mode Code for the Qlogic SCSI/FC adapters. * * Copyright (c) 1999 by Matthew Jacob * All rights reserved. * mjacob@feral.com * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice immediately at the beginning of the file, without modification, * this list of conditions, and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Include header file appropriate for platform we're building on. */ #ifdef __NetBSD__ #include #endif #ifdef __FreeBSD__ #include #endif #ifdef __OpenBSD__ #include #endif #ifdef __linux__ #include "isp_linux.h" #endif #ifdef ISP_TARGET_MODE int isp_tdebug = 0; static void isp_got_msg __P((struct ispsoftc *, int, in_entry_t *)); static void isp_got_msg_fc __P((struct ispsoftc *, int, in_fcentry_t *)); static void isp_notify_ack __P((struct ispsoftc *, void *)); static void isp_handle_atio(struct ispsoftc *, at_entry_t *); static void isp_handle_atio2(struct ispsoftc *, at2_entry_t *); static void isp_handle_ctio(struct ispsoftc *, ct_entry_t *); static void isp_handle_ctio2(struct ispsoftc *, ct2_entry_t *); /* * The Qlogic driver gets an interrupt to look at response queue entries. * Some of these are status completions for initiatior mode commands, but * if target mode is enabled, we get a whole wad of response queue entries * to be handled here. * * Basically the split into 3 main groups: Lun Enable/Modification responses, * SCSI Command processing, and Immediate Notification events. * * You start by writing a request queue entry to enable target mode (and * establish some resource limitations which you can modify later). * The f/w responds with a LUN ENABLE or LUN MODIFY response with * the status of this action. If the enable was successful, you can expect... * * Response queue entries with SCSI commands encapsulate show up in an ATIO * (Accept Target IO) type- sometimes with enough info to stop the command at * this level. Ultimately the driver has to feed back to the f/w's request * queue a sequence of CTIOs (continue target I/O) that describe data to * be moved and/or status to be sent) and finally finishing with sending * to the f/w's response queue an ATIO which then completes the handshake * with the f/w for that command. There's a lot of variations on this theme, * including flags you can set in the CTIO for the Qlogic 2X00 fibre channel * cards that 'auto-replenish' the f/w's ATIO count, but this is the basic * gist of it. * * The third group that can show up in the response queue are Immediate * Notification events. These include things like notifications of SCSI bus * resets, or Bus Device Reset messages or other messages received. This * a classic oddbins area. It can get a little wierd because you then turn * around and acknowledge the Immediate Notify by writing an entry onto the * request queue and then the f/w turns around and gives you an acknowledgement * to *your* acknowledgement on the response queue (the idea being to let * the f/w tell you when the event is *really* over I guess). * */ /* * A new response queue entry has arrived. The interrupt service code * has already swizzled it into the platform dependent from canonical form. * * Because of the way this driver is designed, unfortunately most of the * actual synchronization work has to be done in the platform specific * code- we have no synchroniation primitives in the common code. */ int isp_target_notify(isp, vptr, optrp) struct ispsoftc *isp; void *vptr; u_int16_t *optrp; { u_int16_t status, seqid; union { at_entry_t *atiop; at2_entry_t *at2iop; ct_entry_t *ctiop; ct2_entry_t *ct2iop; lun_entry_t *lunenp; in_entry_t *inotp; in_fcentry_t *inot_fcp; na_entry_t *nackp; na_fcentry_t *nack_fcp; isphdr_t *hp; void * *vp; #define atiop unp.atiop #define at2iop unp.at2iop #define ctiop unp.ctiop #define ct2iop unp.ct2iop #define lunenp unp.lunenp #define inotp unp.inotp #define inot_fcp unp.inot_fcp #define nackp unp.nackp #define nack_fcp unp.nack_fcp #define hdrp unp.hp } unp; int bus, rval = 0; unp.vp = vptr; ISP_TDQE(isp, "isp_target_notify", (int) *optrp, vptr); switch(hdrp->rqs_entry_type) { case RQSTYPE_ATIO: isp_handle_atio(isp, atiop); break; case RQSTYPE_CTIO: isp_handle_ctio(isp, ctiop); break; case RQSTYPE_ATIO2: isp_handle_atio2(isp, at2iop); break; case RQSTYPE_CTIO2: isp_handle_ctio2(isp, ct2iop); break; case RQSTYPE_ENABLE_LUN: case RQSTYPE_MODIFY_LUN: (void) isp_async(isp, ISPASYNC_TARGET_ACTION, vptr); break; case RQSTYPE_NOTIFY: /* * Either the ISP received a SCSI message it can't * handle, or it's returning an Immed. Notify entry * we sent. We can send Immed. Notify entries to * increment the firmware's resource count for them * (we set this initially in the Enable Lun entry). */ if (IS_FC(isp)) { status = inot_fcp->in_status; seqid = inot_fcp->in_seqid; } else { status = inotp->in_status & 0xff; seqid = inotp->in_seqid; } bus = 0; /* XXX: Which Channel? */ ITDEBUG(2, ("isp_target_notify: Immediate Notify, " "status=0x%x seqid=0x%x\n", status, seqid)); switch (status) { case IN_RESET: (void) isp_async(isp, ISPASYNC_BUS_RESET, &bus); break; case IN_MSG_RECEIVED: case IN_IDE_RECEIVED: if (IS_FC(isp)) { isp_got_msg_fc(isp, bus, vptr); } else { isp_got_msg(isp, bus, vptr); } break; case IN_RSRC_UNAVAIL: PRINTF("%s: Firmware out of ATIOs\n", isp->isp_name); break; case IN_ABORT_TASK: PRINTF("%s: Abort Task for Initiator %d RX_ID 0x%x\n", isp->isp_name, inot_fcp->in_iid, seqid); break; case IN_PORT_LOGOUT: PRINTF("%s: Port Logout for Initiator %d RX_ID 0x%x\n", isp->isp_name, inot_fcp->in_iid, seqid); break; case IN_PORT_CHANGED: PRINTF("%s: Port Changed for Initiator %d RX_ID 0x%x\n", isp->isp_name, inot_fcp->in_iid, seqid); break; case IN_GLOBAL_LOGO: PRINTF("%s: All ports logged out\n", isp->isp_name); break; default: PRINTF("%s: bad status (0x%x) in isp_target_notify\n", isp->isp_name, status); break; } isp_notify_ack(isp, vptr); break; case RQSTYPE_NOTIFY_ACK: /* * The ISP is acknowledging our acknowledgement of an * Immediate Notify entry for some asynchronous event. */ if (IS_FC(isp)) { ITDEBUG(2, ("%s: Notify Ack status=0x%x seqid 0x%x\n", isp->isp_name, nack_fcp->na_status, nack_fcp->na_seqid)); } else { ITDEBUG(2, ("%s: Notify Ack event 0x%x status=0x%x " "seqid 0x%x\n", isp->isp_name, nackp->na_event, nackp->na_status, nackp->na_seqid)); } break; default: PRINTF("%s: Unknown entry type 0x%x in isp_target_notify", isp->isp_name, hdrp->rqs_entry_type); rval = -1; break; } #undef atiop #undef at2iop #undef ctiop #undef ct2iop #undef lunenp #undef inotp #undef inot_fcp #undef nackp #undef nack_fcp #undef hdrp return (rval); } /* * Toggle (on/off) target mode for bus/target/lun * * The caller has checked for overlap and legality. * * Note that not all of bus, target or lun can be paid attention to. * Note also that this action will not be complete until the f/w writes * response entry. The caller is responsible for synchronizing this. */ int isp_lun_cmd(isp, cmd, bus, tgt, lun, opaque) struct ispsoftc *isp; int cmd; int bus; int tgt; int lun; u_int32_t opaque; { lun_entry_t el; u_int16_t iptr, optr; void *outp; bus = bus; /* XXX */ MEMZERO(&el, sizeof (el)); el.le_cmd_count = DFLT_CMD_CNT; el.le_in_count = DFLT_INOTIFY; if (cmd == RQSTYPE_ENABLE_LUN) { if (IS_SCSI(isp)) { el.le_flags = LUN_TQAE; el.le_cdb6len = 12; el.le_cdb7len = 12; } } else if (cmd == -RQSTYPE_ENABLE_LUN) { cmd = RQSTYPE_ENABLE_LUN; el.le_cmd_count = 0; el.le_in_count = 0; } else if (cmd == -RQSTYPE_MODIFY_LUN) { cmd = RQSTYPE_MODIFY_LUN; el.le_ops = LUN_CCDECR | LUN_INDECR; } else { el.le_ops = LUN_CCINCR | LUN_ININCR; } el.le_header.rqs_entry_type = cmd; el.le_header.rqs_entry_count = 1; el.le_reserved = opaque; if (IS_SCSI(isp)) { el.le_tgt = tgt; el.le_lun = lun; #ifndef ISP2100_SCCLUN } else { el.le_lun = lun; #endif } if (isp_getrqentry(isp, &iptr, &optr, &outp)) { PRINTF("%s: Request Queue Overflow in isp_lun_cmd\n", isp->isp_name); return (-1); } ISP_SWIZ_ENABLE_LUN(isp, outp, &el); ISP_TDQE(isp, "isp_lun_cmd", (int) optr, &el); ISP_ADD_REQUEST(isp, iptr); return (0); } int isp_target_put_entry(isp, ap) struct ispsoftc *isp; void *ap; { void *outp; u_int16_t iptr, optr; u_int8_t etype = ((isphdr_t *) ap)->rqs_entry_type; if (isp_getrqentry(isp, &iptr, &optr, &outp)) { PRINTF("%s: Request Queue Overflow in isp_target_put_entry " "for type 0x%x\n", isp->isp_name, etype); return (-1); } switch (etype) { case RQSTYPE_ATIO: ISP_SWIZ_ATIO(isp, outp, ap); break; case RQSTYPE_ATIO2: ISP_SWIZ_ATIO2(isp, outp, ap); break; case RQSTYPE_CTIO: ISP_SWIZ_CTIO(isp, outp, ap); break; case RQSTYPE_CTIO2: ISP_SWIZ_CTIO2(isp, outp, ap); break; default: PRINTF("%s: Unknown type 0x%x in isp_put_entry\n", isp->isp_name, etype); return (-1); } ISP_TDQE(isp, "isp_target_put_entry", (int) optr, ap);; ISP_ADD_REQUEST(isp, iptr); return (0); } int isp_target_put_atio(isp, iid, tgt, lun, ttype, tval) struct ispsoftc *isp; int iid; int tgt; int lun; int ttype; int tval; { union { at_entry_t _atio; at2_entry_t _atio2; } atun; MEMZERO(&atun, sizeof atun); if (IS_FC(isp)) { atun._atio2.at_header.rqs_entry_type = RQSTYPE_ATIO2; atun._atio2.at_header.rqs_entry_count = 1; #ifdef ISP2100_SCCLUN atun._atio2.at_scclun = (uint16_t) lun; #else atun._atio2.at_lun = (uint8_t) lun; #endif atun._atio2.at_status = CT_OK; } else { atun._atio.at_header.rqs_entry_type = RQSTYPE_ATIO; atun._atio.at_header.rqs_entry_count = 1; atun._atio.at_iid = iid; atun._atio.at_tgt = tgt; atun._atio.at_lun = lun; atun._atio.at_tag_type = ttype; atun._atio.at_tag_val = tval; atun._atio.at_status = CT_OK; } return (isp_target_put_entry(isp, &atun)); } /* * Command completion- both for handling cases of no resources or * no blackhole driver, or other cases where we have to, inline, * finish the command sanely, or for normal command completion. * * The 'completion' code value has the scsi status byte in the low 8 bits. * If status is a CHECK CONDITION and bit 8 is nonzero, then bits 12..15 have * the sense key and bits 16..23 have the ASCQ and bits 24..31 have the ASC * values. * * NB: the key, asc, ascq, cannot be used for parallel SCSI as it doesn't * NB: inline SCSI sense reporting. * * For both parallel && fibre channel, we use the feature that does * an automatic resource autoreplenish so we don't have then later do * put of an atio to replenish the f/w's resource count. */ int isp_endcmd(struct ispsoftc *isp, void *arg, u_int32_t code, u_int32_t hdl) { int sts; union { ct_entry_t _ctio; ct2_entry_t _ctio2; } un; MEMZERO(&un, sizeof un); sts = code & 0xff; if (IS_FC(isp)) { at2_entry_t *aep = arg; ct2_entry_t *cto = &un._ctio2; cto->ct_header.rqs_entry_type = RQSTYPE_CTIO2; cto->ct_header.rqs_entry_count = 1; cto->ct_iid = aep->at_iid; #ifndef ISP2100_SCCLUN cto->ct_lun = aep->at_lun; #endif cto->ct_rxid = aep->at_rxid; cto->rsp.m1.ct_scsi_status = sts & 0xff; cto->ct_flags = CT2_SENDSTATUS | CT2_NO_DATA | CT2_FLAG_MODE1; if (hdl == 0) { cto->ct_flags |= CT2_CCINCR; } if (aep->at_datalen) { cto->ct_resid = aep->at_datalen; cto->ct_flags |= CT2_DATA_UNDER; } if ((sts & 0xff) == SCSI_CHECK && (sts & ECMD_SVALID)) { cto->rsp.m1.ct_resp[0] = 0xf0; cto->rsp.m1.ct_resp[2] = (code >> 12) & 0xf; cto->rsp.m1.ct_resp[7] = 8; cto->rsp.m1.ct_resp[12] = (code >> 24) & 0xff; cto->rsp.m1.ct_resp[13] = (code >> 16) & 0xff; cto->rsp.m1.ct_senselen = 16; cto->ct_flags |= CT2_SNSLEN_VALID; } cto->ct_reserved = hdl; } else { at_entry_t *aep = arg; ct_entry_t *cto = &un._ctio; cto->ct_header.rqs_entry_type = RQSTYPE_CTIO; cto->ct_header.rqs_entry_count = 1; cto->ct_iid = aep->at_iid; cto->ct_tgt = aep->at_tgt; cto->ct_lun = aep->at_lun; cto->ct_tag_type = aep->at_tag_type; cto->ct_tag_val = aep->at_tag_val; cto->ct_flags = CT_SENDSTATUS | CT_NO_DATA; if (hdl == 0) { cto->ct_flags |= CT_CCINCR; } cto->ct_scsi_status = sts; cto->ct_reserved = hdl; } return (isp_target_put_entry(isp, &un)); } void isp_target_async(isp, bus, event) struct ispsoftc *isp; int bus; int event; { tmd_event_t evt; tmd_msg_t msg; switch (event) { /* * These three we handle here to propagate an effective bus reset * upstream, but these do not require any immediate notify actions * so we return when done. */ case ASYNC_LIP_OCCURRED: case ASYNC_LOOP_UP: case ASYNC_LOOP_DOWN: evt.ev_bus = bus; evt.ev_event = event; (void) isp_async(isp, ISPASYNC_TARGET_EVENT, &evt); return; case ASYNC_LOOP_RESET: case ASYNC_BUS_RESET: case ASYNC_TIMEOUT_RESET: if (IS_FC(isp)) { return; /* we'll be getting an inotify instead */ } evt.ev_bus = bus; evt.ev_event = event; (void) isp_async(isp, ISPASYNC_TARGET_EVENT, &evt); break; case ASYNC_DEVICE_RESET: /* * Bus Device Reset resets a specific target, so * we pass this as a synthesized message. */ MEMZERO(&msg, sizeof msg); if (IS_FC(isp)) { msg.nt_iid = ((fcparam *)isp->isp_param)->isp_loopid; } else { msg.nt_iid = ((sdparam *)isp->isp_param)->isp_initiator_id; } msg.nt_bus = bus; msg.nt_msg[0] = MSG_BUS_DEV_RESET; (void) isp_async(isp, ISPASYNC_TARGET_MESSAGE, &msg); break; default: PRINTF("%s: isp_target_async: unknown event 0x%x\n", isp->isp_name, event); break; } isp_notify_ack(isp, NULL); } /* * Process a received message. * The ISP firmware can handle most messages, there are only * a few that we need to deal with: * - abort: clean up the current command * - abort tag and clear queue */ static void isp_got_msg(isp, bus, inp) struct ispsoftc *isp; int bus; in_entry_t *inp; { u_int8_t status = inp->in_status & ~QLTM_SVALID; if (status == IN_IDE_RECEIVED || status == IN_MSG_RECEIVED) { tmd_msg_t msg; MEMZERO(&msg, sizeof (msg)); msg.nt_bus = bus; msg.nt_iid = inp->in_iid; msg.nt_tgt = inp->in_tgt; msg.nt_lun = inp->in_lun; msg.nt_tagtype = inp->in_tag_type; msg.nt_tagval = inp->in_tag_val; MEMCPY(msg.nt_msg, inp->in_msg, IN_MSGLEN); (void) isp_async(isp, ISPASYNC_TARGET_MESSAGE, &msg); } else { PRINTF("%s: unknown immediate notify status 0x%x\n", isp->isp_name, inp->in_status); } } /* * Synthesize a message from the task management flags in a FCP_CMND_IU. */ static void isp_got_msg_fc(isp, bus, inp) struct ispsoftc *isp; int bus; in_fcentry_t *inp; { static char *f1 = "%s: %s from iid %d lun %d seq 0x%x\n"; static char *f2 = "%s: unknown %s 0x%x lun %d iid %d task flags 0x%x seq 0x%x\n"; if (inp->in_status != IN_MSG_RECEIVED) { PRINTF(f2, isp->isp_name, "immediate notify status", inp->in_status, inp->in_lun, inp->in_iid, inp->in_task_flags, inp->in_seqid); } else { tmd_msg_t msg; MEMZERO(&msg, sizeof (msg)); msg.nt_bus = bus; msg.nt_iid = inp->in_iid; #ifdef ISP2100_SCCLUN msg.nt_lun = inp->in_scclun; #else msg.nt_lun = inp->in_lun; #endif msg.nt_tagval = inp->in_seqid; if (inp->in_task_flags & TASK_FLAGS_ABORT_TASK) { PRINTF(f1, isp->isp_name, "ABORT TASK", inp->in_iid, inp->in_lun, inp->in_seqid); msg.nt_msg[0] = MSG_ABORT_TAG; } else if (inp->in_task_flags & TASK_FLAGS_CLEAR_TASK_SET) { PRINTF(f1, isp->isp_name, "CLEAR TASK SET", inp->in_iid, inp->in_lun, inp->in_seqid); msg.nt_msg[0] = MSG_CLEAR_QUEUE; } else if (inp->in_task_flags & TASK_FLAGS_TARGET_RESET) { PRINTF(f1, isp->isp_name, "TARGET RESET", inp->in_iid, inp->in_lun, inp->in_seqid); msg.nt_msg[0] = MSG_BUS_DEV_RESET; } else if (inp->in_task_flags & TASK_FLAGS_CLEAR_ACA) { PRINTF(f1, isp->isp_name, "CLEAR ACA", inp->in_iid, inp->in_lun, inp->in_seqid); /* ???? */ msg.nt_msg[0] = MSG_REL_RECOVERY; } else if (inp->in_task_flags & TASK_FLAGS_TERMINATE_TASK) { PRINTF(f1, isp->isp_name, "TERMINATE TASK", inp->in_iid, inp->in_lun, inp->in_seqid); msg.nt_msg[0] = MSG_TERM_IO_PROC; } else { PRINTF(f2, isp->isp_name, "task flag", inp->in_status, inp->in_lun, inp->in_iid, inp->in_task_flags, inp->in_seqid); } if (msg.nt_msg[0]) { (void) isp_async(isp, ISPASYNC_TARGET_MESSAGE, &msg); } } } static void isp_notify_ack(isp, arg) struct ispsoftc *isp; void *arg; { char storage[QENTRY_LEN]; u_int16_t iptr, optr; void *outp; if (isp_getrqentry(isp, &iptr, &optr, &outp)) { PRINTF("%s: Request Queue Overflow For isp_notify_ack\n", isp->isp_name); return; } MEMZERO(storage, QENTRY_LEN); if (IS_FC(isp)) { na_fcentry_t *na = (na_fcentry_t *) storage; if (arg) { in_fcentry_t *inp = arg; MEMCPY(storage, arg, sizeof (isphdr_t)); na->na_iid = inp->in_iid; #ifdef ISP2100_SCCLUN na->na_lun = inp->in_scclun; #else na->na_lun = inp->in_lun; #endif na->na_task_flags = inp->in_task_flags; na->na_seqid = inp->in_seqid; na->na_flags = NAFC_RCOUNT; if (inp->in_status == IN_RESET) { na->na_flags |= NAFC_RST_CLRD; } } else { na->na_flags = NAFC_RST_CLRD; } ISP_SWIZ_NOT_ACK_FC(isp, outp, na); } else { na_entry_t *na = (na_entry_t *) storage; if (arg) { in_entry_t *inp = arg; MEMCPY(storage, arg, sizeof (isphdr_t)); na->na_iid = inp->in_iid; na->na_lun = inp->in_lun; na->na_tgt = inp->in_tgt; na->na_seqid = inp->in_seqid; if (inp->in_status == IN_RESET) { na->na_flags = NA_RST_CLRD; } } else { na->na_flags = NA_RST_CLRD; } ISP_SWIZ_NOT_ACK(isp, outp, na); } ISP_TDQE(isp, "isp_notify_ack", (int) optr, storage); ISP_ADD_REQUEST(isp, iptr); } static void isp_handle_atio(isp, aep) struct ispsoftc *isp; at_entry_t *aep; { int lun; lun = aep->at_lun; /* * The firmware status (except for the QLTM_SVALID bit) indicates * why this ATIO was sent to us. * * If QLTM_SVALID is set, the firware has recommended Sense Data. * * If the DISCONNECTS DISABLED bit is set in the flags field, * we're still connected on the SCSI bus - i.e. the initiator * did not set DiscPriv in the identify message. We don't care * about this so it's ignored. */ switch(aep->at_status & ~QLTM_SVALID) { case AT_PATH_INVALID: /* * ATIO rejected by the firmware due to disabled lun. */ PRINTF("%s: rejected ATIO for disabled lun %d\n", isp->isp_name, lun); break; case AT_NOCAP: /* * Requested Capability not available * We sent an ATIO that overflowed the firmware's * command resource count. */ PRINTF("%s: rejected ATIO for lun %d because of command count" " overflow\n", isp->isp_name, lun); break; case AT_BDR_MSG: /* * If we send an ATIO to the firmware to increment * its command resource count, and the firmware is * recovering from a Bus Device Reset, it returns * the ATIO with this status. We set the command * resource count in the Enable Lun entry and no * not increment it. Therefore we should never get * this status here. */ PRINTF("%s: ATIO returned for lun %d because it was in the " " middle of coping with a Bus Device Reset\n", isp->isp_name, lun); break; case AT_CDB: /* Got a CDB */ case AT_PHASE_ERROR: /* Bus Phase Sequence Error */ /* * Punt to platform specific layer. */ (void) isp_async(isp, ISPASYNC_TARGET_ACTION, aep); break; case AT_RESET: /* * A bus reset came along an blew away this command. Why * they do this in addition the async event code stuff, * I dunno. * * Ignore it because the async event will clear things * up for us. */ PRINTF("%s: ATIO returned for lun %d from initiator %d because" " a Bus Reset occurred\n", isp->isp_name, lun, aep->at_iid); break; default: PRINTF("%s: Unknown ATIO status 0x%x from initiator %d for lun" " %d\n", isp->isp_name, aep->at_status, aep->at_iid, lun); (void) isp_target_put_atio(isp, aep->at_iid, aep->at_tgt, lun, aep->at_tag_type, aep->at_tag_val); break; } } static void isp_handle_atio2(isp, aep) struct ispsoftc *isp; at2_entry_t *aep; { int lun; #ifdef ISP2100_SCCLUN lun = aep->at_scclun; #else lun = aep->at_lun; #endif /* * The firmware status (except for the QLTM_SVALID bit) indicates * why this ATIO was sent to us. * * If QLTM_SVALID is set, the firware has recommended Sense Data. * * If the DISCONNECTS DISABLED bit is set in the flags field, * we're still connected on the SCSI bus - i.e. the initiator * did not set DiscPriv in the identify message. We don't care * about this so it's ignored. */ switch(aep->at_status & ~QLTM_SVALID) { case AT_PATH_INVALID: /* * ATIO rejected by the firmware due to disabled lun. */ PRINTF("%s: rejected ATIO2 for disabled lun %d\n", isp->isp_name, lun); break; case AT_NOCAP: /* * Requested Capability not available * We sent an ATIO that overflowed the firmware's * command resource count. */ PRINTF("%s: rejected ATIO2 for lun %d because of command count" " overflow\n", isp->isp_name, lun); break; case AT_BDR_MSG: /* * If we send an ATIO to the firmware to increment * its command resource count, and the firmware is * recovering from a Bus Device Reset, it returns * the ATIO with this status. We set the command * resource count in the Enable Lun entry and no * not increment it. Therefore we should never get * this status here. */ PRINTF("%s: ATIO2 returned for lun %d because it was in the " " middle of coping with a Bus Device Reset\n", isp->isp_name, lun); break; case AT_CDB: /* Got a CDB */ /* * Punt to platform specific layer. */ (void) isp_async(isp, ISPASYNC_TARGET_ACTION, aep); break; case AT_RESET: /* * A bus reset came along an blew away this command. Why * they do this in addition the async event code stuff, * I dunno. * * Ignore it because the async event will clear things * up for us. */ PRINTF("%s: ATIO2 returned for lun %d from initiator %d because" " a Bus Reset occurred\n", isp->isp_name, lun, aep->at_iid); break; default: PRINTF("%s: Unknown ATIO2 status 0x%x from initiator %d for lun" " %d\n", isp->isp_name, aep->at_status, aep->at_iid, lun); (void) isp_target_put_atio(isp, aep->at_iid, 0, lun, 0, 0); break; } } static void isp_handle_ctio(isp, ct) struct ispsoftc *isp; ct_entry_t *ct; { ISP_SCSI_XFER_T *xs; int pl = 0; char *fmsg = NULL; if (ct->ct_reserved) { xs = isp_find_xs(isp, ct->ct_reserved); if (xs == NULL) pl = 0; } else { pl = 2; xs = NULL; } switch(ct->ct_status & ~QLTM_SVALID) { case CT_OK: /* * There are generally 3 possibilities as to why we'd get * this condition: * We disconnected after receiving a CDB. * We sent or received data. * We sent status & command complete. */ if ((ct->ct_flags & CT_DATAMASK) == CT_NO_DATA) { /* * Nothing to do in this case. */ IDPRINTF(pl, ("%s: CTIO- initiator disconnected OK\n", isp->isp_name)); return; } break; case CT_BDR_MSG: /* * Bus Device Reset message received or the SCSI Bus has * been Reset; the firmware has gone to Bus Free. * * The firmware generates an async mailbox interupt to * notify us of this and returns outstanding CTIOs with this * status. These CTIOs are handled in that same way as * CT_ABORTED ones, so just fall through here. */ fmsg = "Bus Device Reset"; /*FALLTHROUGH*/ case CT_RESET: if (fmsg == NULL) fmsg = "Bus Reset"; /*FALLTHROUGH*/ case CT_ABORTED: /* * When an Abort message is received the firmware goes to * Bus Free and returns all outstanding CTIOs with the status * set, then sends us an Immediate Notify entry. */ if (fmsg == NULL) fmsg = "ABORT TASK sent by Initiator"; PRINTF("%s: CTIO destroyed by %s\n", isp->isp_name, fmsg); break; case CT_INVAL: /* * CTIO rejected by the firmware due to disabled lun. * "Cannot Happen". */ PRINTF("%s: Firmware rejected CTIO for disabled lun %d\n", isp->isp_name, ct->ct_lun); break; case CT_NOPATH: /* * CTIO rejected by the firmware due "no path for the * nondisconnecting nexus specified". This means that * we tried to access the bus while a non-disconnecting * command is in process. */ PRINTF("%s: Firmware rejected CTIO for bad nexus %d/%d/%d\n", isp->isp_name, ct->ct_iid, ct->ct_tgt, ct->ct_lun); break; case CT_RSELTMO: fmsg = "Reselection"; /*FALLTHROUGH*/ case CT_TIMEOUT: if (fmsg == NULL) fmsg = "Command"; PRINTF("%s: Firmware timed out on %s\n", isp->isp_name, fmsg); break; case CT_ERR: fmsg = "Completed with Error"; /*FALLTHROUGH*/ case CT_PHASE_ERROR: if (fmsg == NULL) fmsg = "Phase Sequence Error"; /*FALLTHROUGH*/ case CT_TERMINATED: if (fmsg == NULL) fmsg = "terminated by TERMINATE TRANSFER"; /*FALLTHROUGH*/ case CT_NOACK: if (fmsg == NULL) fmsg = "unacknowledged Immediate Notify pending"; PRINTF("%s: CTIO returned by f/w- %s\n", isp->isp_name, fmsg); #if 0 if (status & SENSEVALID) { bcopy((caddr_t) (cep + CTIO_SENSE_OFFSET), (caddr_t) &cdp->cd_sensedata, sizeof(scsi_sense_t)); cdp->cd_flags |= CDF_SENSEVALID; } #endif break; default: PRINTF("%s: Unknown CTIO status 0x%x\n", isp->isp_name, ct->ct_status & ~QLTM_SVALID); break; } if (xs == NULL) { /* * There may be more than one CTIO for a data transfer, * or this may be a status CTIO we're not monitoring. * * The assumption is that they'll all be returned in the * order we got them. */ if (ct->ct_reserved == 0) { if ((ct->ct_flags & CT_SENDSTATUS) == 0) { IDPRINTF(pl, ("%s: intermediate CTIO completed ok\n", isp->isp_name)); } else { IDPRINTF(pl, ("%s: unmonitored CTIO completed ok\n", isp->isp_name)); } } else { IDPRINTF(pl, ("%s: NO xs for CTIO (handle 0x%x) status 0x%x\n", isp->isp_name, ct->ct_reserved, ct->ct_status & ~QLTM_SVALID)); } } else { if (ct->ct_flags & CT_SENDSTATUS) { /* * Sent status and command complete. * * We're now really done with this command, so we * punt to the platform dependent layers because * only there can we do the appropriate command * complete thread synchronization. */ IDPRINTF(pl, ("%s: status CTIO complete\n", isp->isp_name)); } else { /* * Final CTIO completed. Release DMA resources and * notify platform dependent layers. */ IDPRINTF(pl, ("%s: data CTIO complete\n", isp->isp_name)); ISP_DMAFREE(isp, xs, ct->ct_reserved); } (void) isp_async(isp, ISPASYNC_TARGET_ACTION, ct); /* * The platform layer will destroy the handle if appropriate. */ } } static void isp_handle_ctio2(isp, ct) struct ispsoftc *isp; ct2_entry_t *ct; { ISP_SCSI_XFER_T *xs; int pl = 3; char *fmsg = NULL; if (ct->ct_reserved) { xs = isp_find_xs(isp, ct->ct_reserved); if (xs == NULL) pl = 0; } else { pl = 2; xs = NULL; } switch(ct->ct_status & ~QLTM_SVALID) { case CT_OK: /* * There are generally 2 possibilities as to why we'd get * this condition: * We sent or received data. * We sent status & command complete. */ break; case CT_BDR_MSG: /* * Bus Device Reset message received or the SCSI Bus has * been Reset; the firmware has gone to Bus Free. * * The firmware generates an async mailbox interupt to * notify us of this and returns outstanding CTIOs with this * status. These CTIOs are handled in that same way as * CT_ABORTED ones, so just fall through here. */ fmsg = "Bus Device Reset"; /*FALLTHROUGH*/ case CT_RESET: if (fmsg == NULL) fmsg = "Bus Reset"; /*FALLTHROUGH*/ case CT_ABORTED: /* * When an Abort message is received the firmware goes to * Bus Free and returns all outstanding CTIOs with the status * set, then sends us an Immediate Notify entry. */ if (fmsg == NULL) fmsg = "ABORT TASK sent by Initiator"; PRINTF("%s: CTIO2 destroyed by %s\n", isp->isp_name, fmsg); break; case CT_INVAL: /* * CTIO rejected by the firmware - invalid data direction. */ PRINTF("%s: CTIO2 had wrong data directiond\n", isp->isp_name); break; case CT_NOPATH: /* * CTIO rejected by the firmware due "no path for the * nondisconnecting nexus specified". This means that * we tried to access the bus while a non-disconnecting * command is in process. */ PRINTF("%s: Firmware rejected CTIO2 for bad nexus %d->%d\n", isp->isp_name, ct->ct_iid, ct->ct_lun); break; case CT_RSELTMO: fmsg = "Reselection"; /*FALLTHROUGH*/ case CT_TIMEOUT: if (fmsg == NULL) fmsg = "Command"; PRINTF("%s: Firmware timed out on %s\n", isp->isp_name, fmsg); break; case CT_ERR: fmsg = "Completed with Error"; /*FALLTHROUGH*/ case CT_PHASE_ERROR: /* Bus phase sequence error */ if (fmsg == NULL) fmsg = "Phase Sequence Error"; /*FALLTHROUGH*/ case CT_TERMINATED: if (fmsg == NULL) fmsg = "terminated by TERMINATE TRANSFER"; /*FALLTHROUGH*/ case CT_LOGOUT: if (fmsg == NULL) fmsg = "Port Logout"; /*FALLTHROUGH*/ case CT_PORTNOTAVAIL: if (fmsg == NULL) fmsg = "Port not available"; case CT_NOACK: if (fmsg == NULL) fmsg = "unacknowledged Immediate Notify pending"; PRINTF("%s: CTIO returned by f/w- %s\n", isp->isp_name, fmsg); #if 0 if (status & SENSEVALID) { bcopy((caddr_t) (cep + CTIO_SENSE_OFFSET), (caddr_t) &cdp->cd_sensedata, sizeof(scsi_sense_t)); cdp->cd_flags |= CDF_SENSEVALID; } #endif break; case CT_INVRXID: /* * CTIO rejected by the firmware because an invalid RX_ID. * Just print a message. */ PRINTF("%s: CTIO2 completed with Invalid RX_ID 0x%x\n", isp->isp_name, ct->ct_rxid); break; default: IDPRINTF(pl, ("%s: Unknown CTIO status 0x%x\n", isp->isp_name, ct->ct_status & ~QLTM_SVALID)); break; } if (xs == NULL) { /* * There may be more than one CTIO for a data transfer, * or this may be a status CTIO we're not monitoring. * * The assumption is that they'll all be returned in the * order we got them. */ if (ct->ct_reserved == 0) { if ((ct->ct_flags & CT_SENDSTATUS) == 0) { IDPRINTF(pl, ("%s: intermediate CTIO completed ok\n", isp->isp_name)); } else { IDPRINTF(pl, ("%s: unmonitored CTIO completed ok\n", isp->isp_name)); } } else { IDPRINTF(pl, ("%s: NO xs for CTIO (handle 0x%x) status 0x%x\n", isp->isp_name, ct->ct_reserved, ct->ct_status & ~QLTM_SVALID)); } } else { if (ct->ct_flags & CT_SENDSTATUS) { /* * Sent status and command complete. * * We're now really done with this command, so we * punt to the platform dependent layers because * only there can we do the appropriate command * complete thread synchronization. */ IDPRINTF(pl, ("%s: status CTIO complete\n", isp->isp_name)); } else { /* * Final CTIO completed. Release DMA resources and * notify platform dependent layers. */ IDPRINTF(pl, ("%s: data CTIO complete\n", isp->isp_name)); ISP_DMAFREE(isp, xs, ct->ct_reserved); } (void) isp_async(isp, ISPASYNC_TARGET_ACTION, ct); /* * The platform layer will destroy the handle if appropriate. */ } } #endif