/* * Copyright (c) 1989, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95 * $Id: vfs_subr.c,v 1.82 1997/04/04 17:46:16 dfr Exp $ */ /* * External virtual filesystem routines */ #include "opt_ddb.h" #include "opt_devfs.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DDB extern void printlockedvnodes __P((void)); #endif static void vclean __P((struct vnode *vp, int flags, struct proc *p)); static void vgonel __P((struct vnode *vp, struct proc *p)); unsigned long numvnodes; extern void vputrele __P((struct vnode *vp, int put)); enum vtype iftovt_tab[16] = { VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD, }; int vttoif_tab[9] = { 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, S_IFSOCK, S_IFIFO, S_IFMT, }; /* * Insq/Remq for the vnode usage lists. */ #define bufinsvn(bp, dp) LIST_INSERT_HEAD(dp, bp, b_vnbufs) #define bufremvn(bp) { \ LIST_REMOVE(bp, b_vnbufs); \ (bp)->b_vnbufs.le_next = NOLIST; \ } TAILQ_HEAD(freelst, vnode) vnode_free_list; /* vnode free list */ static u_long freevnodes = 0; struct mntlist mountlist; /* mounted filesystem list */ struct simplelock mountlist_slock; static struct simplelock mntid_slock; struct simplelock mntvnode_slock; struct simplelock vnode_free_list_slock; static struct simplelock spechash_slock; int desiredvnodes; SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW, &desiredvnodes, 0, ""); static void vfs_free_addrlist __P((struct netexport *nep)); static int vfs_free_netcred __P((struct radix_node *rn, void *w)); static int vfs_hang_addrlist __P((struct mount *mp, struct netexport *nep, struct export_args *argp)); /* * Initialize the vnode management data structures. */ void vntblinit() { desiredvnodes = maxproc + vm_object_cache_max; simple_lock_init(&mntvnode_slock); simple_lock_init(&mntid_slock); simple_lock_init(&spechash_slock); TAILQ_INIT(&vnode_free_list); simple_lock_init(&vnode_free_list_slock); CIRCLEQ_INIT(&mountlist); } /* * Mark a mount point as busy. Used to synchronize access and to delay * unmounting. Interlock is not released on failure. */ int vfs_busy(mp, flags, interlkp, p) struct mount *mp; int flags; struct simplelock *interlkp; struct proc *p; { int lkflags; if (mp->mnt_flag & MNT_UNMOUNT) { if (flags & LK_NOWAIT) return (ENOENT); mp->mnt_flag |= MNT_MWAIT; if (interlkp) { simple_unlock(interlkp); } /* * Since all busy locks are shared except the exclusive * lock granted when unmounting, the only place that a * wakeup needs to be done is at the release of the * exclusive lock at the end of dounmount. */ tsleep((caddr_t)mp, PVFS, "vfs_busy", 0); if (interlkp) { simple_lock(interlkp); } return (ENOENT); } lkflags = LK_SHARED; if (interlkp) lkflags |= LK_INTERLOCK; if (lockmgr(&mp->mnt_lock, lkflags, interlkp, p)) panic("vfs_busy: unexpected lock failure"); return (0); } /* * Free a busy filesystem. */ void vfs_unbusy(mp, p) struct mount *mp; struct proc *p; { lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, p); } /* * Lookup a filesystem type, and if found allocate and initialize * a mount structure for it. * * Devname is usually updated by mount(8) after booting. */ int vfs_rootmountalloc(fstypename, devname, mpp) char *fstypename; char *devname; struct mount **mpp; { struct proc *p = curproc; /* XXX */ struct vfsconf *vfsp; struct mount *mp; for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) if (!strcmp(vfsp->vfc_name, fstypename)) break; if (vfsp == NULL) return (ENODEV); mp = malloc((u_long)sizeof(struct mount), M_MOUNT, M_WAITOK); bzero((char *)mp, (u_long)sizeof(struct mount)); lockinit(&mp->mnt_lock, PVFS, "vfslock", 0, 0); (void)vfs_busy(mp, LK_NOWAIT, 0, p); LIST_INIT(&mp->mnt_vnodelist); mp->mnt_vfc = vfsp; mp->mnt_op = vfsp->vfc_vfsops; mp->mnt_flag = MNT_RDONLY; mp->mnt_vnodecovered = NULLVP; vfsp->vfc_refcount++; mp->mnt_stat.f_type = vfsp->vfc_typenum; mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK; strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN); mp->mnt_stat.f_mntonname[0] = '/'; mp->mnt_stat.f_mntonname[1] = 0; (void) copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0); *mpp = mp; return (0); } /* * Find an appropriate filesystem to use for the root. If a filesystem * has not been preselected, walk through the list of known filesystems * trying those that have mountroot routines, and try them until one * works or we have tried them all. */ #ifdef notdef /* XXX JH */ int lite2_vfs_mountroot(void) { struct vfsconf *vfsp; extern int (*lite2_mountroot)(void); int error; if (lite2_mountroot != NULL) return ((*lite2_mountroot)()); for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) { if (vfsp->vfc_mountroot == NULL) continue; if ((error = (*vfsp->vfc_mountroot)()) == 0) return (0); printf("%s_mountroot failed: %d\n", vfsp->vfc_name, error); } return (ENODEV); } #endif /* * Lookup a mount point by filesystem identifier. */ struct mount * vfs_getvfs(fsid) fsid_t *fsid; { register struct mount *mp; simple_lock(&mountlist_slock); for (mp = mountlist.cqh_first; mp != (void *)&mountlist; mp = mp->mnt_list.cqe_next) { if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] && mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) { simple_unlock(&mountlist_slock); return (mp); } } simple_unlock(&mountlist_slock); return ((struct mount *) 0); } /* * Get a new unique fsid */ void vfs_getnewfsid(mp) struct mount *mp; { static u_short xxxfs_mntid; fsid_t tfsid; int mtype; simple_lock(&mntid_slock); mtype = mp->mnt_vfc->vfc_typenum; mp->mnt_stat.f_fsid.val[0] = makedev(nblkdev + mtype, 0); mp->mnt_stat.f_fsid.val[1] = mtype; if (xxxfs_mntid == 0) ++xxxfs_mntid; tfsid.val[0] = makedev(nblkdev + mtype, xxxfs_mntid); tfsid.val[1] = mtype; if (mountlist.cqh_first != (void *)&mountlist) { while (vfs_getvfs(&tfsid)) { tfsid.val[0]++; xxxfs_mntid++; } } mp->mnt_stat.f_fsid.val[0] = tfsid.val[0]; simple_unlock(&mntid_slock); } /* * Set vnode attributes to VNOVAL */ void vattr_null(vap) register struct vattr *vap; { vap->va_type = VNON; vap->va_size = VNOVAL; vap->va_bytes = VNOVAL; vap->va_mode = vap->va_nlink = vap->va_uid = vap->va_gid = vap->va_fsid = vap->va_fileid = vap->va_blocksize = vap->va_rdev = vap->va_atime.tv_sec = vap->va_atime.tv_nsec = vap->va_mtime.tv_sec = vap->va_mtime.tv_nsec = vap->va_ctime.tv_sec = vap->va_ctime.tv_nsec = vap->va_flags = vap->va_gen = VNOVAL; vap->va_vaflags = 0; } /* * Routines having to do with the management of the vnode table. */ extern vop_t **dead_vnodeop_p; /* * Return the next vnode from the free list. */ int getnewvnode(tag, mp, vops, vpp) enum vtagtype tag; struct mount *mp; vop_t **vops; struct vnode **vpp; { struct proc *p = curproc; /* XXX */ struct vnode *vp; simple_lock(&vnode_free_list_slock); retry: /* * we allocate a new vnode if * 1. we don't have any free * Pretty obvious, we actually used to panic, but that * is a silly thing to do. * 2. we havn't filled our pool yet * We don't want to trash the incore (VM-)vnodecache. * 3. if less that 1/4th of our vnodes are free. * We don't want to trash the namei cache either. */ if (freevnodes < (numvnodes >> 2) || numvnodes < desiredvnodes || vnode_free_list.tqh_first == NULL) { simple_unlock(&vnode_free_list_slock); vp = (struct vnode *) malloc((u_long) sizeof *vp, M_VNODE, M_WAITOK); bzero((char *) vp, sizeof *vp); numvnodes++; } else { for (vp = vnode_free_list.tqh_first; vp != NULLVP; vp = vp->v_freelist.tqe_next) { if (simple_lock_try(&vp->v_interlock)) break; } /* * Unless this is a bad time of the month, at most * the first NCPUS items on the free list are * locked, so this is close enough to being empty. */ if (vp == NULLVP) { simple_unlock(&vnode_free_list_slock); tablefull("vnode"); *vpp = 0; return (ENFILE); } if (vp->v_usecount) panic("free vnode isn't"); TAILQ_REMOVE(&vnode_free_list, vp, v_freelist); if (vp->v_usage > 0) { simple_unlock(&vp->v_interlock); --vp->v_usage; TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist); goto retry; } freevnodes--; /* see comment on why 0xdeadb is set at end of vgone (below) */ vp->v_freelist.tqe_prev = (struct vnode **) 0xdeadb; simple_unlock(&vnode_free_list_slock); vp->v_lease = NULL; if (vp->v_type != VBAD) vgonel(vp, p); else { simple_unlock(&vp->v_interlock); } #ifdef DIAGNOSTIC { int s; if (vp->v_data) panic("cleaned vnode isn't"); s = splbio(); if (vp->v_numoutput) panic("Clean vnode has pending I/O's"); splx(s); } #endif vp->v_flag = 0; vp->v_lastr = 0; vp->v_lastw = 0; vp->v_lasta = 0; vp->v_cstart = 0; vp->v_clen = 0; vp->v_socket = 0; vp->v_writecount = 0; /* XXX */ vp->v_usage = 0; } vp->v_type = VNON; cache_purge(vp); vp->v_tag = tag; vp->v_op = vops; insmntque(vp, mp); *vpp = vp; vp->v_usecount = 1; vp->v_data = 0; return (0); } /* * Move a vnode from one mount queue to another. */ void insmntque(vp, mp) register struct vnode *vp; register struct mount *mp; { simple_lock(&mntvnode_slock); /* * Delete from old mount point vnode list, if on one. */ if (vp->v_mount != NULL) LIST_REMOVE(vp, v_mntvnodes); /* * Insert into list of vnodes for the new mount point, if available. */ if ((vp->v_mount = mp) == NULL) { simple_unlock(&mntvnode_slock); return; } LIST_INSERT_HEAD(&mp->mnt_vnodelist, vp, v_mntvnodes); simple_unlock(&mntvnode_slock); } /* * Update outstanding I/O count and do wakeup if requested. */ void vwakeup(bp) register struct buf *bp; { register struct vnode *vp; bp->b_flags &= ~B_WRITEINPROG; if ((vp = bp->b_vp)) { vp->v_numoutput--; if (vp->v_numoutput < 0) panic("vwakeup: neg numoutput"); if ((vp->v_numoutput == 0) && (vp->v_flag & VBWAIT)) { vp->v_flag &= ~VBWAIT; wakeup((caddr_t) &vp->v_numoutput); } } } /* * Flush out and invalidate all buffers associated with a vnode. * Called with the underlying object locked. */ int vinvalbuf(vp, flags, cred, p, slpflag, slptimeo) register struct vnode *vp; int flags; struct ucred *cred; struct proc *p; int slpflag, slptimeo; { register struct buf *bp; struct buf *nbp, *blist; int s, error; vm_object_t object; if (flags & V_SAVE) { if ((error = VOP_FSYNC(vp, cred, MNT_WAIT, p))) return (error); if (vp->v_dirtyblkhd.lh_first != NULL) panic("vinvalbuf: dirty bufs"); } s = splbio(); for (;;) { if ((blist = vp->v_cleanblkhd.lh_first) && (flags & V_SAVEMETA)) while (blist && blist->b_lblkno < 0) blist = blist->b_vnbufs.le_next; if (!blist && (blist = vp->v_dirtyblkhd.lh_first) && (flags & V_SAVEMETA)) while (blist && blist->b_lblkno < 0) blist = blist->b_vnbufs.le_next; if (!blist) break; for (bp = blist; bp; bp = nbp) { nbp = bp->b_vnbufs.le_next; if ((flags & V_SAVEMETA) && bp->b_lblkno < 0) continue; if (bp->b_flags & B_BUSY) { bp->b_flags |= B_WANTED; error = tsleep((caddr_t) bp, slpflag | (PRIBIO + 1), "vinvalbuf", slptimeo); if (error) { splx(s); return (error); } break; } bremfree(bp); bp->b_flags |= B_BUSY; /* * XXX Since there are no node locks for NFS, I * believe there is a slight chance that a delayed * write will occur while sleeping just above, so * check for it. */ if ((bp->b_flags & B_DELWRI) && (flags & V_SAVE)) { (void) VOP_BWRITE(bp); break; } bp->b_flags |= (B_INVAL|B_NOCACHE|B_RELBUF); brelse(bp); } } while (vp->v_numoutput > 0) { vp->v_flag |= VBWAIT; tsleep(&vp->v_numoutput, PVM, "vnvlbv", 0); } splx(s); /* * Destroy the copy in the VM cache, too. */ object = vp->v_object; if (object != NULL) { vm_object_page_remove(object, 0, object->size, (flags & V_SAVE) ? TRUE : FALSE); } if (!(flags & V_SAVEMETA) && (vp->v_dirtyblkhd.lh_first || vp->v_cleanblkhd.lh_first)) panic("vinvalbuf: flush failed"); return (0); } /* * Associate a buffer with a vnode. */ void bgetvp(vp, bp) register struct vnode *vp; register struct buf *bp; { int s; if (bp->b_vp) panic("bgetvp: not free"); VHOLD(vp); bp->b_vp = vp; if (vp->v_type == VBLK || vp->v_type == VCHR) bp->b_dev = vp->v_rdev; else bp->b_dev = NODEV; /* * Insert onto list for new vnode. */ s = splbio(); bufinsvn(bp, &vp->v_cleanblkhd); splx(s); } /* * Disassociate a buffer from a vnode. */ void brelvp(bp) register struct buf *bp; { struct vnode *vp; int s; if (bp->b_vp == (struct vnode *) 0) panic("brelvp: NULL"); /* * Delete from old vnode list, if on one. */ s = splbio(); if (bp->b_vnbufs.le_next != NOLIST) bufremvn(bp); splx(s); vp = bp->b_vp; bp->b_vp = (struct vnode *) 0; HOLDRELE(vp); } /* * Associate a p-buffer with a vnode. */ void pbgetvp(vp, bp) register struct vnode *vp; register struct buf *bp; { #if defined(DIAGNOSTIC) if (bp->b_vp) panic("pbgetvp: not free"); #endif bp->b_vp = vp; if (vp->v_type == VBLK || vp->v_type == VCHR) bp->b_dev = vp->v_rdev; else bp->b_dev = NODEV; } /* * Disassociate a p-buffer from a vnode. */ void pbrelvp(bp) register struct buf *bp; { struct vnode *vp; #if defined(DIAGNOSTIC) if (bp->b_vp == (struct vnode *) 0) panic("pbrelvp: NULL"); #endif bp->b_vp = (struct vnode *) 0; } /* * Reassign a buffer from one vnode to another. * Used to assign file specific control information * (indirect blocks) to the vnode to which they belong. */ void reassignbuf(bp, newvp) register struct buf *bp; register struct vnode *newvp; { int s; if (newvp == NULL) { printf("reassignbuf: NULL"); return; } s = splbio(); /* * Delete from old vnode list, if on one. */ if (bp->b_vnbufs.le_next != NOLIST) bufremvn(bp); /* * If dirty, put on list of dirty buffers; otherwise insert onto list * of clean buffers. */ if (bp->b_flags & B_DELWRI) { struct buf *tbp; tbp = newvp->v_dirtyblkhd.lh_first; if (!tbp || (tbp->b_lblkno > bp->b_lblkno)) { bufinsvn(bp, &newvp->v_dirtyblkhd); } else { while (tbp->b_vnbufs.le_next && (tbp->b_vnbufs.le_next->b_lblkno < bp->b_lblkno)) { tbp = tbp->b_vnbufs.le_next; } LIST_INSERT_AFTER(tbp, bp, b_vnbufs); } } else { bufinsvn(bp, &newvp->v_cleanblkhd); } splx(s); } #ifndef DEVFS_ROOT /* * Create a vnode for a block device. * Used for root filesystem, argdev, and swap areas. * Also used for memory file system special devices. */ int bdevvp(dev, vpp) dev_t dev; struct vnode **vpp; { register struct vnode *vp; struct vnode *nvp; int error; if (dev == NODEV) return (0); error = getnewvnode(VT_NON, (struct mount *) 0, spec_vnodeop_p, &nvp); if (error) { *vpp = 0; return (error); } vp = nvp; vp->v_type = VBLK; if ((nvp = checkalias(vp, dev, (struct mount *) 0))) { vput(vp); vp = nvp; } *vpp = vp; return (0); } #endif /* !DEVFS_ROOT */ /* * Check to see if the new vnode represents a special device * for which we already have a vnode (either because of * bdevvp() or because of a different vnode representing * the same block device). If such an alias exists, deallocate * the existing contents and return the aliased vnode. The * caller is responsible for filling it with its new contents. */ struct vnode * checkalias(nvp, nvp_rdev, mp) register struct vnode *nvp; dev_t nvp_rdev; struct mount *mp; { struct proc *p = curproc; /* XXX */ struct vnode *vp; struct vnode **vpp; if (nvp->v_type != VBLK && nvp->v_type != VCHR) return (NULLVP); vpp = &speclisth[SPECHASH(nvp_rdev)]; loop: simple_lock(&spechash_slock); for (vp = *vpp; vp; vp = vp->v_specnext) { if (nvp_rdev != vp->v_rdev || nvp->v_type != vp->v_type) continue; /* * Alias, but not in use, so flush it out. */ simple_lock(&vp->v_interlock); if (vp->v_usecount == 0) { simple_unlock(&spechash_slock); vgonel(vp, p); goto loop; } if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK, p)) { simple_unlock(&spechash_slock); goto loop; } break; } if (vp == NULL || vp->v_tag != VT_NON) { MALLOC(nvp->v_specinfo, struct specinfo *, sizeof(struct specinfo), M_VNODE, M_WAITOK); nvp->v_rdev = nvp_rdev; nvp->v_hashchain = vpp; nvp->v_specnext = *vpp; nvp->v_specflags = 0; simple_unlock(&spechash_slock); *vpp = nvp; if (vp != NULLVP) { nvp->v_flag |= VALIASED; vp->v_flag |= VALIASED; vput(vp); } return (NULLVP); } simple_unlock(&spechash_slock); VOP_UNLOCK(vp, 0, p); simple_lock(&vp->v_interlock); vclean(vp, 0, p); vp->v_op = nvp->v_op; vp->v_tag = nvp->v_tag; nvp->v_type = VNON; insmntque(vp, mp); return (vp); } /* * Grab a particular vnode from the free list, increment its * reference count and lock it. The vnode lock bit is set the * vnode is being eliminated in vgone. The process is awakened * when the transition is completed, and an error returned to * indicate that the vnode is no longer usable (possibly having * been changed to a new file system type). */ int vget(vp, flags, p) register struct vnode *vp; int flags; struct proc *p; { int error; /* * If the vnode is in the process of being cleaned out for * another use, we wait for the cleaning to finish and then * return failure. Cleaning is determined by checking that * the VXLOCK flag is set. */ if ((flags & LK_INTERLOCK) == 0) { simple_lock(&vp->v_interlock); } if (vp->v_flag & VXLOCK) { vp->v_flag |= VXWANT; simple_unlock(&vp->v_interlock); tsleep((caddr_t)vp, PINOD, "vget", 0); return (ENOENT); } if (vp->v_usecount == 0) { simple_lock(&vnode_free_list_slock); TAILQ_REMOVE(&vnode_free_list, vp, v_freelist); simple_unlock(&vnode_free_list_slock); freevnodes--; } vp->v_usecount++; /* * Create the VM object, if needed */ if ((vp->v_type == VREG) && ((vp->v_object == NULL) || (vp->v_object->flags & OBJ_VFS_REF) == 0)) { /* * XXX vfs_object_create probably needs the interlock. */ simple_unlock(&vp->v_interlock); vfs_object_create(vp, curproc, curproc->p_ucred, 0); simple_lock(&vp->v_interlock); } if (flags & LK_TYPE_MASK) { if (error = vn_lock(vp, flags | LK_INTERLOCK, p)) vrele(vp); return (error); } simple_unlock(&vp->v_interlock); return (0); } /* * Stubs to use when there is no locking to be done on the underlying object. * A minimal shared lock is necessary to ensure that the underlying object * is not revoked while an operation is in progress. So, an active shared * count is maintained in an auxillary vnode lock structure. */ int vop_sharedlock(ap) struct vop_lock_args /* { struct vnode *a_vp; int a_flags; struct proc *a_p; } */ *ap; { /* * This code cannot be used until all the non-locking filesystems * (notably NFS) are converted to properly lock and release nodes. * Also, certain vnode operations change the locking state within * the operation (create, mknod, remove, link, rename, mkdir, rmdir, * and symlink). Ideally these operations should not change the * lock state, but should be changed to let the caller of the * function unlock them. Otherwise all intermediate vnode layers * (such as union, umapfs, etc) must catch these functions to do * the necessary locking at their layer. Note that the inactive * and lookup operations also change their lock state, but this * cannot be avoided, so these two operations will always need * to be handled in intermediate layers. */ struct vnode *vp = ap->a_vp; int vnflags, flags = ap->a_flags; if (vp->v_vnlock == NULL) { if ((flags & LK_TYPE_MASK) == LK_DRAIN) return (0); MALLOC(vp->v_vnlock, struct lock *, sizeof(struct lock), M_VNODE, M_WAITOK); lockinit(vp->v_vnlock, PVFS, "vnlock", 0, 0); } switch (flags & LK_TYPE_MASK) { case LK_DRAIN: vnflags = LK_DRAIN; break; case LK_EXCLUSIVE: #ifdef DEBUG_VFS_LOCKS /* * Normally, we use shared locks here, but that confuses * the locking assertions. */ vnflags = LK_EXCLUSIVE; break; #endif case LK_SHARED: vnflags = LK_SHARED; break; case LK_UPGRADE: case LK_EXCLUPGRADE: case LK_DOWNGRADE: return (0); case LK_RELEASE: default: panic("vop_nolock: bad operation %d", flags & LK_TYPE_MASK); } if (flags & LK_INTERLOCK) vnflags |= LK_INTERLOCK; return(lockmgr(vp->v_vnlock, vnflags, &vp->v_interlock, ap->a_p)); } /* * Stubs to use when there is no locking to be done on the underlying object. * A minimal shared lock is necessary to ensure that the underlying object * is not revoked while an operation is in progress. So, an active shared * count is maintained in an auxillary vnode lock structure. */ int vop_nolock(ap) struct vop_lock_args /* { struct vnode *a_vp; int a_flags; struct proc *a_p; } */ *ap; { #ifdef notyet /* * This code cannot be used until all the non-locking filesystems * (notably NFS) are converted to properly lock and release nodes. * Also, certain vnode operations change the locking state within * the operation (create, mknod, remove, link, rename, mkdir, rmdir, * and symlink). Ideally these operations should not change the * lock state, but should be changed to let the caller of the * function unlock them. Otherwise all intermediate vnode layers * (such as union, umapfs, etc) must catch these functions to do * the necessary locking at their layer. Note that the inactive * and lookup operations also change their lock state, but this * cannot be avoided, so these two operations will always need * to be handled in intermediate layers. */ struct vnode *vp = ap->a_vp; int vnflags, flags = ap->a_flags; if (vp->v_vnlock == NULL) { if ((flags & LK_TYPE_MASK) == LK_DRAIN) return (0); MALLOC(vp->v_vnlock, struct lock *, sizeof(struct lock), M_VNODE, M_WAITOK); lockinit(vp->v_vnlock, PVFS, "vnlock", 0, 0); } switch (flags & LK_TYPE_MASK) { case LK_DRAIN: vnflags = LK_DRAIN; break; case LK_EXCLUSIVE: case LK_SHARED: vnflags = LK_SHARED; break; case LK_UPGRADE: case LK_EXCLUPGRADE: case LK_DOWNGRADE: return (0); case LK_RELEASE: default: panic("vop_nolock: bad operation %d", flags & LK_TYPE_MASK); } if (flags & LK_INTERLOCK) vnflags |= LK_INTERLOCK; return(lockmgr(vp->v_vnlock, vnflags, &vp->v_interlock, ap->a_p)); #else /* for now */ /* * Since we are not using the lock manager, we must clear * the interlock here. */ if (ap->a_flags & LK_INTERLOCK) { simple_unlock(&ap->a_vp->v_interlock); } return (0); #endif } /* * Do the inverse of vop_nolock, handling the interlock in a compatible way. */ int vop_nounlock(ap) struct vop_unlock_args /* { struct vnode *a_vp; int a_flags; struct proc *a_p; } */ *ap; { struct vnode *vp = ap->a_vp; if (vp->v_vnlock == NULL) { if (ap->a_flags & LK_INTERLOCK) simple_unlock(&ap->a_vp->v_interlock); return (0); } return (lockmgr(vp->v_vnlock, LK_RELEASE | ap->a_flags, &ap->a_vp->v_interlock, ap->a_p)); } /* * Return whether or not the node is in use. */ int vop_noislocked(ap) struct vop_islocked_args /* { struct vnode *a_vp; } */ *ap; { struct vnode *vp = ap->a_vp; if (vp->v_vnlock == NULL) return (0); return (lockstatus(vp->v_vnlock)); } /* #ifdef DIAGNOSTIC */ /* * Vnode reference, just increment the count */ void vref(vp) struct vnode *vp; { simple_lock(&vp->v_interlock); if (vp->v_usecount <= 0) panic("vref used where vget required"); vp->v_usecount++; if ((vp->v_type == VREG) && ((vp->v_object == NULL) || ((vp->v_object->flags & OBJ_VFS_REF) == 0)) ) { /* * We need to lock to VP during the time that * the object is created. This is necessary to * keep the system from re-entrantly doing it * multiple times. * XXX vfs_object_create probably needs the interlock? */ simple_unlock(&vp->v_interlock); vfs_object_create(vp, curproc, curproc->p_ucred, 0); return; } simple_unlock(&vp->v_interlock); } /* * Vnode put/release. * If count drops to zero, call inactive routine and return to freelist. */ void vputrele(vp, put) struct vnode *vp; int put; { struct proc *p = curproc; /* XXX */ #ifdef DIAGNOSTIC if (vp == NULL) panic("vputrele: null vp"); #endif simple_lock(&vp->v_interlock); vp->v_usecount--; if ((vp->v_usecount == 1) && vp->v_object && (vp->v_object->flags & OBJ_VFS_REF)) { vp->v_object->flags &= ~OBJ_VFS_REF; if (put) { VOP_UNLOCK(vp, LK_INTERLOCK, p); } else { simple_unlock(&vp->v_interlock); } vm_object_deallocate(vp->v_object); return; } if (vp->v_usecount > 0) { if (put) { VOP_UNLOCK(vp, LK_INTERLOCK, p); } else { simple_unlock(&vp->v_interlock); } return; } if (vp->v_usecount < 0) { #ifdef DIAGNOSTIC vprint("vputrele: negative ref count", vp); #endif panic("vputrele: negative ref cnt"); } simple_lock(&vnode_free_list_slock); if (vp->v_flag & VAGE) { vp->v_flag &= ~VAGE; vp->v_usage = 0; if(vp->v_tag != VT_TFS) TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist); } else { if(vp->v_tag != VT_TFS) TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist); } freevnodes++; simple_unlock(&vnode_free_list_slock); /* * If we are doing a vput, the node is already locked, and we must * call VOP_INACTIVE with the node locked. So, in the case of * vrele, we explicitly lock the vnode before calling VOP_INACTIVE. */ if (put) { simple_unlock(&vp->v_interlock); VOP_INACTIVE(vp, p); } else if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, p) == 0) { VOP_INACTIVE(vp, p); } } /* * vput(), just unlock and vrele() */ void vput(vp) struct vnode *vp; { vputrele(vp, 1); } void vrele(vp) struct vnode *vp; { vputrele(vp, 0); } #ifdef DIAGNOSTIC /* * Page or buffer structure gets a reference. */ void vhold(vp) register struct vnode *vp; { simple_lock(&vp->v_interlock); vp->v_holdcnt++; simple_unlock(&vp->v_interlock); } /* * Page or buffer structure frees a reference. */ void holdrele(vp) register struct vnode *vp; { simple_lock(&vp->v_interlock); if (vp->v_holdcnt <= 0) panic("holdrele: holdcnt"); vp->v_holdcnt--; simple_unlock(&vp->v_interlock); } #endif /* DIAGNOSTIC */ /* * Remove any vnodes in the vnode table belonging to mount point mp. * * If MNT_NOFORCE is specified, there should not be any active ones, * return error if any are found (nb: this is a user error, not a * system error). If MNT_FORCE is specified, detach any active vnodes * that are found. */ #ifdef DIAGNOSTIC static int busyprt = 0; /* print out busy vnodes */ SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, ""); #endif int vflush(mp, skipvp, flags) struct mount *mp; struct vnode *skipvp; int flags; { struct proc *p = curproc; /* XXX */ struct vnode *vp, *nvp; int busy = 0; simple_lock(&mntvnode_slock); loop: for (vp = mp->mnt_vnodelist.lh_first; vp; vp = nvp) { /* * Make sure this vnode wasn't reclaimed in getnewvnode(). * Start over if it has (it won't be on the list anymore). */ if (vp->v_mount != mp) goto loop; nvp = vp->v_mntvnodes.le_next; /* * Skip over a selected vnode. */ if (vp == skipvp) continue; simple_lock(&vp->v_interlock); /* * Skip over a vnodes marked VSYSTEM. */ if ((flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) { simple_unlock(&vp->v_interlock); continue; } /* * If WRITECLOSE is set, only flush out regular file vnodes * open for writing. */ if ((flags & WRITECLOSE) && (vp->v_writecount == 0 || vp->v_type != VREG)) { simple_unlock(&vp->v_interlock); continue; } if (vp->v_object && (vp->v_object->flags & OBJ_VFS_REF)) { simple_unlock(&vp->v_interlock); simple_unlock(&mntvnode_slock); vm_object_reference(vp->v_object); pager_cache(vp->v_object, FALSE); vp->v_object->flags &= ~OBJ_VFS_REF; vm_object_deallocate(vp->v_object); simple_lock(&mntvnode_slock); simple_lock(&vp->v_interlock); } /* * With v_usecount == 0, all we need to do is clear out the * vnode data structures and we are done. */ if (vp->v_usecount == 0) { simple_unlock(&mntvnode_slock); vgonel(vp, p); simple_lock(&mntvnode_slock); continue; } /* * If FORCECLOSE is set, forcibly close the vnode. For block * or character devices, revert to an anonymous device. For * all other files, just kill them. */ if (flags & FORCECLOSE) { simple_unlock(&mntvnode_slock); if (vp->v_type != VBLK && vp->v_type != VCHR) { vgonel(vp, p); } else { vclean(vp, 0, p); vp->v_op = spec_vnodeop_p; insmntque(vp, (struct mount *) 0); } simple_lock(&mntvnode_slock); continue; } #ifdef DIAGNOSTIC if (busyprt) vprint("vflush: busy vnode", vp); #endif simple_unlock(&vp->v_interlock); busy++; } simple_unlock(&mntvnode_slock); if (busy) return (EBUSY); return (0); } /* * Disassociate the underlying file system from a vnode. */ static void vclean(struct vnode *vp, int flags, struct proc *p) { int active; /* * Check to see if the vnode is in use. If so we have to reference it * before we clean it out so that its count cannot fall to zero and * generate a race against ourselves to recycle it. */ if ((active = vp->v_usecount)) vp->v_usecount++; /* * Prevent the vnode from being recycled or brought into use while we * clean it out. */ if (vp->v_flag & VXLOCK) panic("vclean: deadlock"); vp->v_flag |= VXLOCK; /* * Even if the count is zero, the VOP_INACTIVE routine may still * have the object locked while it cleans it out. The VOP_LOCK * ensures that the VOP_INACTIVE routine is done with its work. * For active vnodes, it ensures that no other activity can * occur while the underlying object is being cleaned out. */ VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, p); /* * Clean out any buffers associated with the vnode. */ if (flags & DOCLOSE) vinvalbuf(vp, V_SAVE, NOCRED, p, 0, 0); /* * If purging an active vnode, it must be closed and * deactivated before being reclaimed. Note that the * VOP_INACTIVE will unlock the vnode. */ if (active) { if (flags & DOCLOSE) VOP_CLOSE(vp, IO_NDELAY, NOCRED, p); VOP_INACTIVE(vp, p); } else { /* * Any other processes trying to obtain this lock must first * wait for VXLOCK to clear, then call the new lock operation. */ VOP_UNLOCK(vp, 0, p); } /* * Reclaim the vnode. */ if (VOP_RECLAIM(vp, p)) panic("vclean: cannot reclaim"); if (active) vrele(vp); cache_purge(vp); if (vp->v_vnlock) { #ifdef DIAGNOSTIC if ((vp->v_vnlock->lk_flags & LK_DRAINED) == 0) vprint("vclean: lock not drained", vp); #endif FREE(vp->v_vnlock, M_VNODE); vp->v_vnlock = NULL; } /* * Done with purge, notify sleepers of the grim news. */ vp->v_op = dead_vnodeop_p; vp->v_tag = VT_NON; vp->v_flag &= ~VXLOCK; if (vp->v_flag & VXWANT) { vp->v_flag &= ~VXWANT; wakeup((caddr_t) vp); } } /* * Eliminate all activity associated with the requested vnode * and with all vnodes aliased to the requested vnode. */ int vop_revoke(ap) struct vop_revoke_args /* { struct vnode *a_vp; int a_flags; } */ *ap; { struct vnode *vp, *vq; struct proc *p = curproc; /* XXX */ #ifdef DIAGNOSTIC if ((ap->a_flags & REVOKEALL) == 0) panic("vop_revoke"); #endif vp = ap->a_vp; simple_lock(&vp->v_interlock); if (vp->v_flag & VALIASED) { /* * If a vgone (or vclean) is already in progress, * wait until it is done and return. */ if (vp->v_flag & VXLOCK) { vp->v_flag |= VXWANT; simple_unlock(&vp->v_interlock); tsleep((caddr_t)vp, PINOD, "vop_revokeall", 0); return (0); } /* * Ensure that vp will not be vgone'd while we * are eliminating its aliases. */ vp->v_flag |= VXLOCK; simple_unlock(&vp->v_interlock); while (vp->v_flag & VALIASED) { simple_lock(&spechash_slock); for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) { if (vq->v_rdev != vp->v_rdev || vq->v_type != vp->v_type || vp == vq) continue; simple_unlock(&spechash_slock); vgone(vq); break; } if (vq == NULLVP) { simple_unlock(&spechash_slock); } } /* * Remove the lock so that vgone below will * really eliminate the vnode after which time * vgone will awaken any sleepers. */ simple_lock(&vp->v_interlock); vp->v_flag &= ~VXLOCK; } vgonel(vp, p); return (0); } /* * Recycle an unused vnode to the front of the free list. * Release the passed interlock if the vnode will be recycled. */ int vrecycle(vp, inter_lkp, p) struct vnode *vp; struct simplelock *inter_lkp; struct proc *p; { simple_lock(&vp->v_interlock); if (vp->v_usecount == 0) { if (inter_lkp) { simple_unlock(inter_lkp); } vgonel(vp, p); return (1); } simple_unlock(&vp->v_interlock); return (0); } /* * Eliminate all activity associated with a vnode * in preparation for reuse. */ void vgone(vp) register struct vnode *vp; { struct proc *p = curproc; /* XXX */ simple_lock(&vp->v_interlock); vgonel(vp, p); } /* * vgone, with the vp interlock held. */ static void vgonel(vp, p) struct vnode *vp; struct proc *p; { struct vnode *vq; struct vnode *vx; /* * If a vgone (or vclean) is already in progress, * wait until it is done and return. */ if (vp->v_flag & VXLOCK) { vp->v_flag |= VXWANT; simple_unlock(&vp->v_interlock); tsleep((caddr_t)vp, PINOD, "vgone", 0); return; } if (vp->v_object) { vp->v_object->flags |= OBJ_VNODE_GONE; } /* * Clean out the filesystem specific data. */ vclean(vp, DOCLOSE, p); /* * Delete from old mount point vnode list, if on one. */ if (vp->v_mount != NULL) insmntque(vp, (struct mount *)0); /* * If special device, remove it from special device alias list * if it is on one. */ if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_specinfo != 0) { simple_lock(&spechash_slock); if (*vp->v_hashchain == vp) { *vp->v_hashchain = vp->v_specnext; } else { for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) { if (vq->v_specnext != vp) continue; vq->v_specnext = vp->v_specnext; break; } if (vq == NULL) panic("missing bdev"); } if (vp->v_flag & VALIASED) { vx = NULL; for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) { if (vq->v_rdev != vp->v_rdev || vq->v_type != vp->v_type) continue; if (vx) break; vx = vq; } if (vx == NULL) panic("missing alias"); if (vq == NULL) vx->v_flag &= ~VALIASED; vp->v_flag &= ~VALIASED; } simple_unlock(&spechash_slock); FREE(vp->v_specinfo, M_VNODE); vp->v_specinfo = NULL; } /* * If it is on the freelist and not already at the head, * move it to the head of the list. The test of the back * pointer and the reference count of zero is because * it will be removed from the free list by getnewvnode, * but will not have its reference count incremented until * after calling vgone. If the reference count were * incremented first, vgone would (incorrectly) try to * close the previous instance of the underlying object. * So, the back pointer is explicitly set to `0xdeadb' in * getnewvnode after removing it from the freelist to ensure * that we do not try to move it here. */ if (vp->v_usecount == 0) { simple_lock(&vnode_free_list_slock); if ((vp->v_freelist.tqe_prev != (struct vnode **)0xdeadb) && vnode_free_list.tqh_first != vp) { TAILQ_REMOVE(&vnode_free_list, vp, v_freelist); TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist); } simple_unlock(&vnode_free_list_slock); } vp->v_type = VBAD; } /* * Lookup a vnode by device number. */ int vfinddev(dev, type, vpp) dev_t dev; enum vtype type; struct vnode **vpp; { register struct vnode *vp; int rc = 0; simple_lock(&spechash_slock); for (vp = speclisth[SPECHASH(dev)]; vp; vp = vp->v_specnext) { if (dev != vp->v_rdev || type != vp->v_type) continue; *vpp = vp; rc = 1; break; } simple_unlock(&spechash_slock); return (rc); } /* * Calculate the total number of references to a special device. */ int vcount(vp) register struct vnode *vp; { struct vnode *vq, *vnext; int count; loop: if ((vp->v_flag & VALIASED) == 0) return (vp->v_usecount); simple_lock(&spechash_slock); for (count = 0, vq = *vp->v_hashchain; vq; vq = vnext) { vnext = vq->v_specnext; if (vq->v_rdev != vp->v_rdev || vq->v_type != vp->v_type) continue; /* * Alias, but not in use, so flush it out. */ if (vq->v_usecount == 0 && vq != vp) { simple_unlock(&spechash_slock); vgone(vq); goto loop; } count += vq->v_usecount; } simple_unlock(&spechash_slock); return (count); } /* * Print out a description of a vnode. */ static char *typename[] = {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"}; void vprint(label, vp) char *label; register struct vnode *vp; { char buf[64]; if (label != NULL) printf("%s: %x: ", label, vp); else printf("%x: ", vp); printf("type %s, usecount %d, writecount %d, refcount %ld,", typename[vp->v_type], vp->v_usecount, vp->v_writecount, vp->v_holdcnt); buf[0] = '\0'; if (vp->v_flag & VROOT) strcat(buf, "|VROOT"); if (vp->v_flag & VTEXT) strcat(buf, "|VTEXT"); if (vp->v_flag & VSYSTEM) strcat(buf, "|VSYSTEM"); if (vp->v_flag & VXLOCK) strcat(buf, "|VXLOCK"); if (vp->v_flag & VXWANT) strcat(buf, "|VXWANT"); if (vp->v_flag & VBWAIT) strcat(buf, "|VBWAIT"); if (vp->v_flag & VALIASED) strcat(buf, "|VALIASED"); if (buf[0] != '\0') printf(" flags (%s)", &buf[1]); if (vp->v_data == NULL) { printf("\n"); } else { printf("\n\t"); VOP_PRINT(vp); } } #ifdef DDB /* * List all of the locked vnodes in the system. * Called when debugging the kernel. */ void printlockedvnodes() { struct proc *p = curproc; /* XXX */ struct mount *mp, *nmp; struct vnode *vp; printf("Locked vnodes\n"); simple_lock(&mountlist_slock); for (mp = mountlist.cqh_first; mp != (void *)&mountlist; mp = nmp) { if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock, p)) { nmp = mp->mnt_list.cqe_next; continue; } for (vp = mp->mnt_vnodelist.lh_first; vp != NULL; vp = vp->v_mntvnodes.le_next) { if (VOP_ISLOCKED(vp)) vprint((char *)0, vp); } simple_lock(&mountlist_slock); nmp = mp->mnt_list.cqe_next; vfs_unbusy(mp, p); } simple_unlock(&mountlist_slock); } #endif /* * Top level filesystem related information gathering. */ static int sysctl_ovfs_conf __P(SYSCTL_HANDLER_ARGS); static int vfs_sysctl SYSCTL_HANDLER_ARGS { int *name = (int *)arg1 - 1; /* XXX */ u_int namelen = arg2 + 1; /* XXX */ struct vfsconf *vfsp; #ifndef NO_COMPAT_PRELITE2 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */ if (namelen == 1) return (sysctl_ovfs_conf(oidp, arg1, arg2, req)); #endif #ifdef notyet /* all sysctl names at this level are at least name and field */ if (namelen < 2) return (ENOTDIR); /* overloaded */ if (name[0] != VFS_GENERIC) { for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) if (vfsp->vfc_typenum == name[0]) break; if (vfsp == NULL) return (EOPNOTSUPP); return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1, oldp, oldlenp, newp, newlen, p)); } #endif switch (name[1]) { case VFS_MAXTYPENUM: if (namelen != 2) return (ENOTDIR); return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int))); case VFS_CONF: if (namelen != 3) return (ENOTDIR); /* overloaded */ for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) if (vfsp->vfc_typenum == name[2]) break; if (vfsp == NULL) return (EOPNOTSUPP); return (SYSCTL_OUT(req, vfsp, sizeof *vfsp)); } return (EOPNOTSUPP); } SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl, "Generic filesystem"); #ifndef NO_COMPAT_PRELITE2 static int sysctl_ovfs_conf SYSCTL_HANDLER_ARGS { int error; struct vfsconf *vfsp; struct ovfsconf ovfs; for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) { ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */ strcpy(ovfs.vfc_name, vfsp->vfc_name); ovfs.vfc_index = vfsp->vfc_typenum; ovfs.vfc_refcount = vfsp->vfc_refcount; ovfs.vfc_flags = vfsp->vfc_flags; error = SYSCTL_OUT(req, &ovfs, sizeof ovfs); if (error) return error; } return 0; } #endif /* !NO_COMPAT_PRELITE2 */ int kinfo_vdebug = 1; int kinfo_vgetfailed; #define KINFO_VNODESLOP 10 /* * Dump vnode list (via sysctl). * Copyout address of vnode followed by vnode. */ /* ARGSUSED */ static int sysctl_vnode SYSCTL_HANDLER_ARGS { struct proc *p = curproc; /* XXX */ struct mount *mp, *nmp; struct vnode *nvp, *vp; int error; #define VPTRSZ sizeof (struct vnode *) #define VNODESZ sizeof (struct vnode) req->lock = 0; if (!req->oldptr) /* Make an estimate */ return (SYSCTL_OUT(req, 0, (numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ))); simple_lock(&mountlist_slock); for (mp = mountlist.cqh_first; mp != (void *)&mountlist; mp = nmp) { if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock, p)) { nmp = mp->mnt_list.cqe_next; continue; } again: simple_lock(&mntvnode_slock); for (vp = mp->mnt_vnodelist.lh_first; vp != NULL; vp = nvp) { /* * Check that the vp is still associated with * this filesystem. RACE: could have been * recycled onto the same filesystem. */ if (vp->v_mount != mp) { simple_unlock(&mntvnode_slock); if (kinfo_vdebug) printf("kinfo: vp changed\n"); goto again; } nvp = vp->v_mntvnodes.le_next; simple_unlock(&mntvnode_slock); if ((error = SYSCTL_OUT(req, &vp, VPTRSZ)) || (error = SYSCTL_OUT(req, vp, VNODESZ))) return (error); simple_lock(&mntvnode_slock); } simple_unlock(&mntvnode_slock); simple_lock(&mountlist_slock); nmp = mp->mnt_list.cqe_next; vfs_unbusy(mp, p); } simple_unlock(&mountlist_slock); return (0); } SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD, 0, 0, sysctl_vnode, "S,vnode", ""); /* * Check to see if a filesystem is mounted on a block device. */ int vfs_mountedon(vp) struct vnode *vp; { struct vnode *vq; int error = 0; if (vp->v_specflags & SI_MOUNTEDON) return (EBUSY); if (vp->v_flag & VALIASED) { simple_lock(&spechash_slock); for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) { if (vq->v_rdev != vp->v_rdev || vq->v_type != vp->v_type) continue; if (vq->v_specflags & SI_MOUNTEDON) { error = EBUSY; break; } } simple_unlock(&spechash_slock); } return (error); } /* * Unmount all filesystems. The list is traversed in reverse order * of mounting to avoid dependencies. */ void vfs_unmountall() { struct mount *mp, *nmp; struct proc *p = initproc; /* XXX XXX should this be proc0? */ int error; /* * Since this only runs when rebooting, it is not interlocked. */ for (mp = mountlist.cqh_last; mp != (void *)&mountlist; mp = nmp) { nmp = mp->mnt_list.cqe_prev; error = dounmount(mp, MNT_FORCE, p); if (error) { printf("unmount of %s failed (", mp->mnt_stat.f_mntonname); if (error == EBUSY) printf("BUSY)\n"); else printf("%d)\n", error); } } } /* * Build hash lists of net addresses and hang them off the mount point. * Called by ufs_mount() to set up the lists of export addresses. */ static int vfs_hang_addrlist(struct mount *mp, struct netexport *nep, struct export_args *argp) { register struct netcred *np; register struct radix_node_head *rnh; register int i; struct radix_node *rn; struct sockaddr *saddr, *smask = 0; struct domain *dom; int error; if (argp->ex_addrlen == 0) { if (mp->mnt_flag & MNT_DEFEXPORTED) return (EPERM); np = &nep->ne_defexported; np->netc_exflags = argp->ex_flags; np->netc_anon = argp->ex_anon; np->netc_anon.cr_ref = 1; mp->mnt_flag |= MNT_DEFEXPORTED; return (0); } i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen; np = (struct netcred *) malloc(i, M_NETADDR, M_WAITOK); bzero((caddr_t) np, i); saddr = (struct sockaddr *) (np + 1); if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen))) goto out; if (saddr->sa_len > argp->ex_addrlen) saddr->sa_len = argp->ex_addrlen; if (argp->ex_masklen) { smask = (struct sockaddr *) ((caddr_t) saddr + argp->ex_addrlen); error = copyin(argp->ex_mask, (caddr_t) smask, argp->ex_masklen); if (error) goto out; if (smask->sa_len > argp->ex_masklen) smask->sa_len = argp->ex_masklen; } i = saddr->sa_family; if ((rnh = nep->ne_rtable[i]) == 0) { /* * Seems silly to initialize every AF when most are not used, * do so on demand here */ for (dom = domains; dom; dom = dom->dom_next) if (dom->dom_family == i && dom->dom_rtattach) { dom->dom_rtattach((void **) &nep->ne_rtable[i], dom->dom_rtoffset); break; } if ((rnh = nep->ne_rtable[i]) == 0) { error = ENOBUFS; goto out; } } rn = (*rnh->rnh_addaddr) ((caddr_t) saddr, (caddr_t) smask, rnh, np->netc_rnodes); if (rn == 0 || np != (struct netcred *) rn) { /* already exists */ error = EPERM; goto out; } np->netc_exflags = argp->ex_flags; np->netc_anon = argp->ex_anon; np->netc_anon.cr_ref = 1; return (0); out: free(np, M_NETADDR); return (error); } /* ARGSUSED */ static int vfs_free_netcred(struct radix_node *rn, void *w) { register struct radix_node_head *rnh = (struct radix_node_head *) w; (*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh); free((caddr_t) rn, M_NETADDR); return (0); } /* * Free the net address hash lists that are hanging off the mount points. */ static void vfs_free_addrlist(struct netexport *nep) { register int i; register struct radix_node_head *rnh; for (i = 0; i <= AF_MAX; i++) if ((rnh = nep->ne_rtable[i])) { (*rnh->rnh_walktree) (rnh, vfs_free_netcred, (caddr_t) rnh); free((caddr_t) rnh, M_RTABLE); nep->ne_rtable[i] = 0; } } int vfs_export(mp, nep, argp) struct mount *mp; struct netexport *nep; struct export_args *argp; { int error; if (argp->ex_flags & MNT_DELEXPORT) { vfs_free_addrlist(nep); mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED); } if (argp->ex_flags & MNT_EXPORTED) { if ((error = vfs_hang_addrlist(mp, nep, argp))) return (error); mp->mnt_flag |= MNT_EXPORTED; } return (0); } struct netcred * vfs_export_lookup(mp, nep, nam) register struct mount *mp; struct netexport *nep; struct mbuf *nam; { register struct netcred *np; register struct radix_node_head *rnh; struct sockaddr *saddr; np = NULL; if (mp->mnt_flag & MNT_EXPORTED) { /* * Lookup in the export list first. */ if (nam != NULL) { saddr = mtod(nam, struct sockaddr *); rnh = nep->ne_rtable[saddr->sa_family]; if (rnh != NULL) { np = (struct netcred *) (*rnh->rnh_matchaddr)((caddr_t)saddr, rnh); if (np && np->netc_rnodes->rn_flags & RNF_ROOT) np = NULL; } } /* * If no address match, use the default if it exists. */ if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED) np = &nep->ne_defexported; } return (np); } /* * perform msync on all vnodes under a mount point * the mount point must be locked. */ void vfs_msync(struct mount *mp, int flags) { struct vnode *vp, *nvp; loop: for (vp = mp->mnt_vnodelist.lh_first; vp != NULL; vp = nvp) { if (vp->v_mount != mp) goto loop; nvp = vp->v_mntvnodes.le_next; if (VOP_ISLOCKED(vp) && (flags != MNT_WAIT)) continue; if (vp->v_object && (vp->v_object->flags & OBJ_MIGHTBEDIRTY)) { vm_object_page_clean(vp->v_object, 0, 0, TRUE, TRUE); } } } /* * Create the VM object needed for VMIO and mmap support. This * is done for all VREG files in the system. Some filesystems might * afford the additional metadata buffering capability of the * VMIO code by making the device node be VMIO mode also. */ int vfs_object_create(vp, p, cred, waslocked) struct vnode *vp; struct proc *p; struct ucred *cred; int waslocked; { struct vattr vat; vm_object_t object; int error = 0; retry: if ((object = vp->v_object) == NULL) { if (vp->v_type == VREG) { if ((error = VOP_GETATTR(vp, &vat, cred, p)) != 0) goto retn; (void) vnode_pager_alloc(vp, OFF_TO_IDX(round_page(vat.va_size)), 0, 0); } else { /* * This simply allocates the biggest object possible * for a VBLK vnode. This should be fixed, but doesn't * cause any problems (yet). */ (void) vnode_pager_alloc(vp, INT_MAX, 0, 0); } vp->v_object->flags |= OBJ_VFS_REF; } else { if (object->flags & OBJ_DEAD) { if (waslocked) VOP_UNLOCK(vp, 0, p); tsleep(object, PVM, "vodead", 0); if (waslocked) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p); goto retry; } if ((object->flags & OBJ_VFS_REF) == 0) { object->flags |= OBJ_VFS_REF; vm_object_reference(object); } } if (vp->v_object) vp->v_flag |= VVMIO; retn: return error; }