/* * Copyright (c) 1982, 1986, 1989, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 * $FreeBSD$ */ #include __FBSDID("$FreeBSD$"); #include "opt_ktrace.h" #include "opt_kstack_pages.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef KTRACE #include #include #endif #include #include #include #include #include #include MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); MALLOC_DEFINE(M_SESSION, "session", "session header"); static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); static void doenterpgrp(struct proc *, struct pgrp *); static void orphanpg(struct pgrp *pg); static void pgadjustjobc(struct pgrp *pgrp, int entering); static void pgdelete(struct pgrp *); static void proc_ctor(void *mem, int size, void *arg); static void proc_dtor(void *mem, int size, void *arg); static void proc_init(void *mem, int size); static void proc_fini(void *mem, int size); /* * Other process lists */ struct pidhashhead *pidhashtbl; u_long pidhash; struct pgrphashhead *pgrphashtbl; u_long pgrphash; struct proclist allproc; struct proclist zombproc; struct sx allproc_lock; struct sx proctree_lock; struct mtx pargs_ref_lock; struct mtx ppeers_lock; uma_zone_t proc_zone; uma_zone_t ithread_zone; int kstack_pages = KSTACK_PAGES; int uarea_pages = UAREA_PAGES; SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, ""); SYSCTL_INT(_kern, OID_AUTO, uarea_pages, CTLFLAG_RD, &uarea_pages, 0, ""); #define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start)) CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); /* * Initialize global process hashing structures. */ void procinit() { sx_init(&allproc_lock, "allproc"); sx_init(&proctree_lock, "proctree"); mtx_init(&pargs_ref_lock, "struct pargs.ref", NULL, MTX_DEF); mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); LIST_INIT(&allproc); LIST_INIT(&zombproc); pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), proc_ctor, proc_dtor, proc_init, proc_fini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); uihashinit(); } /* * Prepare a proc for use. */ static void proc_ctor(void *mem, int size, void *arg) { struct proc *p; p = (struct proc *)mem; } /* * Reclaim a proc after use. */ static void proc_dtor(void *mem, int size, void *arg) { struct proc *p; struct thread *td; struct ksegrp *kg; struct kse *ke; /* INVARIANTS checks go here */ p = (struct proc *)mem; KASSERT((p->p_numthreads == 1), ("bad number of threads in exiting process")); td = FIRST_THREAD_IN_PROC(p); KASSERT((td != NULL), ("proc_dtor: bad thread pointer")); kg = FIRST_KSEGRP_IN_PROC(p); KASSERT((kg != NULL), ("proc_dtor: bad kg pointer")); ke = FIRST_KSE_IN_KSEGRP(kg); KASSERT((ke != NULL), ("proc_dtor: bad ke pointer")); /* Dispose of an alternate kstack, if it exists. * XXX What if there are more than one thread in the proc? * The first thread in the proc is special and not * freed, so you gotta do this here. */ if (((p->p_flag & P_KTHREAD) != 0) && (td->td_altkstack != 0)) vm_thread_dispose_altkstack(td); /* * We want to make sure we know the initial linkages. * so for now tear them down and remake them. * This is probably un-needed as we can probably rely * on the state coming in here from wait4(). */ proc_linkup(p, kg, ke, td); } /* * Initialize type-stable parts of a proc (when newly created). */ static void proc_init(void *mem, int size) { struct proc *p; struct thread *td; struct ksegrp *kg; struct kse *ke; p = (struct proc *)mem; p->p_sched = (struct p_sched *)&p[1]; vm_proc_new(p); td = thread_alloc(); ke = kse_alloc(); kg = ksegrp_alloc(); proc_linkup(p, kg, ke, td); bzero(&p->p_mtx, sizeof(struct mtx)); mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); } /* * Tear down type-stable parts of a proc (just before being discarded) */ static void proc_fini(void *mem, int size) { struct proc *p; struct thread *td; struct ksegrp *kg; struct kse *ke; p = (struct proc *)mem; KASSERT((p->p_numthreads == 1), ("bad number of threads in freeing process")); td = FIRST_THREAD_IN_PROC(p); KASSERT((td != NULL), ("proc_dtor: bad thread pointer")); kg = FIRST_KSEGRP_IN_PROC(p); KASSERT((kg != NULL), ("proc_dtor: bad kg pointer")); ke = FIRST_KSE_IN_KSEGRP(kg); KASSERT((ke != NULL), ("proc_dtor: bad ke pointer")); vm_proc_dispose(p); thread_free(td); ksegrp_free(kg); kse_free(ke); mtx_destroy(&p->p_mtx); } /* * Is p an inferior of the current process? */ int inferior(p) register struct proc *p; { sx_assert(&proctree_lock, SX_LOCKED); for (; p != curproc; p = p->p_pptr) if (p->p_pid == 0) return (0); return (1); } /* * Locate a process by number */ struct proc * pfind(pid) register pid_t pid; { register struct proc *p; sx_slock(&allproc_lock); LIST_FOREACH(p, PIDHASH(pid), p_hash) if (p->p_pid == pid) { PROC_LOCK(p); break; } sx_sunlock(&allproc_lock); return (p); } /* * Locate a process group by number. * The caller must hold proctree_lock. */ struct pgrp * pgfind(pgid) register pid_t pgid; { register struct pgrp *pgrp; sx_assert(&proctree_lock, SX_LOCKED); LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { if (pgrp->pg_id == pgid) { PGRP_LOCK(pgrp); return (pgrp); } } return (NULL); } /* * Create a new process group. * pgid must be equal to the pid of p. * Begin a new session if required. */ int enterpgrp(p, pgid, pgrp, sess) register struct proc *p; pid_t pgid; struct pgrp *pgrp; struct session *sess; { struct pgrp *pgrp2; sx_assert(&proctree_lock, SX_XLOCKED); KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); KASSERT(p->p_pid == pgid, ("enterpgrp: new pgrp and pid != pgid")); pgrp2 = pgfind(pgid); KASSERT(pgrp2 == NULL, ("enterpgrp: pgrp with pgid exists")); KASSERT(!SESS_LEADER(p), ("enterpgrp: session leader attempted setpgrp")); mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); if (sess != NULL) { /* * new session */ mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); PROC_LOCK(p); p->p_flag &= ~P_CONTROLT; PROC_UNLOCK(p); PGRP_LOCK(pgrp); sess->s_leader = p; sess->s_sid = p->p_pid; sess->s_count = 1; sess->s_ttyvp = NULL; sess->s_ttyp = NULL; bcopy(p->p_session->s_login, sess->s_login, sizeof(sess->s_login)); pgrp->pg_session = sess; KASSERT(p == curproc, ("enterpgrp: mksession and p != curproc")); } else { pgrp->pg_session = p->p_session; SESS_LOCK(pgrp->pg_session); pgrp->pg_session->s_count++; SESS_UNLOCK(pgrp->pg_session); PGRP_LOCK(pgrp); } pgrp->pg_id = pgid; LIST_INIT(&pgrp->pg_members); /* * As we have an exclusive lock of proctree_lock, * this should not deadlock. */ LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); pgrp->pg_jobc = 0; SLIST_INIT(&pgrp->pg_sigiolst); PGRP_UNLOCK(pgrp); doenterpgrp(p, pgrp); return (0); } /* * Move p to an existing process group */ int enterthispgrp(p, pgrp) register struct proc *p; struct pgrp *pgrp; { sx_assert(&proctree_lock, SX_XLOCKED); PROC_LOCK_ASSERT(p, MA_NOTOWNED); PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); KASSERT(pgrp->pg_session == p->p_session, ("%s: pgrp's session %p, p->p_session %p.\n", __func__, pgrp->pg_session, p->p_session)); KASSERT(pgrp != p->p_pgrp, ("%s: p belongs to pgrp.", __func__)); doenterpgrp(p, pgrp); return (0); } /* * Move p to a process group */ static void doenterpgrp(p, pgrp) struct proc *p; struct pgrp *pgrp; { struct pgrp *savepgrp; sx_assert(&proctree_lock, SX_XLOCKED); PROC_LOCK_ASSERT(p, MA_NOTOWNED); PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); savepgrp = p->p_pgrp; /* * Adjust eligibility of affected pgrps to participate in job control. * Increment eligibility counts before decrementing, otherwise we * could reach 0 spuriously during the first call. */ fixjobc(p, pgrp, 1); fixjobc(p, p->p_pgrp, 0); PGRP_LOCK(pgrp); PGRP_LOCK(savepgrp); PROC_LOCK(p); LIST_REMOVE(p, p_pglist); p->p_pgrp = pgrp; PROC_UNLOCK(p); LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); PGRP_UNLOCK(savepgrp); PGRP_UNLOCK(pgrp); if (LIST_EMPTY(&savepgrp->pg_members)) pgdelete(savepgrp); } /* * remove process from process group */ int leavepgrp(p) register struct proc *p; { struct pgrp *savepgrp; sx_assert(&proctree_lock, SX_XLOCKED); savepgrp = p->p_pgrp; PGRP_LOCK(savepgrp); PROC_LOCK(p); LIST_REMOVE(p, p_pglist); p->p_pgrp = NULL; PROC_UNLOCK(p); PGRP_UNLOCK(savepgrp); if (LIST_EMPTY(&savepgrp->pg_members)) pgdelete(savepgrp); return (0); } /* * delete a process group */ static void pgdelete(pgrp) register struct pgrp *pgrp; { struct session *savesess; sx_assert(&proctree_lock, SX_XLOCKED); PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); /* * Reset any sigio structures pointing to us as a result of * F_SETOWN with our pgid. */ funsetownlst(&pgrp->pg_sigiolst); PGRP_LOCK(pgrp); if (pgrp->pg_session->s_ttyp != NULL && pgrp->pg_session->s_ttyp->t_pgrp == pgrp) pgrp->pg_session->s_ttyp->t_pgrp = NULL; LIST_REMOVE(pgrp, pg_hash); savesess = pgrp->pg_session; SESS_LOCK(savesess); savesess->s_count--; SESS_UNLOCK(savesess); PGRP_UNLOCK(pgrp); if (savesess->s_count == 0) { mtx_destroy(&savesess->s_mtx); FREE(pgrp->pg_session, M_SESSION); } mtx_destroy(&pgrp->pg_mtx); FREE(pgrp, M_PGRP); } static void pgadjustjobc(pgrp, entering) struct pgrp *pgrp; int entering; { PGRP_LOCK(pgrp); if (entering) pgrp->pg_jobc++; else { --pgrp->pg_jobc; if (pgrp->pg_jobc == 0) orphanpg(pgrp); } PGRP_UNLOCK(pgrp); } /* * Adjust pgrp jobc counters when specified process changes process group. * We count the number of processes in each process group that "qualify" * the group for terminal job control (those with a parent in a different * process group of the same session). If that count reaches zero, the * process group becomes orphaned. Check both the specified process' * process group and that of its children. * entering == 0 => p is leaving specified group. * entering == 1 => p is entering specified group. */ void fixjobc(p, pgrp, entering) register struct proc *p; register struct pgrp *pgrp; int entering; { register struct pgrp *hispgrp; register struct session *mysession; sx_assert(&proctree_lock, SX_LOCKED); PROC_LOCK_ASSERT(p, MA_NOTOWNED); PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); /* * Check p's parent to see whether p qualifies its own process * group; if so, adjust count for p's process group. */ mysession = pgrp->pg_session; if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && hispgrp->pg_session == mysession) pgadjustjobc(pgrp, entering); /* * Check this process' children to see whether they qualify * their process groups; if so, adjust counts for children's * process groups. */ LIST_FOREACH(p, &p->p_children, p_sibling) { hispgrp = p->p_pgrp; if (hispgrp == pgrp || hispgrp->pg_session != mysession) continue; PROC_LOCK(p); if (p->p_state == PRS_ZOMBIE) { PROC_UNLOCK(p); continue; } PROC_UNLOCK(p); pgadjustjobc(hispgrp, entering); } } /* * A process group has become orphaned; * if there are any stopped processes in the group, * hang-up all process in that group. */ static void orphanpg(pg) struct pgrp *pg; { register struct proc *p; PGRP_LOCK_ASSERT(pg, MA_OWNED); LIST_FOREACH(p, &pg->pg_members, p_pglist) { PROC_LOCK(p); if (P_SHOULDSTOP(p)) { PROC_UNLOCK(p); LIST_FOREACH(p, &pg->pg_members, p_pglist) { PROC_LOCK(p); psignal(p, SIGHUP); psignal(p, SIGCONT); PROC_UNLOCK(p); } return; } PROC_UNLOCK(p); } } #include "opt_ddb.h" #ifdef DDB #include DB_SHOW_COMMAND(pgrpdump, pgrpdump) { register struct pgrp *pgrp; register struct proc *p; register int i; for (i = 0; i <= pgrphash; i++) { if (!LIST_EMPTY(&pgrphashtbl[i])) { printf("\tindx %d\n", i); LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { printf( "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", (void *)pgrp, (long)pgrp->pg_id, (void *)pgrp->pg_session, pgrp->pg_session->s_count, (void *)LIST_FIRST(&pgrp->pg_members)); LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { printf("\t\tpid %ld addr %p pgrp %p\n", (long)p->p_pid, (void *)p, (void *)p->p_pgrp); } } } } } #endif /* DDB */ void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp); /* * Fill in a kinfo_proc structure for the specified process. * Must be called with the target process locked. */ void fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) { fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp); } void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp) { struct proc *p; struct thread *td0; struct kse *ke; struct ksegrp *kg; struct tty *tp; struct session *sp; struct timeval tv; struct sigacts *ps; p = td->td_proc; bzero(kp, sizeof(*kp)); kp->ki_structsize = sizeof(*kp); kp->ki_paddr = p; PROC_LOCK_ASSERT(p, MA_OWNED); kp->ki_addr =/* p->p_addr; */0; /* XXXKSE */ kp->ki_args = p->p_args; kp->ki_textvp = p->p_textvp; #ifdef KTRACE kp->ki_tracep = p->p_tracevp; mtx_lock(&ktrace_mtx); kp->ki_traceflag = p->p_traceflag; mtx_unlock(&ktrace_mtx); #endif kp->ki_fd = p->p_fd; kp->ki_vmspace = p->p_vmspace; if (p->p_ucred) { kp->ki_uid = p->p_ucred->cr_uid; kp->ki_ruid = p->p_ucred->cr_ruid; kp->ki_svuid = p->p_ucred->cr_svuid; /* XXX bde doesn't like KI_NGROUPS */ kp->ki_ngroups = min(p->p_ucred->cr_ngroups, KI_NGROUPS); bcopy(p->p_ucred->cr_groups, kp->ki_groups, kp->ki_ngroups * sizeof(gid_t)); kp->ki_rgid = p->p_ucred->cr_rgid; kp->ki_svgid = p->p_ucred->cr_svgid; } if (p->p_sigacts) { ps = p->p_sigacts; mtx_lock(&ps->ps_mtx); kp->ki_sigignore = ps->ps_sigignore; kp->ki_sigcatch = ps->ps_sigcatch; mtx_unlock(&ps->ps_mtx); } mtx_lock_spin(&sched_lock); if (p->p_state != PRS_NEW && p->p_state != PRS_ZOMBIE && p->p_vmspace != NULL) { struct vmspace *vm = p->p_vmspace; kp->ki_size = vm->vm_map.size; kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ if (p->p_sflag & PS_INMEM) kp->ki_rssize += UAREA_PAGES; FOREACH_THREAD_IN_PROC(p, td0) { if (!TD_IS_SWAPPED(td0)) kp->ki_rssize += td0->td_kstack_pages; if (td0->td_altkstack_obj != NULL) kp->ki_rssize += td0->td_altkstack_pages; } kp->ki_swrss = vm->vm_swrss; kp->ki_tsize = vm->vm_tsize; kp->ki_dsize = vm->vm_dsize; kp->ki_ssize = vm->vm_ssize; } if ((p->p_sflag & PS_INMEM) && p->p_stats) { kp->ki_start = p->p_stats->p_start; timevaladd(&kp->ki_start, &boottime); kp->ki_rusage = p->p_stats->p_ru; kp->ki_childtime.tv_sec = p->p_stats->p_cru.ru_utime.tv_sec + p->p_stats->p_cru.ru_stime.tv_sec; kp->ki_childtime.tv_usec = p->p_stats->p_cru.ru_utime.tv_usec + p->p_stats->p_cru.ru_stime.tv_usec; } if (p->p_state != PRS_ZOMBIE) { #if 0 if (td == NULL) { /* XXXKSE: This should never happen. */ printf("fill_kinfo_proc(): pid %d has no threads!\n", p->p_pid); mtx_unlock_spin(&sched_lock); return; } #endif if (td->td_wmesg != NULL) { strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); } if (TD_ON_LOCK(td)) { kp->ki_kiflag |= KI_LOCKBLOCK; strlcpy(kp->ki_lockname, td->td_lockname, sizeof(kp->ki_lockname)); } if (p->p_state == PRS_NORMAL) { /* XXXKSE very approximate */ if (TD_ON_RUNQ(td) || TD_CAN_RUN(td) || TD_IS_RUNNING(td)) { kp->ki_stat = SRUN; } else if (P_SHOULDSTOP(p)) { kp->ki_stat = SSTOP; } else if (TD_IS_SLEEPING(td)) { kp->ki_stat = SSLEEP; } else if (TD_ON_LOCK(td)) { kp->ki_stat = SLOCK; } else { kp->ki_stat = SWAIT; } } else { kp->ki_stat = SIDL; } kp->ki_sflag = p->p_sflag; kp->ki_swtime = p->p_swtime; kp->ki_pid = p->p_pid; kg = td->td_ksegrp; ke = td->td_kse; bintime2timeval(&p->p_runtime, &tv); kp->ki_runtime = tv.tv_sec * (u_int64_t)1000000 + tv.tv_usec; /* things in the KSE GROUP */ kp->ki_estcpu = kg->kg_estcpu; kp->ki_slptime = kg->kg_slptime; kp->ki_pri.pri_user = kg->kg_user_pri; kp->ki_pri.pri_class = kg->kg_pri_class; kp->ki_nice = kg->kg_nice; /* Things in the thread */ kp->ki_wchan = td->td_wchan; kp->ki_pri.pri_level = td->td_priority; kp->ki_pri.pri_native = td->td_base_pri; kp->ki_lastcpu = td->td_lastcpu; kp->ki_oncpu = td->td_oncpu; kp->ki_tdflags = td->td_flags; kp->ki_pcb = td->td_pcb; kp->ki_kstack = (void *)td->td_kstack; /* Things in the kse */ if (ke) { kp->ki_rqindex = ke->ke_rqindex; kp->ki_pctcpu = sched_pctcpu(ke); } else { kp->ki_rqindex = 0; kp->ki_pctcpu = 0; } } else { kp->ki_stat = SZOMB; } mtx_unlock_spin(&sched_lock); sp = NULL; tp = NULL; if (p->p_pgrp) { kp->ki_pgid = p->p_pgrp->pg_id; kp->ki_jobc = p->p_pgrp->pg_jobc; sp = p->p_pgrp->pg_session; if (sp != NULL) { kp->ki_sid = sp->s_sid; SESS_LOCK(sp); strlcpy(kp->ki_login, sp->s_login, sizeof(kp->ki_login)); if (sp->s_ttyvp) kp->ki_kiflag |= KI_CTTY; if (SESS_LEADER(p)) kp->ki_kiflag |= KI_SLEADER; tp = sp->s_ttyp; SESS_UNLOCK(sp); } } if ((p->p_flag & P_CONTROLT) && tp != NULL) { kp->ki_tdev = dev2udev(tp->t_dev); kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; if (tp->t_session) kp->ki_tsid = tp->t_session->s_sid; } else kp->ki_tdev = NOUDEV; if (p->p_comm[0] != '\0') { strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); strlcpy(kp->ki_ocomm, p->p_comm, sizeof(kp->ki_ocomm)); } kp->ki_siglist = p->p_siglist; SIGSETOR(kp->ki_siglist, td->td_siglist); kp->ki_sigmask = td->td_sigmask; kp->ki_xstat = p->p_xstat; kp->ki_acflag = p->p_acflag; kp->ki_flag = p->p_flag; /* If jailed(p->p_ucred), emulate the old P_JAILED flag. */ if (jailed(p->p_ucred)) kp->ki_flag |= P_JAILED; kp->ki_lock = p->p_lock; if (p->p_pptr) kp->ki_ppid = p->p_pptr->p_pid; } /* * Locate a zombie process by number */ struct proc * zpfind(pid_t pid) { struct proc *p; sx_slock(&allproc_lock); LIST_FOREACH(p, &zombproc, p_list) if (p->p_pid == pid) { PROC_LOCK(p); break; } sx_sunlock(&allproc_lock); return (p); } #define KERN_PROC_ZOMBMASK 0x3 #define KERN_PROC_NOTHREADS 0x4 /* * Must be called with the process locked and will return with it unlocked. */ static int sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) { struct thread *td; struct kinfo_proc kinfo_proc; int error = 0; struct proc *np; pid_t pid = p->p_pid; PROC_LOCK_ASSERT(p, MA_OWNED); if (flags & KERN_PROC_NOTHREADS) { fill_kinfo_proc(p, &kinfo_proc); PROC_UNLOCK(p); error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, sizeof(kinfo_proc)); PROC_LOCK(p); } else { _PHOLD(p); FOREACH_THREAD_IN_PROC(p, td) { fill_kinfo_thread(td, &kinfo_proc); PROC_UNLOCK(p); error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, sizeof(kinfo_proc)); PROC_LOCK(p); if (error) break; } _PRELE(p); } PROC_UNLOCK(p); if (error) return (error); if (flags & KERN_PROC_ZOMBMASK) np = zpfind(pid); else { if (pid == 0) return (0); np = pfind(pid); } if (np == NULL) return EAGAIN; if (np != p) { PROC_UNLOCK(np); return EAGAIN; } PROC_UNLOCK(np); return (0); } static int sysctl_kern_proc(SYSCTL_HANDLER_ARGS) { int *name = (int*) arg1; u_int namelen = arg2; struct proc *p; int flags, doingzomb; int error = 0; if (oidp->oid_number == KERN_PROC_PID) { if (namelen != 1) return (EINVAL); p = pfind((pid_t)name[0]); if (!p) return (0); if (p_cansee(curthread, p)) { PROC_UNLOCK(p); return (0); } error = sysctl_out_proc(p, req, KERN_PROC_NOTHREADS); return (error); } if (oidp->oid_number == KERN_PROC_ALL && !namelen) ; else if (oidp->oid_number != KERN_PROC_ALL && namelen == 1) ; else return (EINVAL); if (!req->oldptr) { /* overestimate by 5 procs */ error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); if (error) return (error); } sysctl_wire_old_buffer(req, 0); sx_slock(&allproc_lock); for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { if (!doingzomb) p = LIST_FIRST(&allproc); else p = LIST_FIRST(&zombproc); for (; p != 0; p = LIST_NEXT(p, p_list)) { /* * Skip embryonic processes. */ mtx_lock_spin(&sched_lock); if (p->p_state == PRS_NEW) { mtx_unlock_spin(&sched_lock); continue; } mtx_unlock_spin(&sched_lock); PROC_LOCK(p); /* * Show a user only appropriate processes. */ if (p_cansee(curthread, p)) { PROC_UNLOCK(p); continue; } flags = 0; /* * TODO - make more efficient (see notes below). * do by session. */ switch (oidp->oid_number) { case KERN_PROC_PGRP: /* could do this by traversing pgrp */ if (p->p_pgrp == NULL || p->p_pgrp->pg_id != (pid_t)name[0]) { PROC_UNLOCK(p); continue; } break; case KERN_PROC_TTY: if ((p->p_flag & P_CONTROLT) == 0 || p->p_session == NULL) { PROC_UNLOCK(p); continue; } SESS_LOCK(p->p_session); if (p->p_session->s_ttyp == NULL || dev2udev(p->p_session->s_ttyp->t_dev) != (udev_t)name[0]) { SESS_UNLOCK(p->p_session); PROC_UNLOCK(p); continue; } SESS_UNLOCK(p->p_session); break; case KERN_PROC_UID: if (p->p_ucred == NULL || p->p_ucred->cr_uid != (uid_t)name[0]) { PROC_UNLOCK(p); continue; } break; case KERN_PROC_RUID: if (p->p_ucred == NULL || p->p_ucred->cr_ruid != (uid_t)name[0]) { PROC_UNLOCK(p); continue; } break; case KERN_PROC_PROC: flags |= KERN_PROC_NOTHREADS; break; default: break; } error = sysctl_out_proc(p, req, flags | doingzomb); if (error) { sx_sunlock(&allproc_lock); return (error); } } } sx_sunlock(&allproc_lock); return (0); } struct pargs * pargs_alloc(int len) { struct pargs *pa; MALLOC(pa, struct pargs *, sizeof(struct pargs) + len, M_PARGS, M_WAITOK); pa->ar_ref = 1; pa->ar_length = len; return (pa); } void pargs_free(struct pargs *pa) { FREE(pa, M_PARGS); } void pargs_hold(struct pargs *pa) { if (pa == NULL) return; PARGS_LOCK(pa); pa->ar_ref++; PARGS_UNLOCK(pa); } void pargs_drop(struct pargs *pa) { if (pa == NULL) return; PARGS_LOCK(pa); if (--pa->ar_ref == 0) { PARGS_UNLOCK(pa); pargs_free(pa); } else PARGS_UNLOCK(pa); } /* * This sysctl allows a process to retrieve the argument list or process * title for another process without groping around in the address space * of the other process. It also allow a process to set its own "process * title to a string of its own choice. */ static int sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) { int *name = (int*) arg1; u_int namelen = arg2; struct pargs *newpa, *pa; struct proc *p; int error = 0; if (namelen != 1) return (EINVAL); p = pfind((pid_t)name[0]); if (!p) return (0); if ((!ps_argsopen) && p_cansee(curthread, p)) { PROC_UNLOCK(p); return (0); } if (req->newptr && curproc != p) { PROC_UNLOCK(p); return (EPERM); } pa = p->p_args; pargs_hold(pa); PROC_UNLOCK(p); if (req->oldptr != NULL && pa != NULL) error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); pargs_drop(pa); if (error != 0 || req->newptr == NULL) return (error); if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) return (ENOMEM); newpa = pargs_alloc(req->newlen); error = SYSCTL_IN(req, newpa->ar_args, req->newlen); if (error != 0) { pargs_free(newpa); return (error); } PROC_LOCK(p); pa = p->p_args; p->p_args = newpa; PROC_UNLOCK(p); pargs_drop(pa); return (0); } static int sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) { struct proc *p; char *sv_name; int *name; int namelen; namelen = arg2; if (namelen != 1) return (EINVAL); name = (int *)arg1; if ((p = pfind((pid_t)name[0])) == NULL) return (0); if (p_cansee(curthread, p)) { PROC_UNLOCK(p); return (0); } sv_name = p->p_sysent->sv_name; PROC_UNLOCK(p); return (sysctl_handle_string(oidp, sv_name, 0, req)); } SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT, 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table"); SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD, sysctl_kern_proc, "Process table"); SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD, sysctl_kern_proc, "Process table"); SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD, sysctl_kern_proc, "Process table"); SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD, sysctl_kern_proc, "Process table"); SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD, sysctl_kern_proc, "Process table"); SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD, sysctl_kern_proc, "Return process table, no threads"); SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_ANYBODY, sysctl_kern_proc_args, "Process argument list"); SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD, sysctl_kern_proc_sv_name, "Process syscall vector name (ABI type)");