/*- * Copyright (c) 1992 Terrence R. Lambert. * Copyright (c) 1994 Christopher G. Demetriou * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Terrence R. Lambert. * 4. The name Terrence R. Lambert may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY TERRENCE R. LAMBERT ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE TERRENCE R. LAMBERT BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $Id: kern_lkm.c,v 1.56 1998/09/07 05:42:15 bde Exp $ */ #include "opt_devfs.h" #include "opt_no_lkm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DEVFS #include #endif /*DEVFS*/ #include #include #include #define PAGESIZE 1024 /* kmem_alloc() allocation quantum */ #define LKM_ALLOC 0x01 #define LKM_WANT 0x02 #define LKMS_IDLE 0x00 #define LKMS_RESERVED 0x01 #define LKMS_LOADING 0x02 #define LKMS_LOADED 0x04 #define LKMS_UNLOADING 0x08 static int lkm_v = 0; static int lkm_state = LKMS_IDLE; #ifndef MAXLKMS #define MAXLKMS 20 #endif static struct lkm_table lkmods[MAXLKMS]; /* table of loaded modules */ static struct lkm_table *curp; /* global for in-progress ops */ /* * XXX this bloat just exands the sysctl__vfs linker set a little so that * we can attach sysctls for VFS LKMs without expanding the linker set. * Currently (1998/09/06), only one VFS uses sysctls, so 2 extra linker * set slots are more than sufficient. */ extern struct linker_set sysctl__vfs; SYSCTL_INT(_vfs, OID_AUTO, lkm0, CTLFLAG_RD, &lkm_v, 0, ""); SYSCTL_INT(_vfs, OID_AUTO, lkm1, CTLFLAG_RD, &lkm_v, 0, ""); static int _lkm_dev __P((struct lkm_table *lkmtp, int cmd)); static int _lkm_exec __P((struct lkm_table *lkmtp, int cmd)); static int _lkm_vfs __P((struct lkm_table *lkmtp, int cmd)); static int _lkm_syscall __P((struct lkm_table *lkmtp, int cmd)); static void lkmunreserve __P((void)); static d_open_t lkmcopen; static d_close_t lkmcclose; static d_ioctl_t lkmcioctl; #define CDEV_MAJOR 32 static struct cdevsw lkmc_cdevsw = { lkmcopen, lkmcclose, noread, nowrite, /*32*/ lkmcioctl, nostop, nullreset, nodevtotty, seltrue, nommap, NULL, "lkm", NULL, -1 }; /*ARGSUSED*/ static int lkmcopen(dev, flag, devtype, p) dev_t dev; int flag; int devtype; struct proc *p; { int error; if (minor(dev) != 0) return(ENXIO); /* bad minor # */ /* * Use of the loadable kernel module device must be exclusive; we * may try to remove this restriction later, but it's really no * hardship. */ while (lkm_v & LKM_ALLOC) { if (flag & FNONBLOCK) /* don't hang */ return(EBUSY); lkm_v |= LKM_WANT; /* * Sleep pending unlock; we use tsleep() to allow * an alarm out of the open. */ error = tsleep((caddr_t)&lkm_v, TTIPRI|PCATCH, "lkmopn", 0); if (error) return(error); /* leave LKM_WANT set -- no problem */ } lkm_v |= LKM_ALLOC; return(0); /* pseudo-device open */ } /* * Unreserve the memory associated with the current loaded module; done on * a coerced close of the lkm device (close on premature exit of modload) * or explicitly by modload as a result of a link failure. */ static void lkmunreserve() { if (lkm_state == LKMS_IDLE) return; /* * Actually unreserve the memory */ if (curp && curp->area) { kmem_free(kernel_map, curp->area, curp->size);/**/ curp->area = 0; if (curp->private.lkm_any != NULL) curp->private.lkm_any = NULL; } lkm_state = LKMS_IDLE; } static int lkmcclose(dev, flag, mode, p) dev_t dev; int flag; int mode; struct proc *p; { if (!(lkm_v & LKM_ALLOC)) { #ifdef DEBUG printf("LKM: close before open!\n"); #endif /* DEBUG */ return(EBADF); } /* do this before waking the herd... */ if (curp && !curp->used) { /* * If we close before setting used, we have aborted * by way of error or by way of close-on-exit from * a premature exit of "modload". */ lkmunreserve(); /* coerce state to LKM_IDLE */ } lkm_v &= ~LKM_ALLOC; wakeup((caddr_t)&lkm_v); /* thundering herd "problem" here */ return(0); /* pseudo-device closed */ } /*ARGSUSED*/ static int lkmcioctl(dev, cmd, data, flag, p) dev_t dev; u_long cmd; caddr_t data; int flag; struct proc *p; { int err = 0; int i; struct lmc_resrv *resrvp; struct lmc_loadbuf *loadbufp; struct lmc_unload *unloadp; struct lmc_stat *statp; char istr[MAXLKMNAME]; switch(cmd) { case LMRESERV: /* reserve pages for a module */ if ((flag & FWRITE) == 0 || securelevel > 0) /* only allow this if writing and insecure */ return EPERM; resrvp = (struct lmc_resrv *)data; /* * Find a free slot. */ for (i = 0; i < MAXLKMS; i++) if (!lkmods[i].used) break; if (i == MAXLKMS) { err = ENOMEM; /* no slots available */ break; } curp = &lkmods[i]; curp->id = i; /* self reference slot offset */ resrvp->slot = i; /* return slot */ /* * Get memory for module */ curp->size = resrvp->size; curp->area = kmem_alloc(kernel_map, curp->size);/**/ curp->offset = 0; /* load offset */ resrvp->addr = curp->area; /* ret kernel addr */ #ifdef DEBUG printf("LKM: LMRESERV (actual = 0x%08lx)\n", curp->area); printf("LKM: LMRESERV (adjusted = 0x%08x)\n", trunc_page(curp->area)); #endif /* DEBUG */ lkm_state = LKMS_RESERVED; break; case LMLOADBUF: /* Copy in; stateful, follows LMRESERV */ if ((flag & FWRITE) == 0 || securelevel > 0) /* only allow this if writing and insecure */ return EPERM; loadbufp = (struct lmc_loadbuf *)data; i = loadbufp->cnt; if ((lkm_state != LKMS_RESERVED && lkm_state != LKMS_LOADING) || i < 0 || i > MODIOBUF || i > curp->size - curp->offset) { err = ENOMEM; break; } /* copy in buffer full of data */ err = copyin((caddr_t)loadbufp->data, (caddr_t)(uintptr_t)(curp->area + curp->offset), i); if (err) break; if ((curp->offset + i) < curp->size) { lkm_state = LKMS_LOADING; #ifdef DEBUG printf( "LKM: LMLOADBUF (loading @ %lu of %lu, i = %d)\n", curp->offset, curp->size, i); #endif /* DEBUG */ } else { lkm_state = LKMS_LOADED; #ifdef DEBUG printf("LKM: LMLOADBUF (loaded)\n"); #endif /* DEBUG */ } curp->offset += i; break; case LMUNRESRV: /* discard reserved pages for a module */ if ((flag & FWRITE) == 0 || securelevel > 0) /* only allow this if writing and insecure */ return EPERM; lkmunreserve(); /* coerce state to LKM_IDLE */ #ifdef DEBUG printf("LKM: LMUNRESERV\n"); #endif /* DEBUG */ break; case LMREADY: /* module loaded: call entry */ if ((flag & FWRITE) == 0 || securelevel > 0) /* only allow this if writing or insecure */ return EPERM; switch (lkm_state) { case LKMS_LOADED: break; case LKMS_LOADING: /* The remainder must be bss, so we clear it */ bzero((caddr_t)(uintptr_t)(curp->area + curp->offset), curp->size - curp->offset); break; default: #ifdef DEBUG printf("lkm_state is %02x\n", lkm_state); #endif /* DEBUG */ return ENXIO; } /* XXX gack */ curp->entry = (int (*) __P((struct lkm_table *, int, int))) (*(uintfptr_t *)data); /* call entry(load)... (assigns "private" portion) */ err = (*(curp->entry))(curp, LKM_E_LOAD, LKM_VERSION); if (err) { /* * Module may refuse loading or may have a * version mismatch... */ lkm_state = LKMS_UNLOADING; /* for lkmunreserve */ lkmunreserve(); /* free memory */ curp->used = 0; /* free slot */ break; } /* * It's possible for a user to load a module that doesn't * initialize itself correctly. (You can even get away with * using it for a while.) Unfortunately, we are faced with * the following problems: * - we can't tell a good module from a bad one until * after we've run its entry function (if the private * section is uninitalized after we return from the * entry, then something's fishy) * - now that we've called the entry function, we can't * forcibly unload the module without risking a crash * - since we don't know what the module's entry function * did, we can't easily clean up the mess it may have * made, so we can't know just how unstable the system * may be * So, being stuck between a rock and a hard place, we * have no choice but to do this... */ if (curp->private.lkm_any == NULL) panic("loadable module initialization failed"); curp->used = 1; #ifdef DEBUG printf("LKM: LMREADY\n"); #endif /* DEBUG */ lkm_state = LKMS_IDLE; break; case LMUNLOAD: /* unload a module */ if ((flag & FWRITE) == 0 || securelevel > 0) /* only allow this if writing and insecure */ return EPERM; unloadp = (struct lmc_unload *)data; if ((i = unloadp->id) == -1) { /* unload by name */ /* * Copy name and lookup id from all loaded * modules. May fail. */ err =copyinstr(unloadp->name, istr, MAXLKMNAME-1, NULL); if (err) break; /* * look up id... */ for (i = 0; i < MAXLKMS; i++) { if (!lkmods[i].used) continue; if (!strcmp(istr, lkmods[i].private.lkm_any->lkm_name)) break; } } /* * Range check the value; on failure, return EINVAL */ if (i < 0 || i >= MAXLKMS) { err = EINVAL; break; } curp = &lkmods[i]; if (!curp->used) { err = ENOENT; break; } /* call entry(unload) */ if ((*(curp->entry))(curp, LKM_E_UNLOAD, LKM_VERSION)) { err = EBUSY; break; } lkm_state = LKMS_UNLOADING; /* non-idle for lkmunreserve */ lkmunreserve(); /* free memory */ curp->used = 0; /* free slot */ break; case LMSTAT: /* stat a module by id/name */ /* allow readers and writers to stat */ statp = (struct lmc_stat *)data; if ((i = statp->id) == -1) { /* stat by name */ /* * Copy name and lookup id from all loaded * modules. */ copystr(statp->name, istr, MAXLKMNAME-1, NULL); /* * look up id... */ for (i = 0; i < MAXLKMS; i++) { if (!lkmods[i].used) continue; if (!strcmp(istr, lkmods[i].private.lkm_any->lkm_name)) break; } if (i == MAXLKMS) { /* Not found */ err = ENOENT; break; } } /* * Range check the value; on failure, return EINVAL */ if (i < 0 || i >= MAXLKMS) { err = EINVAL; break; } curp = &lkmods[i]; if (!curp->used) { /* Not found */ err = ENOENT; break; } /* * Copy out stat information for this module... */ statp->id = curp->id; statp->offset = curp->private.lkm_any->lkm_offset; statp->type = curp->private.lkm_any->lkm_type; statp->area = curp->area; statp->size = curp->size / PAGESIZE; statp->private = (uintptr_t)curp->private.lkm_any; statp->ver = curp->private.lkm_any->lkm_ver; copystr(curp->private.lkm_any->lkm_name, statp->name, MAXLKMNAME - 2, NULL); break; default: /* bad ioctl()... */ err = ENOTTY; break; } return (err); } /* * Acts like "nosys" but can be identified in sysent for dynamic call * number assignment for a limited number of calls. * * Place holder for system call slots reserved for loadable modules. */ int lkmnosys(p, args) struct proc *p; struct nosys_args *args; { return(nosys(p, args)); } int lkmexists(lkmtp) struct lkm_table *lkmtp; { int i; /* * see if name exists... */ for (i = 0; i < MAXLKMS; i++) { /* * An unused module and the one we are testing are not * considered. */ if (!lkmods[i].used || &lkmods[i] == lkmtp) continue; if (!strcmp(lkmtp->private.lkm_any->lkm_name, lkmods[i].private.lkm_any->lkm_name)) return(1); /* already loaded... */ } return(0); /* module not loaded... */ } /* * For the loadable system call described by the structure pointed to * by lkmtp, load/unload/stat it depending on the cmd requested. */ static int _lkm_syscall(lkmtp, cmd) struct lkm_table *lkmtp; int cmd; { struct lkm_syscall *args = lkmtp->private.lkm_syscall; int i; int err = 0; switch(cmd) { case LKM_E_LOAD: /* don't load twice! */ if (lkmexists(lkmtp)) return(EEXIST); if ((i = args->lkm_offset) == LKM_ANON) { /* auto */ /* * Search the table looking for a slot... */ for (i = 0; i < aout_sysvec.sv_size; i++) if (aout_sysvec.sv_table[i].sy_call == (sy_call_t *)lkmnosys) break; /* found it! */ /* out of allocable slots? */ if (i == aout_sysvec.sv_size) { err = ENFILE; break; } } else { /* assign */ if (i < 0 || i >= aout_sysvec.sv_size) { err = EINVAL; break; } } /* save old */ bcopy(&aout_sysvec.sv_table[i], &(args->lkm_oldent), sizeof(struct sysent)); /* replace with new */ bcopy(args->lkm_sysent, &aout_sysvec.sv_table[i], sizeof(struct sysent)); /* done! */ args->lkm_offset = i; /* slot in sysent[] */ break; case LKM_E_UNLOAD: /* current slot... */ i = args->lkm_offset; /* replace current slot contents with old contents */ bcopy(&(args->lkm_oldent), &aout_sysvec.sv_table[i], sizeof(struct sysent)); break; case LKM_E_STAT: /* no special handling... */ break; } return(err); } /* * For the loadable virtual file system described by the structure pointed * to by lkmtp, load/unload/stat it depending on the cmd requested. */ static int _lkm_vfs(lkmtp, cmd) struct lkm_table *lkmtp; int cmd; { struct lkm_vfs *args = lkmtp->private.lkm_vfs; struct linker_set *l; struct sysctl_oid **oidpp; struct vfsconf *vfc = args->lkm_vfsconf; struct vfsconf *vfsp, *prev_vfsp; int error, i, maxtypenum; switch(cmd) { case LKM_E_LOAD: /* don't load twice! */ if (lkmexists(lkmtp)) return(EEXIST); for (vfsp = vfsconf; vfsp->vfc_next; vfsp = vfsp->vfc_next) { if (!strcmp(vfc->vfc_name, vfsp->vfc_name)) { return EEXIST; } } args->lkm_offset = vfc->vfc_typenum = maxvfsconf++; if (vfc->vfc_vfsops->vfs_oid != NULL) { l = &sysctl__vfs; for (i = l->ls_length, oidpp = (struct sysctl_oid **)l->ls_items; i--; oidpp++) { if (!*oidpp || *oidpp == &sysctl___vfs_lkm0 || *oidpp == &sysctl___vfs_lkm1) { *oidpp = vfc->vfc_vfsops->vfs_oid; (*oidpp)->oid_number = vfc->vfc_typenum; sysctl_order_all(); break; } } } vfsp->vfc_next = vfc; vfc->vfc_next = NULL; /* like in vfs_op_init */ for(i = 0; args->lkm_vnodeops->ls_items[i]; i++) { struct vnodeopv_desc *opv = (struct vnodeopv_desc *) args->lkm_vnodeops->ls_items[i]; *(opv->opv_desc_vector_p) = NULL; } for(i = 0; args->lkm_vnodeops->ls_items[i]; i++) { struct vnodeopv_desc *opv = (struct vnodeopv_desc *) args->lkm_vnodeops->ls_items[i]; vfs_opv_init(opv); } /* * Call init function for this VFS... */ (*(vfc->vfc_vfsops->vfs_init))(vfc); /* done! */ break; case LKM_E_UNLOAD: /* current slot... */ i = args->lkm_offset; prev_vfsp = NULL; for (vfsp = vfsconf; vfsp; prev_vfsp = vfsp, vfsp = vfsp->vfc_next) { if (!strcmp(vfc->vfc_name, vfsp->vfc_name)) break; } if (vfsp == NULL) { return EINVAL; } if (vfsp->vfc_refcount) { return EBUSY; } if (vfc->vfc_vfsops->vfs_uninit != NULL) { error = (*vfc->vfc_vfsops->vfs_uninit)(vfsp); if (error) return (error); } prev_vfsp->vfc_next = vfsp->vfc_next; if (vfsp->vfc_vfsops->vfs_oid != NULL) { l = &sysctl__vfs; for (i = l->ls_length, oidpp = (struct sysctl_oid **)l->ls_items; i--; oidpp++) { if (*oidpp == vfsp->vfc_vfsops->vfs_oid) { *oidpp = NULL; sysctl_order_all(); break; } } } /* * Maintain maxvfsconf. */ maxtypenum = 0; for (vfsp = vfsconf; vfsp != NULL; vfsp = vfsp->vfc_next) if (maxtypenum < vfsp->vfc_typenum) maxtypenum = vfsp->vfc_typenum; maxvfsconf = maxtypenum + 1; break; case LKM_E_STAT: /* no special handling... */ break; } return (0); } /* * For the loadable device driver described by the structure pointed to * by lkmtp, load/unload/stat it depending on the cmd requested. */ static int _lkm_dev(lkmtp, cmd) struct lkm_table *lkmtp; int cmd; { struct lkm_dev *args = lkmtp->private.lkm_dev; int i; dev_t descrip; int err = 0; switch(cmd) { case LKM_E_LOAD: /* don't load twice! */ if (lkmexists(lkmtp)) return(EEXIST); switch(args->lkm_devtype) { case LM_DT_CHAR: if ((i = args->lkm_offset) == LKM_ANON) descrip = (dev_t) -1; else descrip = makedev(args->lkm_offset,0); if ( err = cdevsw_add(&descrip, args->lkm_dev.cdev, &(args->lkm_olddev.cdev))) { break; } args->lkm_offset = major(descrip) ; break; default: err = ENODEV; break; } break; case LKM_E_UNLOAD: /* current slot... */ i = args->lkm_offset; descrip = makedev(i,0); switch(args->lkm_devtype) { case LM_DT_CHAR: /* replace current slot contents with old contents */ cdevsw_add(&descrip, args->lkm_olddev.cdev,NULL); break; default: err = ENODEV; break; } break; case LKM_E_STAT: /* no special handling... */ break; } return(err); } #ifdef STREAMS /* * For the loadable streams module described by the structure pointed to * by lkmtp, load/unload/stat it depending on the cmd requested. */ static int _lkm_strmod(lkmtp, cmd) struct lkm_table *lkmtp; int cmd; { struct lkm_strmod *args = lkmtp->private.lkm_strmod; int i; int err = 0; switch(cmd) { case LKM_E_LOAD: /* don't load twice! */ if (lkmexists(lkmtp)) return(EEXIST); break; case LKM_E_UNLOAD: break; case LKM_E_STAT: /* no special handling... */ break; } return(err); } #endif /* STREAMS */ /* * For the loadable execution class described by the structure pointed to * by lkmtp, load/unload/stat it depending on the cmd requested. */ static int _lkm_exec(lkmtp, cmd) struct lkm_table *lkmtp; int cmd; { struct lkm_exec *args = lkmtp->private.lkm_exec; int i; int err = 0; const struct execsw **execsw = (const struct execsw **)&execsw_set.ls_items[0]; switch(cmd) { case LKM_E_LOAD: /* don't load twice! */ if (lkmexists(lkmtp)) return(EEXIST); if (args->lkm_offset != LKM_ANON) { /* auto */ err = EINVAL; break; } err = exec_register(args->lkm_exec); /* done! */ args->lkm_offset = 0; /* slot in execsw[] */ break; case LKM_E_UNLOAD: err = exec_unregister(args->lkm_exec); break; case LKM_E_STAT: /* no special handling... */ break; } return(err); } /* * This code handles the per-module type "wiring-in" of loadable modules * into existing kernel tables. For "LM_MISC" modules, wiring and unwiring * is assumed to be done in their entry routines internal to the module * itself. */ int lkmdispatch(lkmtp, cmd) struct lkm_table *lkmtp; int cmd; { int err = 0; /* default = success */ switch(lkmtp->private.lkm_any->lkm_type) { case LM_SYSCALL: err = _lkm_syscall(lkmtp, cmd); break; case LM_VFS: err = _lkm_vfs(lkmtp, cmd); break; case LM_DEV: err = _lkm_dev(lkmtp, cmd); break; #ifdef STREAMS case LM_STRMOD: { struct lkm_strmod *args = lkmtp->private.lkm_strmod; } break; #endif /* STREAMS */ case LM_EXEC: err = _lkm_exec(lkmtp, cmd); break; case LM_MISC: /* ignore content -- no "misc-specific" procedure */ if (lkmexists(lkmtp)) err = EEXIST; break; default: err = ENXIO; /* unknown type */ break; } return(err); } int lkm_nullcmd(lkmtp, cmd) struct lkm_table *lkmtp; int cmd; { return (0); } static lkm_devsw_installed = 0; #ifdef DEVFS static void *lkmc_devfs_token; #endif static void lkm_drvinit(void *unused) { dev_t dev; if( ! lkm_devsw_installed ) { dev = makedev(CDEV_MAJOR, 0); cdevsw_add(&dev,&lkmc_cdevsw, NULL); lkm_devsw_installed = 1; #ifdef DEVFS lkmc_devfs_token = devfs_add_devswf(&lkmc_cdevsw, 0, DV_CHR, UID_ROOT, GID_WHEEL, 0644, "lkm"); #endif } } #ifndef NO_LKM SYSINIT(lkmdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE+CDEV_MAJOR,lkm_drvinit,NULL) #endif