/* * Copyright (c) 1980, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)if.c 8.3 (Berkeley) 1/4/94 * $Id: if.c,v 1.64 1998/12/16 18:30:42 phk Exp $ */ #include "opt_compat.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * System initialization */ static int ifconf __P((u_long, caddr_t)); static void ifinit __P((void *)); static void if_qflush __P((struct ifqueue *)); static void if_slowtimo __P((void *)); static void link_rtrequest __P((int, struct rtentry *, struct sockaddr *)); SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL) MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); int ifqmaxlen = IFQ_MAXLEN; struct ifnethead ifnet; /* depend on static init XXX */ /* * Network interface utility routines. * * Routines with ifa_ifwith* names take sockaddr *'s as * parameters. * * This routine assumes that it will be called at splimp() or higher. */ /* ARGSUSED*/ void ifinit(dummy) void *dummy; { register struct ifnet *ifp; for (ifp = ifnet.tqh_first; ifp; ifp = ifp->if_link.tqe_next) if (ifp->if_snd.ifq_maxlen == 0) { printf("%s%d XXX: driver didn't set ifq_maxlen\n", ifp->if_name, ifp->if_unit); ifp->if_snd.ifq_maxlen = ifqmaxlen; } if_slowtimo(0); } int if_index = 0; struct ifaddr **ifnet_addrs; /* * Attach an interface to the * list of "active" interfaces. */ void if_attach(ifp) struct ifnet *ifp; { unsigned socksize, ifasize; int namelen, masklen; char workbuf[64]; register struct sockaddr_dl *sdl; register struct ifaddr *ifa; static int if_indexlim = 8; static int inited; if (!inited) { TAILQ_INIT(&ifnet); inited = 1; } TAILQ_INSERT_TAIL(&ifnet, ifp, if_link); ifp->if_index = ++if_index; /* * XXX - * The old code would work if the interface passed a pre-existing * chain of ifaddrs to this code. We don't trust our callers to * properly initialize the tailq, however, so we no longer allow * this unlikely case. */ TAILQ_INIT(&ifp->if_addrhead); LIST_INIT(&ifp->if_multiaddrs); getmicrotime(&ifp->if_lastchange); if (ifnet_addrs == 0 || if_index >= if_indexlim) { unsigned n = (if_indexlim <<= 1) * sizeof(ifa); struct ifaddr **q = (struct ifaddr **) malloc(n, M_IFADDR, M_WAITOK); bzero((caddr_t)q, n); if (ifnet_addrs) { bcopy((caddr_t)ifnet_addrs, (caddr_t)q, n/2); free((caddr_t)ifnet_addrs, M_IFADDR); } ifnet_addrs = q; } /* * create a Link Level name for this device */ namelen = snprintf(workbuf, sizeof(workbuf), "%s%d", ifp->if_name, ifp->if_unit); #define _offsetof(t, m) ((int)((caddr_t)&((t *)0)->m)) masklen = _offsetof(struct sockaddr_dl, sdl_data[0]) + namelen; socksize = masklen + ifp->if_addrlen; #define ROUNDUP(a) (1 + (((a) - 1) | (sizeof(long) - 1))) if (socksize < sizeof(*sdl)) socksize = sizeof(*sdl); socksize = ROUNDUP(socksize); ifasize = sizeof(*ifa) + 2 * socksize; ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK); if (ifa) { bzero((caddr_t)ifa, ifasize); sdl = (struct sockaddr_dl *)(ifa + 1); sdl->sdl_len = socksize; sdl->sdl_family = AF_LINK; bcopy(workbuf, sdl->sdl_data, namelen); sdl->sdl_nlen = namelen; sdl->sdl_index = ifp->if_index; sdl->sdl_type = ifp->if_type; ifnet_addrs[if_index - 1] = ifa; ifa->ifa_ifp = ifp; ifa->ifa_rtrequest = link_rtrequest; ifa->ifa_addr = (struct sockaddr *)sdl; sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl); ifa->ifa_netmask = (struct sockaddr *)sdl; sdl->sdl_len = masklen; while (namelen != 0) sdl->sdl_data[--namelen] = 0xff; TAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link); } } /* * Locate an interface based on a complete address. */ /*ARGSUSED*/ struct ifaddr * ifa_ifwithaddr(addr) register struct sockaddr *addr; { register struct ifnet *ifp; register struct ifaddr *ifa; #define equal(a1, a2) \ (bcmp((caddr_t)(a1), (caddr_t)(a2), ((struct sockaddr *)(a1))->sa_len) == 0) for (ifp = ifnet.tqh_first; ifp; ifp = ifp->if_link.tqe_next) for (ifa = ifp->if_addrhead.tqh_first; ifa; ifa = ifa->ifa_link.tqe_next) { if (ifa->ifa_addr->sa_family != addr->sa_family) continue; if (equal(addr, ifa->ifa_addr)) return (ifa); if ((ifp->if_flags & IFF_BROADCAST) && ifa->ifa_broadaddr && equal(ifa->ifa_broadaddr, addr)) return (ifa); } return ((struct ifaddr *)0); } /* * Locate the point to point interface with a given destination address. */ /*ARGSUSED*/ struct ifaddr * ifa_ifwithdstaddr(addr) register struct sockaddr *addr; { register struct ifnet *ifp; register struct ifaddr *ifa; for (ifp = ifnet.tqh_first; ifp; ifp = ifp->if_link.tqe_next) if (ifp->if_flags & IFF_POINTOPOINT) for (ifa = ifp->if_addrhead.tqh_first; ifa; ifa = ifa->ifa_link.tqe_next) { if (ifa->ifa_addr->sa_family != addr->sa_family) continue; if (ifa->ifa_dstaddr && equal(addr, ifa->ifa_dstaddr)) return (ifa); } return ((struct ifaddr *)0); } /* * Find an interface on a specific network. If many, choice * is most specific found. */ struct ifaddr * ifa_ifwithnet(addr) struct sockaddr *addr; { register struct ifnet *ifp; register struct ifaddr *ifa; struct ifaddr *ifa_maybe = (struct ifaddr *) 0; u_int af = addr->sa_family; char *addr_data = addr->sa_data, *cplim; /* * AF_LINK addresses can be looked up directly by their index number, * so do that if we can. */ if (af == AF_LINK) { register struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr; if (sdl->sdl_index && sdl->sdl_index <= if_index) return (ifnet_addrs[sdl->sdl_index - 1]); } /* * Scan though each interface, looking for ones that have * addresses in this address family. */ for (ifp = ifnet.tqh_first; ifp; ifp = ifp->if_link.tqe_next) { for (ifa = ifp->if_addrhead.tqh_first; ifa; ifa = ifa->ifa_link.tqe_next) { register char *cp, *cp2, *cp3; if (ifa->ifa_addr->sa_family != af) next: continue; if (ifp->if_flags & IFF_POINTOPOINT) { /* * This is a bit broken as it doesn't * take into account that the remote end may * be a single node in the network we are * looking for. * The trouble is that we don't know the * netmask for the remote end. */ if (ifa->ifa_dstaddr != 0 && equal(addr, ifa->ifa_dstaddr)) return (ifa); } else { /* * if we have a special address handler, * then use it instead of the generic one. */ if (ifa->ifa_claim_addr) { if ((*ifa->ifa_claim_addr)(ifa, addr)) { return (ifa); } else { continue; } } /* * Scan all the bits in the ifa's address. * If a bit dissagrees with what we are * looking for, mask it with the netmask * to see if it really matters. * (A byte at a time) */ if (ifa->ifa_netmask == 0) continue; cp = addr_data; cp2 = ifa->ifa_addr->sa_data; cp3 = ifa->ifa_netmask->sa_data; cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; while (cp3 < cplim) if ((*cp++ ^ *cp2++) & *cp3++) goto next; /* next address! */ /* * If the netmask of what we just found * is more specific than what we had before * (if we had one) then remember the new one * before continuing to search * for an even better one. */ if (ifa_maybe == 0 || rn_refines((caddr_t)ifa->ifa_netmask, (caddr_t)ifa_maybe->ifa_netmask)) ifa_maybe = ifa; } } } return (ifa_maybe); } /* * Find an interface address specific to an interface best matching * a given address. */ struct ifaddr * ifaof_ifpforaddr(addr, ifp) struct sockaddr *addr; register struct ifnet *ifp; { register struct ifaddr *ifa; register char *cp, *cp2, *cp3; register char *cplim; struct ifaddr *ifa_maybe = 0; u_int af = addr->sa_family; if (af >= AF_MAX) return (0); for (ifa = ifp->if_addrhead.tqh_first; ifa; ifa = ifa->ifa_link.tqe_next) { if (ifa->ifa_addr->sa_family != af) continue; if (ifa_maybe == 0) ifa_maybe = ifa; if (ifa->ifa_netmask == 0) { if (equal(addr, ifa->ifa_addr) || (ifa->ifa_dstaddr && equal(addr, ifa->ifa_dstaddr))) return (ifa); continue; } if (ifp->if_flags & IFF_POINTOPOINT) { if (equal(addr, ifa->ifa_dstaddr)) return (ifa); } else { cp = addr->sa_data; cp2 = ifa->ifa_addr->sa_data; cp3 = ifa->ifa_netmask->sa_data; cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; for (; cp3 < cplim; cp3++) if ((*cp++ ^ *cp2++) & *cp3) break; if (cp3 == cplim) return (ifa); } } return (ifa_maybe); } #include /* * Default action when installing a route with a Link Level gateway. * Lookup an appropriate real ifa to point to. * This should be moved to /sys/net/link.c eventually. */ static void link_rtrequest(cmd, rt, sa) int cmd; register struct rtentry *rt; struct sockaddr *sa; { register struct ifaddr *ifa; struct sockaddr *dst; struct ifnet *ifp; if (cmd != RTM_ADD || ((ifa = rt->rt_ifa) == 0) || ((ifp = ifa->ifa_ifp) == 0) || ((dst = rt_key(rt)) == 0)) return; ifa = ifaof_ifpforaddr(dst, ifp); if (ifa) { IFAFREE(rt->rt_ifa); rt->rt_ifa = ifa; ifa->ifa_refcnt++; if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) ifa->ifa_rtrequest(cmd, rt, sa); } } /* * Mark an interface down and notify protocols of * the transition. * NOTE: must be called at splnet or eqivalent. */ void if_unroute(ifp, flag, fam) register struct ifnet *ifp; int flag, fam; { register struct ifaddr *ifa; ifp->if_flags &= ~flag; getmicrotime(&ifp->if_lastchange); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) pfctlinput(PRC_IFDOWN, ifa->ifa_addr); if_qflush(&ifp->if_snd); rt_ifmsg(ifp); } /* * Mark an interface up and notify protocols of * the transition. * NOTE: must be called at splnet or eqivalent. */ void if_route(ifp, flag, fam) register struct ifnet *ifp; int flag, fam; { register struct ifaddr *ifa; ifp->if_flags |= flag; getmicrotime(&ifp->if_lastchange); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) pfctlinput(PRC_IFUP, ifa->ifa_addr); rt_ifmsg(ifp); } /* * Mark an interface down and notify protocols of * the transition. * NOTE: must be called at splnet or eqivalent. */ void if_down(ifp) register struct ifnet *ifp; { if_unroute(ifp, IFF_UP, AF_UNSPEC); } /* * Mark an interface up and notify protocols of * the transition. * NOTE: must be called at splnet or eqivalent. */ void if_up(ifp) register struct ifnet *ifp; { if_route(ifp, IFF_UP, AF_UNSPEC); } /* * Flush an interface queue. */ static void if_qflush(ifq) register struct ifqueue *ifq; { register struct mbuf *m, *n; n = ifq->ifq_head; while ((m = n) != 0) { n = m->m_act; m_freem(m); } ifq->ifq_head = 0; ifq->ifq_tail = 0; ifq->ifq_len = 0; } /* * Handle interface watchdog timer routines. Called * from softclock, we decrement timers (if set) and * call the appropriate interface routine on expiration. */ static void if_slowtimo(arg) void *arg; { register struct ifnet *ifp; int s = splimp(); for (ifp = ifnet.tqh_first; ifp; ifp = ifp->if_link.tqe_next) { if (ifp->if_timer == 0 || --ifp->if_timer) continue; if (ifp->if_watchdog) (*ifp->if_watchdog)(ifp); } splx(s); timeout(if_slowtimo, (void *)0, hz / IFNET_SLOWHZ); } /* * Map interface name to * interface structure pointer. */ struct ifnet * ifunit(name) register char *name; { char namebuf[IFNAMSIZ + 1]; register char *cp, *cp2; char *end; register struct ifnet *ifp; int unit; unsigned len; register char c = '\0'; /* * Look for a non numeric part */ end = name + IFNAMSIZ; cp2 = namebuf; cp = name; while ((cp < end) && (c = *cp)) { if (c >= '0' && c <= '9') break; *cp2++ = c; cp++; } if ((cp == end) || (c == '\0') || (cp == name)) return ((struct ifnet *)0); *cp2 = '\0'; /* * check we have a legal number (limit to 7 digits?) */ len = cp - name + 1; for (unit = 0; ((c = *cp) >= '0') && (c <= '9') && (unit < 1000000); cp++ ) unit = (unit * 10) + (c - '0'); if (*cp != '\0') return 0; /* no trailing garbage allowed */ /* * Now search all the interfaces for this name/number */ for (ifp = ifnet.tqh_first; ifp; ifp = ifp->if_link.tqe_next) { if (bcmp(ifp->if_name, namebuf, len)) continue; if (unit == ifp->if_unit) break; } return (ifp); } /* * Interface ioctls. */ int ifioctl(so, cmd, data, p) struct socket *so; u_long cmd; caddr_t data; struct proc *p; { register struct ifnet *ifp; register struct ifreq *ifr; int error; switch (cmd) { case SIOCGIFCONF: case OSIOCGIFCONF: return (ifconf(cmd, data)); } ifr = (struct ifreq *)data; ifp = ifunit(ifr->ifr_name); if (ifp == 0) return (ENXIO); switch (cmd) { case SIOCGIFFLAGS: ifr->ifr_flags = ifp->if_flags; break; case SIOCGIFMETRIC: ifr->ifr_metric = ifp->if_metric; break; case SIOCGIFMTU: ifr->ifr_mtu = ifp->if_mtu; break; case SIOCGIFPHYS: ifr->ifr_phys = ifp->if_physical; break; case SIOCSIFFLAGS: error = suser(p->p_ucred, &p->p_acflag); if (error) return (error); if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) { int s = splimp(); if_down(ifp); splx(s); } if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) { int s = splimp(); if_up(ifp); splx(s); } ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | (ifr->ifr_flags &~ IFF_CANTCHANGE); if (ifp->if_ioctl) (void) (*ifp->if_ioctl)(ifp, cmd, data); getmicrotime(&ifp->if_lastchange); break; case SIOCSIFMETRIC: error = suser(p->p_ucred, &p->p_acflag); if (error) return (error); ifp->if_metric = ifr->ifr_metric; getmicrotime(&ifp->if_lastchange); break; case SIOCSIFPHYS: error = suser(p->p_ucred, &p->p_acflag); if (error) return error; if (!ifp->if_ioctl) return EOPNOTSUPP; error = (*ifp->if_ioctl)(ifp, cmd, data); if (error == 0) getmicrotime(&ifp->if_lastchange); return(error); case SIOCSIFMTU: error = suser(p->p_ucred, &p->p_acflag); if (error) return (error); if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); /* * 72 was chosen below because it is the size of a TCP/IP * header (40) + the minimum mss (32). */ if (ifr->ifr_mtu < 72 || ifr->ifr_mtu > 65535) return (EINVAL); error = (*ifp->if_ioctl)(ifp, cmd, data); if (error == 0) getmicrotime(&ifp->if_lastchange); return(error); case SIOCADDMULTI: case SIOCDELMULTI: error = suser(p->p_ucred, &p->p_acflag); if (error) return (error); /* Don't allow group membership on non-multicast interfaces. */ if ((ifp->if_flags & IFF_MULTICAST) == 0) return EOPNOTSUPP; /* Don't let users screw up protocols' entries. */ if (ifr->ifr_addr.sa_family != AF_LINK) return EINVAL; if (cmd == SIOCADDMULTI) { struct ifmultiaddr *ifma; error = if_addmulti(ifp, &ifr->ifr_addr, &ifma); } else { error = if_delmulti(ifp, &ifr->ifr_addr); } if (error == 0) getmicrotime(&ifp->if_lastchange); return error; case SIOCSIFMEDIA: case SIOCSIFGENERIC: error = suser(p->p_ucred, &p->p_acflag); if (error) return (error); if (ifp->if_ioctl == 0) return (EOPNOTSUPP); error = (*ifp->if_ioctl)(ifp, cmd, data); if (error == 0) getmicrotime(&ifp->if_lastchange); return error; case SIOCGIFMEDIA: case SIOCGIFGENERIC: if (ifp->if_ioctl == 0) return (EOPNOTSUPP); return ((*ifp->if_ioctl)(ifp, cmd, data)); default: if (so->so_proto == 0) return (EOPNOTSUPP); #ifndef COMPAT_43 return ((*so->so_proto->pr_usrreqs->pru_control)(so, cmd, data, ifp, p)); #else { int ocmd = cmd; switch (cmd) { case SIOCSIFDSTADDR: case SIOCSIFADDR: case SIOCSIFBRDADDR: case SIOCSIFNETMASK: #if BYTE_ORDER != BIG_ENDIAN if (ifr->ifr_addr.sa_family == 0 && ifr->ifr_addr.sa_len < 16) { ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len; ifr->ifr_addr.sa_len = 16; } #else if (ifr->ifr_addr.sa_len == 0) ifr->ifr_addr.sa_len = 16; #endif break; case OSIOCGIFADDR: cmd = SIOCGIFADDR; break; case OSIOCGIFDSTADDR: cmd = SIOCGIFDSTADDR; break; case OSIOCGIFBRDADDR: cmd = SIOCGIFBRDADDR; break; case OSIOCGIFNETMASK: cmd = SIOCGIFNETMASK; } error = ((*so->so_proto->pr_usrreqs->pru_control)(so, cmd, data, ifp, p)); switch (ocmd) { case OSIOCGIFADDR: case OSIOCGIFDSTADDR: case OSIOCGIFBRDADDR: case OSIOCGIFNETMASK: *(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family; } return (error); } #endif } return (0); } /* * Set/clear promiscuous mode on interface ifp based on the truth value * of pswitch. The calls are reference counted so that only the first * "on" request actually has an effect, as does the final "off" request. * Results are undefined if the "off" and "on" requests are not matched. */ int ifpromisc(ifp, pswitch) struct ifnet *ifp; int pswitch; { struct ifreq ifr; int error; if (pswitch) { /* * If the device is not configured up, we cannot put it in * promiscuous mode. */ if ((ifp->if_flags & IFF_UP) == 0) return (ENETDOWN); if (ifp->if_pcount++ != 0) return (0); ifp->if_flags |= IFF_PROMISC; log(LOG_INFO, "%s%d: promiscuous mode enabled\n", ifp->if_name, ifp->if_unit); } else { if (--ifp->if_pcount > 0) return (0); ifp->if_flags &= ~IFF_PROMISC; } ifr.ifr_flags = ifp->if_flags; error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); if (error == 0) rt_ifmsg(ifp); return error; } /* * Return interface configuration * of system. List may be used * in later ioctl's (above) to get * other information. */ /*ARGSUSED*/ static int ifconf(cmd, data) u_long cmd; caddr_t data; { register struct ifconf *ifc = (struct ifconf *)data; register struct ifnet *ifp = ifnet.tqh_first; register struct ifaddr *ifa; struct ifreq ifr, *ifrp; int space = ifc->ifc_len, error = 0; ifrp = ifc->ifc_req; for (; space > sizeof (ifr) && ifp; ifp = ifp->if_link.tqe_next) { char workbuf[64]; int ifnlen; ifnlen = snprintf(workbuf, sizeof(workbuf), "%s%d", ifp->if_name, ifp->if_unit); if(ifnlen + 1 > sizeof ifr.ifr_name) { error = ENAMETOOLONG; } else { strcpy(ifr.ifr_name, workbuf); } if ((ifa = ifp->if_addrhead.tqh_first) == 0) { bzero((caddr_t)&ifr.ifr_addr, sizeof(ifr.ifr_addr)); error = copyout((caddr_t)&ifr, (caddr_t)ifrp, sizeof (ifr)); if (error) break; space -= sizeof (ifr), ifrp++; } else for ( ; space > sizeof (ifr) && ifa; ifa = ifa->ifa_link.tqe_next) { register struct sockaddr *sa = ifa->ifa_addr; #ifdef COMPAT_43 if (cmd == OSIOCGIFCONF) { struct osockaddr *osa = (struct osockaddr *)&ifr.ifr_addr; ifr.ifr_addr = *sa; osa->sa_family = sa->sa_family; error = copyout((caddr_t)&ifr, (caddr_t)ifrp, sizeof (ifr)); ifrp++; } else #endif if (sa->sa_len <= sizeof(*sa)) { ifr.ifr_addr = *sa; error = copyout((caddr_t)&ifr, (caddr_t)ifrp, sizeof (ifr)); ifrp++; } else { space -= sa->sa_len - sizeof(*sa); if (space < sizeof (ifr)) break; error = copyout((caddr_t)&ifr, (caddr_t)ifrp, sizeof (ifr.ifr_name)); if (error == 0) error = copyout((caddr_t)sa, (caddr_t)&ifrp->ifr_addr, sa->sa_len); ifrp = (struct ifreq *) (sa->sa_len + (caddr_t)&ifrp->ifr_addr); } if (error) break; space -= sizeof (ifr); } } ifc->ifc_len -= space; return (error); } /* * Just like if_promisc(), but for all-multicast-reception mode. */ int if_allmulti(ifp, onswitch) struct ifnet *ifp; int onswitch; { int error = 0; int s = splimp(); if (onswitch) { if (ifp->if_amcount++ == 0) { ifp->if_flags |= IFF_ALLMULTI; error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, 0); } } else { if (ifp->if_amcount > 1) { ifp->if_amcount--; } else { ifp->if_amcount = 0; ifp->if_flags &= ~IFF_ALLMULTI; error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, 0); } } splx(s); if (error == 0) rt_ifmsg(ifp); return error; } /* * Add a multicast listenership to the interface in question. * The link layer provides a routine which converts */ int if_addmulti(ifp, sa, retifma) struct ifnet *ifp; /* interface to manipulate */ struct sockaddr *sa; /* address to add */ struct ifmultiaddr **retifma; { struct sockaddr *llsa, *dupsa; int error, s; struct ifmultiaddr *ifma; /* * If the matching multicast address already exists * then don't add a new one, just add a reference */ for (ifma = ifp->if_multiaddrs.lh_first; ifma; ifma = ifma->ifma_link.le_next) { if (equal(sa, ifma->ifma_addr)) { ifma->ifma_refcount++; if (retifma) *retifma = ifma; return 0; } } /* * Give the link layer a chance to accept/reject it, and also * find out which AF_LINK address this maps to, if it isn't one * already. */ if (ifp->if_resolvemulti) { error = ifp->if_resolvemulti(ifp, &llsa, sa); if (error) return error; } else { llsa = 0; } MALLOC(ifma, struct ifmultiaddr *, sizeof *ifma, M_IFMADDR, M_WAITOK); MALLOC(dupsa, struct sockaddr *, sa->sa_len, M_IFMADDR, M_WAITOK); bcopy(sa, dupsa, sa->sa_len); ifma->ifma_addr = dupsa; ifma->ifma_lladdr = llsa; ifma->ifma_ifp = ifp; ifma->ifma_refcount = 1; ifma->ifma_protospec = 0; rt_newmaddrmsg(RTM_NEWMADDR, ifma); /* * Some network interfaces can scan the address list at * interrupt time; lock them out. */ s = splimp(); LIST_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); splx(s); *retifma = ifma; if (llsa != 0) { for (ifma = ifp->if_multiaddrs.lh_first; ifma; ifma = ifma->ifma_link.le_next) { if (equal(ifma->ifma_addr, llsa)) break; } if (ifma) { ifma->ifma_refcount++; } else { MALLOC(ifma, struct ifmultiaddr *, sizeof *ifma, M_IFMADDR, M_WAITOK); MALLOC(dupsa, struct sockaddr *, llsa->sa_len, M_IFMADDR, M_WAITOK); bcopy(llsa, dupsa, llsa->sa_len); ifma->ifma_addr = dupsa; ifma->ifma_ifp = ifp; ifma->ifma_refcount = 1; s = splimp(); LIST_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); splx(s); } } /* * We are certain we have added something, so call down to the * interface to let them know about it. */ s = splimp(); ifp->if_ioctl(ifp, SIOCADDMULTI, 0); splx(s); return 0; } /* * Remove a reference to a multicast address on this interface. Yell * if the request does not match an existing membership. */ int if_delmulti(ifp, sa) struct ifnet *ifp; struct sockaddr *sa; { struct ifmultiaddr *ifma; int s; for (ifma = ifp->if_multiaddrs.lh_first; ifma; ifma = ifma->ifma_link.le_next) if (equal(sa, ifma->ifma_addr)) break; if (ifma == 0) return ENOENT; if (ifma->ifma_refcount > 1) { ifma->ifma_refcount--; return 0; } rt_newmaddrmsg(RTM_DELMADDR, ifma); sa = ifma->ifma_lladdr; s = splimp(); LIST_REMOVE(ifma, ifma_link); splx(s); free(ifma->ifma_addr, M_IFMADDR); free(ifma, M_IFMADDR); if (sa == 0) return 0; /* * Now look for the link-layer address which corresponds to * this network address. It had been squirreled away in * ifma->ifma_lladdr for this purpose (so we don't have * to call ifp->if_resolvemulti() again), and we saved that * value in sa above. If some nasty deleted the * link-layer address out from underneath us, we can deal because * the address we stored was is not the same as the one which was * in the record for the link-layer address. (So we don't complain * in that case.) */ for (ifma = ifp->if_multiaddrs.lh_first; ifma; ifma = ifma->ifma_link.le_next) if (equal(sa, ifma->ifma_addr)) break; if (ifma == 0) return 0; if (ifma->ifma_refcount > 1) { ifma->ifma_refcount--; return 0; } s = splimp(); LIST_REMOVE(ifma, ifma_link); ifp->if_ioctl(ifp, SIOCDELMULTI, 0); splx(s); free(ifma->ifma_addr, M_IFMADDR); free(sa, M_IFMADDR); free(ifma, M_IFMADDR); return 0; } struct ifmultiaddr * ifmaof_ifpforaddr(sa, ifp) struct sockaddr *sa; struct ifnet *ifp; { struct ifmultiaddr *ifma; for (ifma = ifp->if_multiaddrs.lh_first; ifma; ifma = ifma->ifma_link.le_next) if (equal(ifma->ifma_addr, sa)) break; return ifma; } SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers"); SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");