/*- * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD$"); #include <sys/param.h> #include <sys/systm.h> #include <sys/bus.h> #include <sys/endian.h> #include <sys/kernel.h> #include <sys/malloc.h> #include <sys/mbuf.h> #include <sys/rman.h> #include <sys/module.h> #include <sys/queue.h> #include <sys/socket.h> #include <sys/sockio.h> #include <sys/sysctl.h> #include <sys/taskqueue.h> #include <net/bpf.h> #include <net/if.h> #include <net/if_arp.h> #include <net/ethernet.h> #include <net/if_dl.h> #include <net/if_media.h> #include <net/if_types.h> #include <net/if_vlan_var.h> #include <netinet/in.h> #include <netinet/in_systm.h> #include <netinet/ip.h> #include <netinet/tcp.h> #include <dev/mii/mii.h> #include <dev/mii/miivar.h> #include <dev/pci/pcireg.h> #include <dev/pci/pcivar.h> #include <machine/bus.h> #include <machine/in_cksum.h> #include <dev/age/if_agereg.h> #include <dev/age/if_agevar.h> /* "device miibus" required. See GENERIC if you get errors here. */ #include "miibus_if.h" #ifndef IFCAP_VLAN_HWTSO #define IFCAP_VLAN_HWTSO 0 #endif #define AGE_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) MODULE_DEPEND(age, pci, 1, 1, 1); MODULE_DEPEND(age, ether, 1, 1, 1); MODULE_DEPEND(age, miibus, 1, 1, 1); /* Tunables. */ static int msi_disable = 0; static int msix_disable = 0; TUNABLE_INT("hw.age.msi_disable", &msi_disable); TUNABLE_INT("hw.age.msix_disable", &msix_disable); /* * Devices supported by this driver. */ static struct age_dev { uint16_t age_vendorid; uint16_t age_deviceid; const char *age_name; } age_devs[] = { { VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1, "Attansic Technology Corp, L1 Gigabit Ethernet" }, }; static int age_miibus_readreg(device_t, int, int); static int age_miibus_writereg(device_t, int, int, int); static void age_miibus_statchg(device_t); static void age_mediastatus(struct ifnet *, struct ifmediareq *); static int age_mediachange(struct ifnet *); static int age_read_vpd_word(struct age_softc *, uint32_t, uint32_t, uint32_t *); static int age_probe(device_t); static void age_get_macaddr(struct age_softc *); static void age_phy_reset(struct age_softc *); static int age_attach(device_t); static int age_detach(device_t); static void age_sysctl_node(struct age_softc *); static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int); static int age_check_boundary(struct age_softc *); static int age_dma_alloc(struct age_softc *); static void age_dma_free(struct age_softc *); static int age_shutdown(device_t); static void age_setwol(struct age_softc *); static int age_suspend(device_t); static int age_resume(device_t); static int age_encap(struct age_softc *, struct mbuf **); static void age_tx_task(void *, int); static void age_start(struct ifnet *); static void age_watchdog(struct age_softc *); static int age_ioctl(struct ifnet *, u_long, caddr_t); static void age_mac_config(struct age_softc *); static void age_link_task(void *, int); static void age_stats_update(struct age_softc *); static int age_intr(void *); static void age_int_task(void *, int); static void age_txintr(struct age_softc *, int); static void age_rxeof(struct age_softc *sc, struct rx_rdesc *); static int age_rxintr(struct age_softc *, int, int); static void age_tick(void *); static void age_reset(struct age_softc *); static void age_init(void *); static void age_init_locked(struct age_softc *); static void age_stop(struct age_softc *); static void age_stop_txmac(struct age_softc *); static void age_stop_rxmac(struct age_softc *); static void age_init_tx_ring(struct age_softc *); static int age_init_rx_ring(struct age_softc *); static void age_init_rr_ring(struct age_softc *); static void age_init_cmb_block(struct age_softc *); static void age_init_smb_block(struct age_softc *); static int age_newbuf(struct age_softc *, struct age_rxdesc *); static void age_rxvlan(struct age_softc *); static void age_rxfilter(struct age_softc *); static int sysctl_age_stats(SYSCTL_HANDLER_ARGS); static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int); static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS); static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS); static device_method_t age_methods[] = { /* Device interface. */ DEVMETHOD(device_probe, age_probe), DEVMETHOD(device_attach, age_attach), DEVMETHOD(device_detach, age_detach), DEVMETHOD(device_shutdown, age_shutdown), DEVMETHOD(device_suspend, age_suspend), DEVMETHOD(device_resume, age_resume), /* MII interface. */ DEVMETHOD(miibus_readreg, age_miibus_readreg), DEVMETHOD(miibus_writereg, age_miibus_writereg), DEVMETHOD(miibus_statchg, age_miibus_statchg), { NULL, NULL } }; static driver_t age_driver = { "age", age_methods, sizeof(struct age_softc) }; static devclass_t age_devclass; DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0); DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0); static struct resource_spec age_res_spec_mem[] = { { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, { -1, 0, 0 } }; static struct resource_spec age_irq_spec_legacy[] = { { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, { -1, 0, 0 } }; static struct resource_spec age_irq_spec_msi[] = { { SYS_RES_IRQ, 1, RF_ACTIVE }, { -1, 0, 0 } }; static struct resource_spec age_irq_spec_msix[] = { { SYS_RES_IRQ, 1, RF_ACTIVE }, { -1, 0, 0 } }; /* * Read a PHY register on the MII of the L1. */ static int age_miibus_readreg(device_t dev, int phy, int reg) { struct age_softc *sc; uint32_t v; int i; sc = device_get_softc(dev); if (phy != sc->age_phyaddr) return (0); CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ | MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); for (i = AGE_PHY_TIMEOUT; i > 0; i--) { DELAY(1); v = CSR_READ_4(sc, AGE_MDIO); if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) break; } if (i == 0) { device_printf(sc->age_dev, "phy read timeout : %d\n", reg); return (0); } return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT); } /* * Write a PHY register on the MII of the L1. */ static int age_miibus_writereg(device_t dev, int phy, int reg, int val) { struct age_softc *sc; uint32_t v; int i; sc = device_get_softc(dev); if (phy != sc->age_phyaddr) return (0); CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE | (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT | MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); for (i = AGE_PHY_TIMEOUT; i > 0; i--) { DELAY(1); v = CSR_READ_4(sc, AGE_MDIO); if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) break; } if (i == 0) device_printf(sc->age_dev, "phy write timeout : %d\n", reg); return (0); } /* * Callback from MII layer when media changes. */ static void age_miibus_statchg(device_t dev) { struct age_softc *sc; sc = device_get_softc(dev); taskqueue_enqueue(taskqueue_swi, &sc->age_link_task); } /* * Get the current interface media status. */ static void age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) { struct age_softc *sc; struct mii_data *mii; sc = ifp->if_softc; AGE_LOCK(sc); mii = device_get_softc(sc->age_miibus); mii_pollstat(mii); AGE_UNLOCK(sc); ifmr->ifm_status = mii->mii_media_status; ifmr->ifm_active = mii->mii_media_active; } /* * Set hardware to newly-selected media. */ static int age_mediachange(struct ifnet *ifp) { struct age_softc *sc; struct mii_data *mii; struct mii_softc *miisc; int error; sc = ifp->if_softc; AGE_LOCK(sc); mii = device_get_softc(sc->age_miibus); if (mii->mii_instance != 0) { LIST_FOREACH(miisc, &mii->mii_phys, mii_list) mii_phy_reset(miisc); } error = mii_mediachg(mii); AGE_UNLOCK(sc); return (error); } static int age_read_vpd_word(struct age_softc *sc, uint32_t vpdc, uint32_t offset, uint32_t *word) { int i; pci_write_config(sc->age_dev, vpdc + PCIR_VPD_ADDR, offset, 2); for (i = AGE_TIMEOUT; i > 0; i--) { DELAY(10); if ((pci_read_config(sc->age_dev, vpdc + PCIR_VPD_ADDR, 2) & 0x8000) == 0x8000) break; } if (i == 0) { device_printf(sc->age_dev, "VPD read timeout!\n"); *word = 0; return (ETIMEDOUT); } *word = pci_read_config(sc->age_dev, vpdc + PCIR_VPD_DATA, 4); return (0); } static int age_probe(device_t dev) { struct age_dev *sp; int i; uint16_t vendor, devid; vendor = pci_get_vendor(dev); devid = pci_get_device(dev); sp = age_devs; for (i = 0; i < sizeof(age_devs) / sizeof(age_devs[0]); i++, sp++) { if (vendor == sp->age_vendorid && devid == sp->age_deviceid) { device_set_desc(dev, sp->age_name); return (BUS_PROBE_DEFAULT); } } return (ENXIO); } static void age_get_macaddr(struct age_softc *sc) { uint32_t ea[2], off, reg, word; int vpd_error, match, vpdc; reg = CSR_READ_4(sc, AGE_SPI_CTRL); if ((reg & SPI_VPD_ENB) != 0) { /* Get VPD stored in TWSI EEPROM. */ reg &= ~SPI_VPD_ENB; CSR_WRITE_4(sc, AGE_SPI_CTRL, reg); } vpd_error = 0; ea[0] = ea[1] = 0; if ((vpd_error = pci_find_extcap(sc->age_dev, PCIY_VPD, &vpdc)) == 0) { /* * PCI VPD capability exists, but it seems that it's * not in the standard form as stated in PCI VPD * specification such that driver could not use * pci_get_vpd_readonly(9) with keyword 'NA'. * Search VPD data starting at address 0x0100. The data * should be used as initializers to set AGE_PAR0, * AGE_PAR1 register including other PCI configuration * registers. */ word = 0; match = 0; reg = 0; for (off = AGE_VPD_REG_CONF_START; off < AGE_VPD_REG_CONF_END; off += sizeof(uint32_t)) { vpd_error = age_read_vpd_word(sc, vpdc, off, &word); if (vpd_error != 0) break; if (match != 0) { switch (reg) { case AGE_PAR0: ea[0] = word; break; case AGE_PAR1: ea[1] = word; break; default: break; } match = 0; } else if ((word & 0xFF) == AGE_VPD_REG_CONF_SIG) { match = 1; reg = word >> 16; } else break; } if (off >= AGE_VPD_REG_CONF_END) vpd_error = ENOENT; if (vpd_error == 0) { /* * Don't blindly trust ethernet address obtained * from VPD. Check whether ethernet address is * valid one. Otherwise fall-back to reading * PAR register. */ ea[1] &= 0xFFFF; if ((ea[0] == 0 && ea[1] == 0) || (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) { if (1 || bootverbose) device_printf(sc->age_dev, "invalid ethernet address " "returned from VPD.\n"); vpd_error = EINVAL; } } if (vpd_error != 0 && (1 || bootverbose)) device_printf(sc->age_dev, "VPD access failure!\n"); } else { if (1 || bootverbose) device_printf(sc->age_dev, "PCI VPD capability not found!\n"); } /* * It seems that L1 also provides a way to extract ethernet * address via SPI flash interface. Because SPI flash memory * device of different vendors vary in their instruction * codes for read ID instruction, it's very hard to get * instructions codes without detailed information for the * flash memory device used on ethernet controller. To simplify * code, just read AGE_PAR0/AGE_PAR1 register to get ethernet * address which is supposed to be set by hardware during * power on reset. */ if (vpd_error != 0) { /* * VPD is mapped to SPI flash memory or BIOS set it. */ ea[0] = CSR_READ_4(sc, AGE_PAR0); ea[1] = CSR_READ_4(sc, AGE_PAR1); } ea[1] &= 0xFFFF; if ((ea[0] == 0 && ea[1] == 0) || (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) { device_printf(sc->age_dev, "generating fake ethernet address.\n"); ea[0] = arc4random(); /* Set OUI to ASUSTek COMPUTER INC. */ sc->age_eaddr[0] = 0x00; sc->age_eaddr[1] = 0x1B; sc->age_eaddr[2] = 0xFC; sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF; sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF; sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF; } else { sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF; sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF; sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF; sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF; sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF; sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF; } } static void age_phy_reset(struct age_softc *sc) { /* Reset PHY. */ CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST); DELAY(1000); CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR); DELAY(1000); } static int age_attach(device_t dev) { struct age_softc *sc; struct ifnet *ifp; uint16_t burst; int error, i, msic, msixc, pmc; error = 0; sc = device_get_softc(dev); sc->age_dev = dev; mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0); TASK_INIT(&sc->age_int_task, 0, age_int_task, sc); TASK_INIT(&sc->age_link_task, 0, age_link_task, sc); /* Map the device. */ pci_enable_busmaster(dev); sc->age_res_spec = age_res_spec_mem; sc->age_irq_spec = age_irq_spec_legacy; error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res); if (error != 0) { device_printf(dev, "cannot allocate memory resources.\n"); goto fail; } /* Set PHY address. */ sc->age_phyaddr = AGE_PHY_ADDR; /* Reset PHY. */ age_phy_reset(sc); /* Reset the ethernet controller. */ age_reset(sc); /* Get PCI and chip id/revision. */ sc->age_rev = pci_get_revid(dev); sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >> MASTER_CHIP_REV_SHIFT; if (1 || bootverbose) { device_printf(dev, "PCI device revision : 0x%04x\n", sc->age_rev); device_printf(dev, "Chip id/revision : 0x%04x\n", sc->age_chip_rev); } /* * XXX * Unintialized hardware returns an invalid chip id/revision * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that * unplugged cable results in putting hardware into automatic * power down mode which in turn returns invalld chip revision. */ if (sc->age_chip_rev == 0xFFFF) { device_printf(dev,"invalid chip revision : 0x%04x -- " "not initialized?\n", sc->age_chip_rev); error = ENXIO; goto fail; } device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n", CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN), CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN)); /* Allocate IRQ resources. */ msixc = pci_msix_count(dev); msic = pci_msi_count(dev); if (1 || bootverbose) { device_printf(dev, "MSIX count : %d\n", msixc); device_printf(dev, "MSI count : %d\n", msic); } /* Prefer MSIX over MSI. */ if (msix_disable == 0 || msi_disable == 0) { if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES && pci_alloc_msix(dev, &msixc) == 0) { if (msic == AGE_MSIX_MESSAGES) { device_printf(dev, "Using %d MSIX messages.\n", msixc); sc->age_flags |= AGE_FLAG_MSIX; sc->age_irq_spec = age_irq_spec_msix; } else pci_release_msi(dev); } if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 && msic == AGE_MSI_MESSAGES && pci_alloc_msi(dev, &msic) == 0) { if (msic == AGE_MSI_MESSAGES) { device_printf(dev, "Using %d MSI messages.\n", msic); sc->age_flags |= AGE_FLAG_MSI; sc->age_irq_spec = age_irq_spec_msi; } else pci_release_msi(dev); } } error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq); if (error != 0) { device_printf(dev, "cannot allocate IRQ resources.\n"); goto fail; } /* Get DMA parameters from PCIe device control register. */ if (pci_find_extcap(dev, PCIY_EXPRESS, &i) == 0) { sc->age_flags |= AGE_FLAG_PCIE; burst = pci_read_config(dev, i + 0x08, 2); /* Max read request size. */ sc->age_dma_rd_burst = ((burst >> 12) & 0x07) << DMA_CFG_RD_BURST_SHIFT; /* Max payload size. */ sc->age_dma_wr_burst = ((burst >> 5) & 0x07) << DMA_CFG_WR_BURST_SHIFT; if (1 || bootverbose) { device_printf(dev, "Read request size : %d bytes.\n", 128 << ((burst >> 12) & 0x07)); device_printf(dev, "TLP payload size : %d bytes.\n", 128 << ((burst >> 5) & 0x07)); } } else { sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128; sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128; } /* Create device sysctl node. */ age_sysctl_node(sc); if ((error = age_dma_alloc(sc) != 0)) goto fail; /* Load station address. */ age_get_macaddr(sc); ifp = sc->age_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "cannot allocate ifnet structure.\n"); error = ENXIO; goto fail; } ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = age_ioctl; ifp->if_start = age_start; ifp->if_init = age_init; ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1; IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); IFQ_SET_READY(&ifp->if_snd); ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4; ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO; if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) { sc->age_flags |= AGE_FLAG_PMCAP; ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST; } ifp->if_capenable = ifp->if_capabilities; /* Set up MII bus. */ if ((error = mii_phy_probe(dev, &sc->age_miibus, age_mediachange, age_mediastatus)) != 0) { device_printf(dev, "no PHY found!\n"); goto fail; } ether_ifattach(ifp, sc->age_eaddr); /* VLAN capability setup. */ ifp->if_capabilities |= IFCAP_VLAN_MTU; ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM; ifp->if_capenable = ifp->if_capabilities; /* Tell the upper layer(s) we support long frames. */ ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); /* Create local taskq. */ TASK_INIT(&sc->age_tx_task, 1, age_tx_task, ifp); sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK, taskqueue_thread_enqueue, &sc->age_tq); if (sc->age_tq == NULL) { device_printf(dev, "could not create taskqueue.\n"); ether_ifdetach(ifp); error = ENXIO; goto fail; } taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq", device_get_nameunit(sc->age_dev)); if ((sc->age_flags & AGE_FLAG_MSIX) != 0) msic = AGE_MSIX_MESSAGES; else if ((sc->age_flags & AGE_FLAG_MSI) != 0) msic = AGE_MSI_MESSAGES; else msic = 1; for (i = 0; i < msic; i++) { error = bus_setup_intr(dev, sc->age_irq[i], INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc, &sc->age_intrhand[i]); if (error != 0) break; } if (error != 0) { device_printf(dev, "could not set up interrupt handler.\n"); taskqueue_free(sc->age_tq); sc->age_tq = NULL; ether_ifdetach(ifp); goto fail; } fail: if (error != 0) age_detach(dev); return (error); } static int age_detach(device_t dev) { struct age_softc *sc; struct ifnet *ifp; int i, msic; sc = device_get_softc(dev); ifp = sc->age_ifp; if (device_is_attached(dev)) { AGE_LOCK(sc); sc->age_flags |= AGE_FLAG_DETACH; age_stop(sc); AGE_UNLOCK(sc); callout_drain(&sc->age_tick_ch); taskqueue_drain(sc->age_tq, &sc->age_int_task); taskqueue_drain(sc->age_tq, &sc->age_tx_task); taskqueue_drain(taskqueue_swi, &sc->age_link_task); ether_ifdetach(ifp); } if (sc->age_tq != NULL) { taskqueue_drain(sc->age_tq, &sc->age_int_task); taskqueue_free(sc->age_tq); sc->age_tq = NULL; } if (sc->age_miibus != NULL) { device_delete_child(dev, sc->age_miibus); sc->age_miibus = NULL; } bus_generic_detach(dev); age_dma_free(sc); if (ifp != NULL) { if_free(ifp); sc->age_ifp = NULL; } if ((sc->age_flags & AGE_FLAG_MSIX) != 0) msic = AGE_MSIX_MESSAGES; else if ((sc->age_flags & AGE_FLAG_MSI) != 0) msic = AGE_MSI_MESSAGES; else msic = 1; for (i = 0; i < msic; i++) { if (sc->age_intrhand[i] != NULL) { bus_teardown_intr(dev, sc->age_irq[i], sc->age_intrhand[i]); sc->age_intrhand[i] = NULL; } } bus_release_resources(dev, sc->age_irq_spec, sc->age_irq); if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0) pci_release_msi(dev); bus_release_resources(dev, sc->age_res_spec, sc->age_res); mtx_destroy(&sc->age_mtx); return (0); } static void age_sysctl_node(struct age_softc *sc) { int error; SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev), SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO, "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats, "I", "Statistics"); SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev), SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO, "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0, sysctl_hw_age_int_mod, "I", "age interrupt moderation"); /* Pull in device tunables. */ sc->age_int_mod = AGE_IM_TIMER_DEFAULT; error = resource_int_value(device_get_name(sc->age_dev), device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod); if (error == 0) { if (sc->age_int_mod < AGE_IM_TIMER_MIN || sc->age_int_mod > AGE_IM_TIMER_MAX) { device_printf(sc->age_dev, "int_mod value out of range; using default: %d\n", AGE_IM_TIMER_DEFAULT); sc->age_int_mod = AGE_IM_TIMER_DEFAULT; } } SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev), SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit, 0, sysctl_hw_age_proc_limit, "I", "max number of Rx events to process"); /* Pull in device tunables. */ sc->age_process_limit = AGE_PROC_DEFAULT; error = resource_int_value(device_get_name(sc->age_dev), device_get_unit(sc->age_dev), "process_limit", &sc->age_process_limit); if (error == 0) { if (sc->age_process_limit < AGE_PROC_MIN || sc->age_process_limit > AGE_PROC_MAX) { device_printf(sc->age_dev, "process_limit value out of range; " "using default: %d\n", AGE_PROC_DEFAULT); sc->age_process_limit = AGE_PROC_DEFAULT; } } } struct age_dmamap_arg { bus_addr_t age_busaddr; }; static void age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { struct age_dmamap_arg *ctx; if (error != 0) return; KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); ctx = (struct age_dmamap_arg *)arg; ctx->age_busaddr = segs[0].ds_addr; } /* * Attansic L1 controller have single register to specify high * address part of DMA blocks. So all descriptor structures and * DMA memory blocks should have the same high address of given * 4GB address space(i.e. crossing 4GB boundary is not allowed). */ static int age_check_boundary(struct age_softc *sc) { bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end; bus_addr_t cmb_block_end, smb_block_end; /* Tx/Rx descriptor queue should reside within 4GB boundary. */ tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ; rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ; rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ; cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ; smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ; if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) || (AGE_ADDR_HI(rx_ring_end) != AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) || (AGE_ADDR_HI(rr_ring_end) != AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) || (AGE_ADDR_HI(cmb_block_end) != AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) || (AGE_ADDR_HI(smb_block_end) != AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr))) return (EFBIG); if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) || (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) || (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) || (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end))) return (EFBIG); return (0); } static int age_dma_alloc(struct age_softc *sc) { struct age_txdesc *txd; struct age_rxdesc *rxd; bus_addr_t lowaddr; struct age_dmamap_arg ctx; int error, i; lowaddr = BUS_SPACE_MAXADDR; again: /* Create parent ring/DMA block tag. */ error = bus_dma_tag_create( bus_get_dma_tag(sc->age_dev), /* parent */ 1, 0, /* alignment, boundary */ lowaddr, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 0, /* nsegments */ BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->age_cdata.age_parent_tag); if (error != 0) { device_printf(sc->age_dev, "could not create parent DMA tag.\n"); goto fail; } /* Create tag for Tx ring. */ error = bus_dma_tag_create( sc->age_cdata.age_parent_tag, /* parent */ AGE_TX_RING_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ AGE_TX_RING_SZ, /* maxsize */ 1, /* nsegments */ AGE_TX_RING_SZ, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->age_cdata.age_tx_ring_tag); if (error != 0) { device_printf(sc->age_dev, "could not create Tx ring DMA tag.\n"); goto fail; } /* Create tag for Rx ring. */ error = bus_dma_tag_create( sc->age_cdata.age_parent_tag, /* parent */ AGE_RX_RING_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ AGE_RX_RING_SZ, /* maxsize */ 1, /* nsegments */ AGE_RX_RING_SZ, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->age_cdata.age_rx_ring_tag); if (error != 0) { device_printf(sc->age_dev, "could not create Rx ring DMA tag.\n"); goto fail; } /* Create tag for Rx return ring. */ error = bus_dma_tag_create( sc->age_cdata.age_parent_tag, /* parent */ AGE_RR_RING_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ AGE_RR_RING_SZ, /* maxsize */ 1, /* nsegments */ AGE_RR_RING_SZ, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->age_cdata.age_rr_ring_tag); if (error != 0) { device_printf(sc->age_dev, "could not create Rx return ring DMA tag.\n"); goto fail; } /* Create tag for coalesing message block. */ error = bus_dma_tag_create( sc->age_cdata.age_parent_tag, /* parent */ AGE_CMB_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ AGE_CMB_BLOCK_SZ, /* maxsize */ 1, /* nsegments */ AGE_CMB_BLOCK_SZ, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->age_cdata.age_cmb_block_tag); if (error != 0) { device_printf(sc->age_dev, "could not create CMB DMA tag.\n"); goto fail; } /* Create tag for statistics message block. */ error = bus_dma_tag_create( sc->age_cdata.age_parent_tag, /* parent */ AGE_SMB_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ AGE_SMB_BLOCK_SZ, /* maxsize */ 1, /* nsegments */ AGE_SMB_BLOCK_SZ, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->age_cdata.age_smb_block_tag); if (error != 0) { device_printf(sc->age_dev, "could not create SMB DMA tag.\n"); goto fail; } /* Allocate DMA'able memory and load the DMA map. */ error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag, (void **)&sc->age_rdata.age_tx_ring, BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->age_cdata.age_tx_ring_map); if (error != 0) { device_printf(sc->age_dev, "could not allocate DMA'able memory for Tx ring.\n"); goto fail; } ctx.age_busaddr = 0; error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag, sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0); if (error != 0 || ctx.age_busaddr == 0) { device_printf(sc->age_dev, "could not load DMA'able memory for Tx ring.\n"); goto fail; } sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr; /* Rx ring */ error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag, (void **)&sc->age_rdata.age_rx_ring, BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->age_cdata.age_rx_ring_map); if (error != 0) { device_printf(sc->age_dev, "could not allocate DMA'able memory for Rx ring.\n"); goto fail; } ctx.age_busaddr = 0; error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag, sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0); if (error != 0 || ctx.age_busaddr == 0) { device_printf(sc->age_dev, "could not load DMA'able memory for Rx ring.\n"); goto fail; } sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr; /* Rx return ring */ error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag, (void **)&sc->age_rdata.age_rr_ring, BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->age_cdata.age_rr_ring_map); if (error != 0) { device_printf(sc->age_dev, "could not allocate DMA'able memory for Rx return ring.\n"); goto fail; } ctx.age_busaddr = 0; error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag, sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, age_dmamap_cb, &ctx, 0); if (error != 0 || ctx.age_busaddr == 0) { device_printf(sc->age_dev, "could not load DMA'able memory for Rx return ring.\n"); goto fail; } sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr; /* CMB block */ error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag, (void **)&sc->age_rdata.age_cmb_block, BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->age_cdata.age_cmb_block_map); if (error != 0) { device_printf(sc->age_dev, "could not allocate DMA'able memory for CMB block.\n"); goto fail; } ctx.age_busaddr = 0; error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag, sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0); if (error != 0 || ctx.age_busaddr == 0) { device_printf(sc->age_dev, "could not load DMA'able memory for CMB block.\n"); goto fail; } sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr; /* SMB block */ error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag, (void **)&sc->age_rdata.age_smb_block, BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->age_cdata.age_smb_block_map); if (error != 0) { device_printf(sc->age_dev, "could not allocate DMA'able memory for SMB block.\n"); goto fail; } ctx.age_busaddr = 0; error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag, sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0); if (error != 0 || ctx.age_busaddr == 0) { device_printf(sc->age_dev, "could not load DMA'able memory for SMB block.\n"); goto fail; } sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr; /* * All ring buffer and DMA blocks should have the same * high address part of 64bit DMA address space. */ if (lowaddr != BUS_SPACE_MAXADDR_32BIT && (error = age_check_boundary(sc)) != 0) { device_printf(sc->age_dev, "4GB boundary crossed, " "switching to 32bit DMA addressing mode.\n"); age_dma_free(sc); /* Limit DMA address space to 32bit and try again. */ lowaddr = BUS_SPACE_MAXADDR_32BIT; goto again; } /* * Create Tx/Rx buffer parent tag. * L1 supports full 64bit DMA addressing in Tx/Rx buffers * so it needs separate parent DMA tag. */ error = bus_dma_tag_create( bus_get_dma_tag(sc->age_dev), /* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 0, /* nsegments */ BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->age_cdata.age_buffer_tag); if (error != 0) { device_printf(sc->age_dev, "could not create parent buffer DMA tag.\n"); goto fail; } /* Create tag for Tx buffers. */ error = bus_dma_tag_create( sc->age_cdata.age_buffer_tag, /* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ AGE_TSO_MAXSIZE, /* maxsize */ AGE_MAXTXSEGS, /* nsegments */ AGE_TSO_MAXSEGSIZE, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->age_cdata.age_tx_tag); if (error != 0) { device_printf(sc->age_dev, "could not create Tx DMA tag.\n"); goto fail; } /* Create tag for Rx buffers. */ error = bus_dma_tag_create( sc->age_cdata.age_buffer_tag, /* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MCLBYTES, /* maxsize */ 1, /* nsegments */ MCLBYTES, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->age_cdata.age_rx_tag); if (error != 0) { device_printf(sc->age_dev, "could not create Rx DMA tag.\n"); goto fail; } /* Create DMA maps for Tx buffers. */ for (i = 0; i < AGE_TX_RING_CNT; i++) { txd = &sc->age_cdata.age_txdesc[i]; txd->tx_m = NULL; txd->tx_dmamap = NULL; error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0, &txd->tx_dmamap); if (error != 0) { device_printf(sc->age_dev, "could not create Tx dmamap.\n"); goto fail; } } /* Create DMA maps for Rx buffers. */ if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0, &sc->age_cdata.age_rx_sparemap)) != 0) { device_printf(sc->age_dev, "could not create spare Rx dmamap.\n"); goto fail; } for (i = 0; i < AGE_RX_RING_CNT; i++) { rxd = &sc->age_cdata.age_rxdesc[i]; rxd->rx_m = NULL; rxd->rx_dmamap = NULL; error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0, &rxd->rx_dmamap); if (error != 0) { device_printf(sc->age_dev, "could not create Rx dmamap.\n"); goto fail; } } fail: return (error); } static void age_dma_free(struct age_softc *sc) { struct age_txdesc *txd; struct age_rxdesc *rxd; int i; /* Tx buffers */ if (sc->age_cdata.age_tx_tag != NULL) { for (i = 0; i < AGE_TX_RING_CNT; i++) { txd = &sc->age_cdata.age_txdesc[i]; if (txd->tx_dmamap != NULL) { bus_dmamap_destroy(sc->age_cdata.age_tx_tag, txd->tx_dmamap); txd->tx_dmamap = NULL; } } bus_dma_tag_destroy(sc->age_cdata.age_tx_tag); sc->age_cdata.age_tx_tag = NULL; } /* Rx buffers */ if (sc->age_cdata.age_rx_tag != NULL) { for (i = 0; i < AGE_RX_RING_CNT; i++) { rxd = &sc->age_cdata.age_rxdesc[i]; if (rxd->rx_dmamap != NULL) { bus_dmamap_destroy(sc->age_cdata.age_rx_tag, rxd->rx_dmamap); rxd->rx_dmamap = NULL; } } if (sc->age_cdata.age_rx_sparemap != NULL) { bus_dmamap_destroy(sc->age_cdata.age_rx_tag, sc->age_cdata.age_rx_sparemap); sc->age_cdata.age_rx_sparemap = NULL; } bus_dma_tag_destroy(sc->age_cdata.age_rx_tag); sc->age_cdata.age_rx_tag = NULL; } /* Tx ring. */ if (sc->age_cdata.age_tx_ring_tag != NULL) { if (sc->age_cdata.age_tx_ring_map != NULL) bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag, sc->age_cdata.age_tx_ring_map); if (sc->age_cdata.age_tx_ring_map != NULL && sc->age_rdata.age_tx_ring != NULL) bus_dmamem_free(sc->age_cdata.age_tx_ring_tag, sc->age_rdata.age_tx_ring, sc->age_cdata.age_tx_ring_map); sc->age_rdata.age_tx_ring = NULL; sc->age_cdata.age_tx_ring_map = NULL; bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag); sc->age_cdata.age_tx_ring_tag = NULL; } /* Rx ring. */ if (sc->age_cdata.age_rx_ring_tag != NULL) { if (sc->age_cdata.age_rx_ring_map != NULL) bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag, sc->age_cdata.age_rx_ring_map); if (sc->age_cdata.age_rx_ring_map != NULL && sc->age_rdata.age_rx_ring != NULL) bus_dmamem_free(sc->age_cdata.age_rx_ring_tag, sc->age_rdata.age_rx_ring, sc->age_cdata.age_rx_ring_map); sc->age_rdata.age_rx_ring = NULL; sc->age_cdata.age_rx_ring_map = NULL; bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag); sc->age_cdata.age_rx_ring_tag = NULL; } /* Rx return ring. */ if (sc->age_cdata.age_rr_ring_tag != NULL) { if (sc->age_cdata.age_rr_ring_map != NULL) bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag, sc->age_cdata.age_rr_ring_map); if (sc->age_cdata.age_rr_ring_map != NULL && sc->age_rdata.age_rr_ring != NULL) bus_dmamem_free(sc->age_cdata.age_rr_ring_tag, sc->age_rdata.age_rr_ring, sc->age_cdata.age_rr_ring_map); sc->age_rdata.age_rr_ring = NULL; sc->age_cdata.age_rr_ring_map = NULL; bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag); sc->age_cdata.age_rr_ring_tag = NULL; } /* CMB block */ if (sc->age_cdata.age_cmb_block_tag != NULL) { if (sc->age_cdata.age_cmb_block_map != NULL) bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag, sc->age_cdata.age_cmb_block_map); if (sc->age_cdata.age_cmb_block_map != NULL && sc->age_rdata.age_cmb_block != NULL) bus_dmamem_free(sc->age_cdata.age_cmb_block_tag, sc->age_rdata.age_cmb_block, sc->age_cdata.age_cmb_block_map); sc->age_rdata.age_cmb_block = NULL; sc->age_cdata.age_cmb_block_map = NULL; bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag); sc->age_cdata.age_cmb_block_tag = NULL; } /* SMB block */ if (sc->age_cdata.age_smb_block_tag != NULL) { if (sc->age_cdata.age_smb_block_map != NULL) bus_dmamap_unload(sc->age_cdata.age_smb_block_tag, sc->age_cdata.age_smb_block_map); if (sc->age_cdata.age_smb_block_map != NULL && sc->age_rdata.age_smb_block != NULL) bus_dmamem_free(sc->age_cdata.age_smb_block_tag, sc->age_rdata.age_smb_block, sc->age_cdata.age_smb_block_map); sc->age_rdata.age_smb_block = NULL; sc->age_cdata.age_smb_block_map = NULL; bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag); sc->age_cdata.age_smb_block_tag = NULL; } if (sc->age_cdata.age_buffer_tag != NULL) { bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag); sc->age_cdata.age_buffer_tag = NULL; } if (sc->age_cdata.age_parent_tag != NULL) { bus_dma_tag_destroy(sc->age_cdata.age_parent_tag); sc->age_cdata.age_parent_tag = NULL; } } /* * Make sure the interface is stopped at reboot time. */ static int age_shutdown(device_t dev) { return (age_suspend(dev)); } static void age_setwol(struct age_softc *sc) { struct ifnet *ifp; struct mii_data *mii; uint32_t reg, pmcs; uint16_t pmstat; int aneg, i, pmc; AGE_LOCK_ASSERT(sc); if (pci_find_extcap(sc->age_dev, PCIY_PMG, &pmc) == 0) { CSR_WRITE_4(sc, AGE_WOL_CFG, 0); /* * No PME capability, PHY power down. * XXX * Due to an unknown reason powering down PHY resulted * in unexpected results such as inaccessbility of * hardware of freshly rebooted system. Disable * powering down PHY until I got more information for * Attansic/Atheros PHY hardwares. */ #ifdef notyet age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_PDOWN); #endif return; } ifp = sc->age_ifp; if ((ifp->if_capenable & IFCAP_WOL) != 0) { /* * Note, this driver resets the link speed to 10/100Mbps with * auto-negotiation but we don't know whether that operation * would succeed or not as it have no control after powering * off. If the renegotiation fail WOL may not work. Running * at 1Gbps will draw more power than 375mA at 3.3V which is * specified in PCI specification and that would result in * complete shutdowning power to ethernet controller. * * TODO * Save current negotiated media speed/duplex/flow-control * to softc and restore the same link again after resuming. * PHY handling such as power down/resetting to 100Mbps * may be better handled in suspend method in phy driver. */ mii = device_get_softc(sc->age_miibus); mii_pollstat(mii); aneg = 0; if ((mii->mii_media_status & IFM_AVALID) != 0) { switch IFM_SUBTYPE(mii->mii_media_active) { case IFM_10_T: case IFM_100_TX: goto got_link; case IFM_1000_T: aneg++; default: break; } } age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_100T2CR, 0); age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA); age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG); DELAY(1000); if (aneg != 0) { /* Poll link state until age(4) get a 10/100 link. */ for (i = 0; i < MII_ANEGTICKS_GIGE; i++) { mii_pollstat(mii); if ((mii->mii_media_status & IFM_AVALID) != 0) { switch (IFM_SUBTYPE( mii->mii_media_active)) { case IFM_10_T: case IFM_100_TX: age_mac_config(sc); goto got_link; default: break; } } AGE_UNLOCK(sc); pause("agelnk", hz); AGE_LOCK(sc); } if (i == MII_ANEGTICKS_GIGE) device_printf(sc->age_dev, "establishing link failed, " "WOL may not work!"); } /* * No link, force MAC to have 100Mbps, full-duplex link. * This is the last resort and may/may not work. */ mii->mii_media_status = IFM_AVALID | IFM_ACTIVE; mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX; age_mac_config(sc); } got_link: pmcs = 0; if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB; CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs); reg = CSR_READ_4(sc, AGE_MAC_CFG); reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC); reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST); if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0) reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST; if ((ifp->if_capenable & IFCAP_WOL) != 0) { reg |= MAC_CFG_RX_ENB; CSR_WRITE_4(sc, AGE_MAC_CFG, reg); } /* Request PME. */ pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2); pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); if ((ifp->if_capenable & IFCAP_WOL) != 0) pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2); #ifdef notyet /* See above for powering down PHY issues. */ if ((ifp->if_capenable & IFCAP_WOL) == 0) { /* No WOL, PHY power down. */ age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_PDOWN); } #endif } static int age_suspend(device_t dev) { struct age_softc *sc; sc = device_get_softc(dev); AGE_LOCK(sc); age_stop(sc); age_setwol(sc); AGE_UNLOCK(sc); return (0); } static int age_resume(device_t dev) { struct age_softc *sc; struct ifnet *ifp; uint16_t cmd; sc = device_get_softc(dev); AGE_LOCK(sc); /* * Clear INTx emulation disable for hardwares that * is set in resume event. From Linux. */ cmd = pci_read_config(sc->age_dev, PCIR_COMMAND, 2); if ((cmd & 0x0400) != 0) { cmd &= ~0x0400; pci_write_config(sc->age_dev, PCIR_COMMAND, cmd, 2); } ifp = sc->age_ifp; if ((ifp->if_flags & IFF_UP) != 0) age_init_locked(sc); AGE_UNLOCK(sc); return (0); } static int age_encap(struct age_softc *sc, struct mbuf **m_head) { struct age_txdesc *txd, *txd_last; struct tx_desc *desc; struct mbuf *m; struct ip *ip; struct tcphdr *tcp; bus_dma_segment_t txsegs[AGE_MAXTXSEGS]; bus_dmamap_t map; uint32_t cflags, ip_off, poff, vtag; int error, i, nsegs, prod, si; AGE_LOCK_ASSERT(sc); M_ASSERTPKTHDR((*m_head)); m = *m_head; ip = NULL; tcp = NULL; cflags = vtag = 0; ip_off = poff = 0; if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) { /* * L1 requires offset of TCP/UDP payload in its Tx * descriptor to perform hardware Tx checksum offload. * Additionally, TSO requires IP/TCP header size and * modification of IP/TCP header in order to make TSO * engine work. This kind of operation takes many CPU * cycles on FreeBSD so fast host CPU is needed to get * smooth TSO performance. */ struct ether_header *eh; if (M_WRITABLE(m) == 0) { /* Get a writable copy. */ m = m_dup(*m_head, M_DONTWAIT); /* Release original mbufs. */ m_freem(*m_head); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } *m_head = m; } ip_off = sizeof(struct ether_header); m = m_pullup(m, ip_off); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } eh = mtod(m, struct ether_header *); /* * Check if hardware VLAN insertion is off. * Additional check for LLC/SNAP frame? */ if (eh->ether_type == htons(ETHERTYPE_VLAN)) { ip_off = sizeof(struct ether_vlan_header); m = m_pullup(m, ip_off); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } } m = m_pullup(m, ip_off + sizeof(struct ip)); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } ip = (struct ip *)(mtod(m, char *) + ip_off); poff = ip_off + (ip->ip_hl << 2); if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { m = m_pullup(m, poff + sizeof(struct tcphdr)); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } tcp = (struct tcphdr *)(mtod(m, char *) + poff); /* * L1 requires IP/TCP header size and offset as * well as TCP pseudo checksum which complicates * TSO configuration. I guess this comes from the * adherence to Microsoft NDIS Large Send * specification which requires insertion of * pseudo checksum by upper stack. The pseudo * checksum that NDIS refers to doesn't include * TCP payload length so age(4) should recompute * the pseudo checksum here. Hopefully this wouldn't * be much burden on modern CPUs. * Reset IP checksum and recompute TCP pseudo * checksum as NDIS specification said. */ ip->ip_sum = 0; if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htons((tcp->th_off << 2) + IPPROTO_TCP)); else tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htons(IPPROTO_TCP)); } *m_head = m; } si = prod = sc->age_cdata.age_tx_prod; txd = &sc->age_cdata.age_txdesc[prod]; txd_last = txd; map = txd->tx_dmamap; error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map, *m_head, txsegs, &nsegs, 0); if (error == EFBIG) { m = m_collapse(*m_head, M_DONTWAIT, AGE_MAXTXSEGS); if (m == NULL) { m_freem(*m_head); *m_head = NULL; return (ENOMEM); } *m_head = m; error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map, *m_head, txsegs, &nsegs, 0); if (error != 0) { m_freem(*m_head); *m_head = NULL; return (error); } } else if (error != 0) return (error); if (nsegs == 0) { m_freem(*m_head); *m_head = NULL; return (EIO); } /* Check descriptor overrun. */ if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) { bus_dmamap_unload(sc->age_cdata.age_tx_tag, map); return (ENOBUFS); } m = *m_head; /* Configure Tx IP/TCP/UDP checksum offload. */ if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) { cflags |= AGE_TD_CSUM; if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0) cflags |= AGE_TD_TCPCSUM; if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0) cflags |= AGE_TD_UDPCSUM; /* Set checksum start offset. */ cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT); /* Set checksum insertion position of TCP/UDP. */ cflags |= ((poff + m->m_pkthdr.csum_data) << AGE_TD_CSUM_XSUMOFFSET_SHIFT); } /* Configure TSO. */ if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) { /* Not TSO but IP/TCP checksum offload. */ cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM; /* Clear TSO in order not to set AGE_TD_TSO_HDR. */ m->m_pkthdr.csum_flags &= ~CSUM_TSO; } else { /* Request TSO and set MSS. */ cflags |= AGE_TD_TSO_IPV4; cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM; cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << AGE_TD_TSO_MSS_SHIFT); } /* Set IP/TCP header size. */ cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT; cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT; } /* Configure VLAN hardware tag insertion. */ if ((m->m_flags & M_VLANTAG) != 0) { vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag); vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK); cflags |= AGE_TD_INSERT_VLAN_TAG; } desc = NULL; for (i = 0; i < nsegs; i++) { desc = &sc->age_rdata.age_tx_ring[prod]; desc->addr = htole64(txsegs[i].ds_addr); desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag); desc->flags = htole32(cflags); sc->age_cdata.age_tx_cnt++; AGE_DESC_INC(prod, AGE_TX_RING_CNT); } /* Update producer index. */ sc->age_cdata.age_tx_prod = prod; /* Set EOP on the last descriptor. */ prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT; desc = &sc->age_rdata.age_tx_ring[prod]; desc->flags |= htole32(AGE_TD_EOP); /* Lastly set TSO header and modify IP/TCP header for TSO operation. */ if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { desc = &sc->age_rdata.age_tx_ring[si]; desc->flags |= htole32(AGE_TD_TSO_HDR); } /* Swap dmamap of the first and the last. */ txd = &sc->age_cdata.age_txdesc[prod]; map = txd_last->tx_dmamap; txd_last->tx_dmamap = txd->tx_dmamap; txd->tx_dmamap = map; txd->tx_m = m; /* Sync descriptors. */ bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag, sc->age_cdata.age_tx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return (0); } static void age_tx_task(void *arg, int pending) { struct ifnet *ifp; ifp = (struct ifnet *)arg; age_start(ifp); } static void age_start(struct ifnet *ifp) { struct age_softc *sc; struct mbuf *m_head; int enq; sc = ifp->if_softc; AGE_LOCK(sc); if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0) { AGE_UNLOCK(sc); return; } for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; /* * Pack the data into the transmit ring. If we * don't have room, set the OACTIVE flag and wait * for the NIC to drain the ring. */ if (age_encap(sc, &m_head)) { if (m_head == NULL) break; IFQ_DRV_PREPEND(&ifp->if_snd, m_head); ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } enq++; /* * If there's a BPF listener, bounce a copy of this frame * to him. */ ETHER_BPF_MTAP(ifp, m_head); } if (enq > 0) { /* Update mbox. */ AGE_COMMIT_MBOX(sc); /* Set a timeout in case the chip goes out to lunch. */ sc->age_watchdog_timer = AGE_TX_TIMEOUT; } AGE_UNLOCK(sc); } static void age_watchdog(struct age_softc *sc) { struct ifnet *ifp; AGE_LOCK_ASSERT(sc); if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer) return; ifp = sc->age_ifp; if ((sc->age_flags & AGE_FLAG_LINK) == 0) { if_printf(sc->age_ifp, "watchdog timeout (missed link)\n"); ifp->if_oerrors++; age_init_locked(sc); return; } if (sc->age_cdata.age_tx_cnt == 0) { if_printf(sc->age_ifp, "watchdog timeout (missed Tx interrupts) -- recovering\n"); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) taskqueue_enqueue(sc->age_tq, &sc->age_tx_task); return; } if_printf(sc->age_ifp, "watchdog timeout\n"); ifp->if_oerrors++; age_init_locked(sc); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) taskqueue_enqueue(sc->age_tq, &sc->age_tx_task); } static int age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct age_softc *sc; struct ifreq *ifr; struct mii_data *mii; uint32_t reg; int error, mask; sc = ifp->if_softc; ifr = (struct ifreq *)data; error = 0; switch (cmd) { case SIOCSIFMTU: if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU) error = EINVAL; else if (ifp->if_mtu != ifr->ifr_mtu) { AGE_LOCK(sc); ifp->if_mtu = ifr->ifr_mtu; if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) age_init_locked(sc); AGE_UNLOCK(sc); } break; case SIOCSIFFLAGS: AGE_LOCK(sc); if ((ifp->if_flags & IFF_UP) != 0) { if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { if (((ifp->if_flags ^ sc->age_if_flags) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) age_rxfilter(sc); } else { if ((sc->age_flags & AGE_FLAG_DETACH) == 0) age_init_locked(sc); } } else { if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) age_stop(sc); } sc->age_if_flags = ifp->if_flags; AGE_UNLOCK(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: AGE_LOCK(sc); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) age_rxfilter(sc); AGE_UNLOCK(sc); break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: mii = device_get_softc(sc->age_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); break; case SIOCSIFCAP: AGE_LOCK(sc); mask = ifr->ifr_reqcap ^ ifp->if_capenable; if ((mask & IFCAP_TXCSUM) != 0 && (ifp->if_capabilities & IFCAP_TXCSUM) != 0) { ifp->if_capenable ^= IFCAP_TXCSUM; if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) ifp->if_hwassist |= AGE_CSUM_FEATURES; else ifp->if_hwassist &= ~AGE_CSUM_FEATURES; } if ((mask & IFCAP_RXCSUM) != 0 && (ifp->if_capabilities & IFCAP_RXCSUM) != 0) { ifp->if_capenable ^= IFCAP_RXCSUM; reg = CSR_READ_4(sc, AGE_MAC_CFG); reg &= ~MAC_CFG_RXCSUM_ENB; if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) reg |= MAC_CFG_RXCSUM_ENB; CSR_WRITE_4(sc, AGE_MAC_CFG, reg); } if ((mask & IFCAP_TSO4) != 0 && (ifp->if_capabilities & IFCAP_TSO4) != 0) { ifp->if_capenable ^= IFCAP_TSO4; if ((ifp->if_capenable & IFCAP_TSO4) != 0) ifp->if_hwassist |= CSUM_TSO; else ifp->if_hwassist &= ~CSUM_TSO; } if ((mask & IFCAP_WOL_MCAST) != 0 && (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0) ifp->if_capenable ^= IFCAP_WOL_MCAST; if ((mask & IFCAP_WOL_MAGIC) != 0 && (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0) ifp->if_capenable ^= IFCAP_WOL_MAGIC; if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) { ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; age_rxvlan(sc); } if ((mask & IFCAP_VLAN_HWCSUM) != 0 && (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0) ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; if ((mask & IFCAP_VLAN_HWTSO) != 0 && (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0) ifp->if_capenable ^= IFCAP_VLAN_HWTSO; /* * VLAN hardware tagging is required to do checksum * offload or TSO on VLAN interface. Checksum offload * on VLAN interface also requires hardware assistance * of parent interface. */ if ((ifp->if_capenable & IFCAP_TXCSUM) == 0) ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM; if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) ifp->if_capenable &= ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM); AGE_UNLOCK(sc); VLAN_CAPABILITIES(ifp); break; default: error = ether_ioctl(ifp, cmd, data); break; } return (error); } static void age_mac_config(struct age_softc *sc) { struct mii_data *mii; uint32_t reg; AGE_LOCK_ASSERT(sc); mii = device_get_softc(sc->age_miibus); reg = CSR_READ_4(sc, AGE_MAC_CFG); reg &= ~MAC_CFG_FULL_DUPLEX; reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC); reg &= ~MAC_CFG_SPEED_MASK; /* Reprogram MAC with resolved speed/duplex. */ switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_10_T: case IFM_100_TX: reg |= MAC_CFG_SPEED_10_100; break; case IFM_1000_T: reg |= MAC_CFG_SPEED_1000; break; } if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { reg |= MAC_CFG_FULL_DUPLEX; #ifdef notyet if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) reg |= MAC_CFG_TX_FC; if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) reg |= MAC_CFG_RX_FC; #endif } CSR_WRITE_4(sc, AGE_MAC_CFG, reg); } static void age_link_task(void *arg, int pending) { struct age_softc *sc; struct mii_data *mii; struct ifnet *ifp; uint32_t reg; sc = (struct age_softc *)arg; AGE_LOCK(sc); mii = device_get_softc(sc->age_miibus); ifp = sc->age_ifp; if (mii == NULL || ifp == NULL || (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { AGE_UNLOCK(sc); return; } sc->age_flags &= ~AGE_FLAG_LINK; if ((mii->mii_media_status & IFM_AVALID) != 0) { switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_10_T: case IFM_100_TX: case IFM_1000_T: sc->age_flags |= AGE_FLAG_LINK; break; default: break; } } /* Stop Rx/Tx MACs. */ age_stop_rxmac(sc); age_stop_txmac(sc); /* Program MACs with resolved speed/duplex/flow-control. */ if ((sc->age_flags & AGE_FLAG_LINK) != 0) { age_mac_config(sc); reg = CSR_READ_4(sc, AGE_MAC_CFG); /* Restart DMA engine and Tx/Rx MAC. */ CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) | DMA_CFG_RD_ENB | DMA_CFG_WR_ENB); reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB; CSR_WRITE_4(sc, AGE_MAC_CFG, reg); } AGE_UNLOCK(sc); } static void age_stats_update(struct age_softc *sc) { struct age_stats *stat; struct smb *smb; struct ifnet *ifp; AGE_LOCK_ASSERT(sc); stat = &sc->age_stat; bus_dmamap_sync(sc->age_cdata.age_smb_block_tag, sc->age_cdata.age_smb_block_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); smb = sc->age_rdata.age_smb_block; if (smb->updated == 0) return; ifp = sc->age_ifp; /* Rx stats. */ stat->rx_frames += smb->rx_frames; stat->rx_bcast_frames += smb->rx_bcast_frames; stat->rx_mcast_frames += smb->rx_mcast_frames; stat->rx_pause_frames += smb->rx_pause_frames; stat->rx_control_frames += smb->rx_control_frames; stat->rx_crcerrs += smb->rx_crcerrs; stat->rx_lenerrs += smb->rx_lenerrs; stat->rx_bytes += smb->rx_bytes; stat->rx_runts += smb->rx_runts; stat->rx_fragments += smb->rx_fragments; stat->rx_pkts_64 += smb->rx_pkts_64; stat->rx_pkts_65_127 += smb->rx_pkts_65_127; stat->rx_pkts_128_255 += smb->rx_pkts_128_255; stat->rx_pkts_256_511 += smb->rx_pkts_256_511; stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023; stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518; stat->rx_pkts_1519_max += smb->rx_pkts_1519_max; stat->rx_pkts_truncated += smb->rx_pkts_truncated; stat->rx_fifo_oflows += smb->rx_fifo_oflows; stat->rx_desc_oflows += smb->rx_desc_oflows; stat->rx_alignerrs += smb->rx_alignerrs; stat->rx_bcast_bytes += smb->rx_bcast_bytes; stat->rx_mcast_bytes += smb->rx_mcast_bytes; stat->rx_pkts_filtered += smb->rx_pkts_filtered; /* Tx stats. */ stat->tx_frames += smb->tx_frames; stat->tx_bcast_frames += smb->tx_bcast_frames; stat->tx_mcast_frames += smb->tx_mcast_frames; stat->tx_pause_frames += smb->tx_pause_frames; stat->tx_excess_defer += smb->tx_excess_defer; stat->tx_control_frames += smb->tx_control_frames; stat->tx_deferred += smb->tx_deferred; stat->tx_bytes += smb->tx_bytes; stat->tx_pkts_64 += smb->tx_pkts_64; stat->tx_pkts_65_127 += smb->tx_pkts_65_127; stat->tx_pkts_128_255 += smb->tx_pkts_128_255; stat->tx_pkts_256_511 += smb->tx_pkts_256_511; stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023; stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518; stat->tx_pkts_1519_max += smb->tx_pkts_1519_max; stat->tx_single_colls += smb->tx_single_colls; stat->tx_multi_colls += smb->tx_multi_colls; stat->tx_late_colls += smb->tx_late_colls; stat->tx_excess_colls += smb->tx_excess_colls; stat->tx_underrun += smb->tx_underrun; stat->tx_desc_underrun += smb->tx_desc_underrun; stat->tx_lenerrs += smb->tx_lenerrs; stat->tx_pkts_truncated += smb->tx_pkts_truncated; stat->tx_bcast_bytes += smb->tx_bcast_bytes; stat->tx_mcast_bytes += smb->tx_mcast_bytes; /* Update counters in ifnet. */ ifp->if_opackets += smb->tx_frames; ifp->if_collisions += smb->tx_single_colls + smb->tx_multi_colls + smb->tx_late_colls + smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT; ifp->if_oerrors += smb->tx_excess_colls + smb->tx_late_colls + smb->tx_underrun + smb->tx_pkts_truncated; ifp->if_ipackets += smb->rx_frames; ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs + smb->rx_runts + smb->rx_pkts_truncated + smb->rx_fifo_oflows + smb->rx_desc_oflows + smb->rx_alignerrs; /* Update done, clear. */ smb->updated = 0; bus_dmamap_sync(sc->age_cdata.age_smb_block_tag, sc->age_cdata.age_smb_block_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } static int age_intr(void *arg) { struct age_softc *sc; uint32_t status; sc = (struct age_softc *)arg; status = CSR_READ_4(sc, AGE_INTR_STATUS); if (status == 0 || (status & AGE_INTRS) == 0) return (FILTER_STRAY); /* Disable interrupts. */ CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT); taskqueue_enqueue(sc->age_tq, &sc->age_int_task); return (FILTER_HANDLED); } static void age_int_task(void *arg, int pending) { struct age_softc *sc; struct ifnet *ifp; struct cmb *cmb; uint32_t status; sc = (struct age_softc *)arg; AGE_LOCK(sc); bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag, sc->age_cdata.age_cmb_block_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); cmb = sc->age_rdata.age_cmb_block; status = le32toh(cmb->intr_status); if (sc->age_morework != 0) status |= INTR_CMB_RX; if ((status & AGE_INTRS) == 0) goto done; sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >> TPD_CONS_SHIFT; sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >> RRD_PROD_SHIFT; /* Let hardware know CMB was served. */ cmb->intr_status = 0; bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag, sc->age_cdata.age_cmb_block_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); #if 0 printf("INTR: 0x%08x\n", status); status &= ~INTR_DIS_DMA; CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT); #endif ifp = sc->age_ifp; if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { if ((status & INTR_CMB_RX) != 0) sc->age_morework = age_rxintr(sc, sc->age_rr_prod, sc->age_process_limit); if ((status & INTR_CMB_TX) != 0) age_txintr(sc, sc->age_tpd_cons); if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) { if ((status & INTR_DMA_RD_TO_RST) != 0) device_printf(sc->age_dev, "DMA read error! -- resetting\n"); if ((status & INTR_DMA_WR_TO_RST) != 0) device_printf(sc->age_dev, "DMA write error! -- resetting\n"); age_init_locked(sc); } if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) taskqueue_enqueue(sc->age_tq, &sc->age_tx_task); if ((status & INTR_SMB) != 0) age_stats_update(sc); } /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */ bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag, sc->age_cdata.age_cmb_block_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); status = le32toh(cmb->intr_status); if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) { taskqueue_enqueue(sc->age_tq, &sc->age_int_task); AGE_UNLOCK(sc); return; } done: /* Re-enable interrupts. */ CSR_WRITE_4(sc, AGE_INTR_STATUS, 0); AGE_UNLOCK(sc); } static void age_txintr(struct age_softc *sc, int tpd_cons) { struct ifnet *ifp; struct age_txdesc *txd; int cons, prog; AGE_LOCK_ASSERT(sc); ifp = sc->age_ifp; bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag, sc->age_cdata.age_tx_ring_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); /* * Go through our Tx list and free mbufs for those * frames which have been transmitted. */ cons = sc->age_cdata.age_tx_cons; for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) { if (sc->age_cdata.age_tx_cnt <= 0) break; prog++; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; sc->age_cdata.age_tx_cnt--; txd = &sc->age_cdata.age_txdesc[cons]; /* * Clear Tx descriptors, it's not required but would * help debugging in case of Tx issues. */ txd->tx_desc->addr = 0; txd->tx_desc->len = 0; txd->tx_desc->flags = 0; if (txd->tx_m == NULL) continue; /* Reclaim transmitted mbufs. */ bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap); m_freem(txd->tx_m); txd->tx_m = NULL; } if (prog > 0) { sc->age_cdata.age_tx_cons = cons; /* * Unarm watchdog timer only when there are no pending * Tx descriptors in queue. */ if (sc->age_cdata.age_tx_cnt == 0) sc->age_watchdog_timer = 0; bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag, sc->age_cdata.age_tx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } } /* Receive a frame. */ static void age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd) { struct age_rxdesc *rxd; struct rx_desc *desc; struct ifnet *ifp; struct mbuf *mp, *m; uint32_t status, index, vtag; int count, nsegs, pktlen; int rx_cons; AGE_LOCK_ASSERT(sc); ifp = sc->age_ifp; status = le32toh(rxrd->flags); index = le32toh(rxrd->index); rx_cons = AGE_RX_CONS(index); nsegs = AGE_RX_NSEGS(index); sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len)); if ((status & AGE_RRD_ERROR) != 0 && (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE | AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) { /* * We want to pass the following frames to upper * layer regardless of error status of Rx return * ring. * * o IP/TCP/UDP checksum is bad. * o frame length and protocol specific length * does not match. */ sc->age_cdata.age_rx_cons += nsegs; sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT; return; } pktlen = 0; for (count = 0; count < nsegs; count++, AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) { rxd = &sc->age_cdata.age_rxdesc[rx_cons]; mp = rxd->rx_m; desc = rxd->rx_desc; /* Add a new receive buffer to the ring. */ if (age_newbuf(sc, rxd) != 0) { ifp->if_iqdrops++; /* Reuse Rx buffers. */ if (sc->age_cdata.age_rxhead != NULL) { m_freem(sc->age_cdata.age_rxhead); AGE_RXCHAIN_RESET(sc); } break; } /* The length of the first mbuf is computed last. */ if (count != 0) { mp->m_len = AGE_RX_BYTES(le32toh(desc->len)); pktlen += mp->m_len; } /* Chain received mbufs. */ if (sc->age_cdata.age_rxhead == NULL) { sc->age_cdata.age_rxhead = mp; sc->age_cdata.age_rxtail = mp; } else { mp->m_flags &= ~M_PKTHDR; sc->age_cdata.age_rxprev_tail = sc->age_cdata.age_rxtail; sc->age_cdata.age_rxtail->m_next = mp; sc->age_cdata.age_rxtail = mp; } if (count == nsegs - 1) { /* * It seems that L1 controller has no way * to tell hardware to strip CRC bytes. */ sc->age_cdata.age_rxlen -= ETHER_CRC_LEN; if (nsegs > 1) { /* Remove the CRC bytes in chained mbufs. */ pktlen -= ETHER_CRC_LEN; if (mp->m_len <= ETHER_CRC_LEN) { sc->age_cdata.age_rxtail = sc->age_cdata.age_rxprev_tail; sc->age_cdata.age_rxtail->m_len -= (ETHER_CRC_LEN - mp->m_len); sc->age_cdata.age_rxtail->m_next = NULL; m_freem(mp); } else { mp->m_len -= ETHER_CRC_LEN; } } m = sc->age_cdata.age_rxhead; m->m_flags |= M_PKTHDR; m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = sc->age_cdata.age_rxlen; /* Set the first mbuf length. */ m->m_len = sc->age_cdata.age_rxlen - pktlen; /* * Set checksum information. * It seems that L1 controller can compute partial * checksum. The partial checksum value can be used * to accelerate checksum computation for fragmented * TCP/UDP packets. Upper network stack already * takes advantage of the partial checksum value in * IP reassembly stage. But I'm not sure the * correctness of the partial hardware checksum * assistance due to lack of data sheet. If it is * proven to work on L1 I'll enable it. */ if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 && (status & AGE_RRD_IPV4) != 0) { m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; if ((status & AGE_RRD_IPCSUM_NOK) == 0) m->m_pkthdr.csum_flags |= CSUM_IP_VALID; if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) && (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } /* * Don't mark bad checksum for TCP/UDP frames * as fragmented frames may always have set * bad checksummed bit of descriptor status. */ } /* Check for VLAN tagged frames. */ if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 && (status & AGE_RRD_VLAN) != 0) { vtag = AGE_RX_VLAN(le32toh(rxrd->vtags)); m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag); m->m_flags |= M_VLANTAG; } /* Pass it on. */ AGE_UNLOCK(sc); (*ifp->if_input)(ifp, m); AGE_LOCK(sc); /* Reset mbuf chains. */ AGE_RXCHAIN_RESET(sc); } } if (count != nsegs) { sc->age_cdata.age_rx_cons += nsegs; sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT; } else sc->age_cdata.age_rx_cons = rx_cons; } static int age_rxintr(struct age_softc *sc, int rr_prod, int count) { struct rx_rdesc *rxrd; int rr_cons, nsegs, pktlen, prog; AGE_LOCK_ASSERT(sc); rr_cons = sc->age_cdata.age_rr_cons; if (rr_cons == rr_prod) return (0); bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag, sc->age_cdata.age_rr_ring_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag, sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); for (prog = 0; rr_cons != rr_prod; prog++) { if (count <= 0) break; rxrd = &sc->age_rdata.age_rr_ring[rr_cons]; nsegs = AGE_RX_NSEGS(le32toh(rxrd->index)); if (nsegs == 0) break; /* * Check number of segments against received bytes. * Non-matching value would indicate that hardware * is still trying to update Rx return descriptors. * I'm not sure whether this check is really needed. */ pktlen = AGE_RX_BYTES(le32toh(rxrd->len)); if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) / (MCLBYTES - ETHER_ALIGN))) break; prog++; /* Received a frame. */ age_rxeof(sc, rxrd); /* Clear return ring. */ rxrd->index = 0; AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT); } if (prog > 0) { /* Update the consumer index. */ sc->age_cdata.age_rr_cons = rr_cons; /* Sync descriptors. */ bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag, sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag, sc->age_cdata.age_rr_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* Notify hardware availability of new Rx buffers. */ AGE_COMMIT_MBOX(sc); } return (count > 0 ? 0 : EAGAIN); } static void age_tick(void *arg) { struct age_softc *sc; struct mii_data *mii; sc = (struct age_softc *)arg; AGE_LOCK_ASSERT(sc); mii = device_get_softc(sc->age_miibus); mii_tick(mii); age_watchdog(sc); callout_reset(&sc->age_tick_ch, hz, age_tick, sc); } static void age_reset(struct age_softc *sc) { uint32_t reg; int i; CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET); for (i = AGE_RESET_TIMEOUT; i > 0; i--) { DELAY(1); if ((CSR_READ_4(sc, AGE_MASTER_CFG) & MASTER_RESET) == 0) break; } if (i == 0) device_printf(sc->age_dev, "master reset timeout!\n"); for (i = AGE_RESET_TIMEOUT; i > 0; i--) { if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0) break; DELAY(10); } if (i == 0) device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg); /* Initialize PCIe module. From Linux. */ CSR_WRITE_4(sc, 0x12FC, 0x6500); CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000); } static void age_init(void *xsc) { struct age_softc *sc; sc = (struct age_softc *)xsc; AGE_LOCK(sc); age_init_locked(sc); AGE_UNLOCK(sc); } static void age_init_locked(struct age_softc *sc) { struct ifnet *ifp; struct mii_data *mii; uint8_t eaddr[ETHER_ADDR_LEN]; bus_addr_t paddr; uint32_t reg, fsize; uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo; int error; AGE_LOCK_ASSERT(sc); ifp = sc->age_ifp; mii = device_get_softc(sc->age_miibus); /* * Cancel any pending I/O. */ age_stop(sc); /* * Reset the chip to a known state. */ age_reset(sc); /* Initialize descriptors. */ error = age_init_rx_ring(sc); if (error != 0) { device_printf(sc->age_dev, "no memory for Rx buffers.\n"); age_stop(sc); return; } age_init_rr_ring(sc); age_init_tx_ring(sc); age_init_cmb_block(sc); age_init_smb_block(sc); /* Reprogram the station address. */ bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN); CSR_WRITE_4(sc, AGE_PAR0, eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]); CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]); /* Set descriptor base addresses. */ paddr = sc->age_rdata.age_tx_ring_paddr; CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr)); paddr = sc->age_rdata.age_rx_ring_paddr; CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr)); paddr = sc->age_rdata.age_rr_ring_paddr; CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr)); paddr = sc->age_rdata.age_tx_ring_paddr; CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr)); paddr = sc->age_rdata.age_cmb_block_paddr; CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr)); paddr = sc->age_rdata.age_smb_block_paddr; CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr)); /* Set Rx/Rx return descriptor counter. */ CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT, ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) & DESC_RRD_CNT_MASK) | ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK)); /* Set Tx descriptor counter. */ CSR_WRITE_4(sc, AGE_DESC_TPD_CNT, (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK); /* Tell hardware that we're ready to load descriptors. */ CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD); /* * Initialize mailbox register. * Updated producer/consumer index information is exchanged * through this mailbox register. However Tx producer and * Rx return consumer/Rx producer are all shared such that * it's hard to separate code path between Tx and Rx without * locking. If L1 hardware have a separate mail box register * for Tx and Rx consumer/producer management we could have * indepent Tx/Rx handler which in turn Rx handler could have * been run without any locking. */ AGE_COMMIT_MBOX(sc); /* Configure IPG/IFG parameters. */ CSR_WRITE_4(sc, AGE_IPG_IFG_CFG, ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) | ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) | ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) | ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK)); /* Set parameters for half-duplex media. */ CSR_WRITE_4(sc, AGE_HDPX_CFG, ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) & HDPX_CFG_LCOL_MASK) | ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) & HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN | ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) & HDPX_CFG_ABEBT_MASK) | ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) & HDPX_CFG_JAMIPG_MASK)); /* Configure interrupt moderation timer. */ CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod)); reg = CSR_READ_4(sc, AGE_MASTER_CFG); reg &= ~MASTER_MTIMER_ENB; if (AGE_USECS(sc->age_int_mod) == 0) reg &= ~MASTER_ITIMER_ENB; else reg |= MASTER_ITIMER_ENB; CSR_WRITE_4(sc, AGE_MASTER_CFG, reg); if (1 || bootverbose) device_printf(sc->age_dev, "interrupt moderation is %d us.\n", sc->age_int_mod); CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000)); /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */ if (ifp->if_mtu < ETHERMTU) sc->age_max_frame_size = ETHERMTU; else sc->age_max_frame_size = ifp->if_mtu; sc->age_max_frame_size += ETHER_HDR_LEN + sizeof(struct ether_vlan_header) + ETHER_CRC_LEN; CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size); /* Configure jumbo frame. */ fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t)); CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG, (((fsize / sizeof(uint64_t)) << RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) | ((RXQ_JUMBO_CFG_LKAH_DEFAULT << RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) | ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) & RXQ_JUMBO_CFG_RRD_TIMER_MASK)); /* Configure flow-control parameters. From Linux. */ if ((sc->age_flags & AGE_FLAG_PCIE) != 0) { /* * Magic workaround for old-L1. * Don't know which hw revision requires this magic. */ CSR_WRITE_4(sc, 0x12FC, 0x6500); /* * Another magic workaround for flow-control mode * change. From Linux. */ CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000); } /* * TODO * Should understand pause parameter relationships between FIFO * size and number of Rx descriptors and Rx return descriptors. * * Magic parameters came from Linux. */ switch (sc->age_chip_rev) { case 0x8001: case 0x9001: case 0x9002: case 0x9003: rxf_hi = AGE_RX_RING_CNT / 16; rxf_lo = (AGE_RX_RING_CNT * 7) / 8; rrd_hi = (AGE_RR_RING_CNT * 7) / 8; rrd_lo = AGE_RR_RING_CNT / 16; break; default: reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN); rxf_lo = reg / 16; if (rxf_lo < 192) rxf_lo = 192; rxf_hi = (reg * 7) / 8; if (rxf_hi < rxf_lo) rxf_hi = rxf_lo + 16; reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN); rrd_lo = reg / 8; rrd_hi = (reg * 7) / 8; if (rrd_lo < 2) rrd_lo = 2; if (rrd_hi < rrd_lo) rrd_hi = rrd_lo + 3; break; } CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH, ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) & RXQ_FIFO_PAUSE_THRESH_LO_MASK) | ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) & RXQ_FIFO_PAUSE_THRESH_HI_MASK)); CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH, ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) & RXQ_RRD_PAUSE_THRESH_LO_MASK) | ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) & RXQ_RRD_PAUSE_THRESH_HI_MASK)); /* Configure RxQ. */ CSR_WRITE_4(sc, AGE_RXQ_CFG, ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) & RXQ_CFG_RD_BURST_MASK) | ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT << RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) | ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT << RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB); /* Configure TxQ. */ CSR_WRITE_4(sc, AGE_TXQ_CFG, ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) & TXQ_CFG_TPD_BURST_MASK) | ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK) | ((TXQ_CFG_TPD_FETCH_DEFAULT << TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) | TXQ_CFG_ENB); CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG, (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) & TX_JUMBO_TPD_TH_MASK) | ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) & TX_JUMBO_TPD_IPG_MASK)); /* Configure DMA parameters. */ CSR_WRITE_4(sc, AGE_DMA_CFG, DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 | sc->age_dma_rd_burst | DMA_CFG_RD_ENB | sc->age_dma_wr_burst | DMA_CFG_WR_ENB); /* Configure CMB DMA write threshold. */ CSR_WRITE_4(sc, AGE_CMB_WR_THRESH, ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) & CMB_WR_THRESH_RRD_MASK) | ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) & CMB_WR_THRESH_TPD_MASK)); /* Set CMB/SMB timer and enable them. */ CSR_WRITE_4(sc, AGE_CMB_WR_TIMER, ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) | ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK)); /* Request SMB updates for every seconds. */ CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000)); CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB); /* * Disable all WOL bits as WOL can interfere normal Rx * operation. */ CSR_WRITE_4(sc, AGE_WOL_CFG, 0); /* * Configure Tx/Rx MACs. * - Auto-padding for short frames. * - Enable CRC generation. * Start with full-duplex/1000Mbps media. Actual reconfiguration * of MAC is followed after link establishment. */ CSR_WRITE_4(sc, AGE_MAC_CFG, MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 | ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) & MAC_CFG_PREAMBLE_MASK)); /* Set up the receive filter. */ age_rxfilter(sc); age_rxvlan(sc); reg = CSR_READ_4(sc, AGE_MAC_CFG); if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) reg |= MAC_CFG_RXCSUM_ENB; /* Ack all pending interrupts and clear it. */ CSR_WRITE_4(sc, AGE_INTR_STATUS, 0); CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS); /* Finally enable Tx/Rx MAC. */ CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB); sc->age_flags &= ~AGE_FLAG_LINK; /* Switch to the current media. */ mii_mediachg(mii); callout_reset(&sc->age_tick_ch, hz, age_tick, sc); ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; } static void age_stop(struct age_softc *sc) { struct ifnet *ifp; struct age_txdesc *txd; struct age_rxdesc *rxd; uint32_t reg; int i; AGE_LOCK_ASSERT(sc); /* * Mark the interface down and cancel the watchdog timer. */ ifp = sc->age_ifp; ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); sc->age_flags &= ~AGE_FLAG_LINK; callout_stop(&sc->age_tick_ch); sc->age_watchdog_timer = 0; /* * Disable interrupts. */ CSR_WRITE_4(sc, AGE_INTR_MASK, 0); CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF); /* Stop CMB/SMB updates. */ CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0); /* Stop Rx/Tx MAC. */ age_stop_rxmac(sc); age_stop_txmac(sc); /* Stop DMA. */ CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB)); /* Stop TxQ/RxQ. */ CSR_WRITE_4(sc, AGE_TXQ_CFG, CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB); CSR_WRITE_4(sc, AGE_RXQ_CFG, CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB); for (i = AGE_RESET_TIMEOUT; i > 0; i--) { if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0) break; DELAY(10); } if (i == 0) device_printf(sc->age_dev, "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg); /* Reclaim Rx buffers that have been processed. */ if (sc->age_cdata.age_rxhead != NULL) m_freem(sc->age_cdata.age_rxhead); AGE_RXCHAIN_RESET(sc); /* * Free RX and TX mbufs still in the queues. */ for (i = 0; i < AGE_RX_RING_CNT; i++) { rxd = &sc->age_cdata.age_rxdesc[i]; if (rxd->rx_m != NULL) { bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap); m_freem(rxd->rx_m); rxd->rx_m = NULL; } } for (i = 0; i < AGE_TX_RING_CNT; i++) { txd = &sc->age_cdata.age_txdesc[i]; if (txd->tx_m != NULL) { bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap); m_freem(txd->tx_m); txd->tx_m = NULL; } } } static void age_stop_txmac(struct age_softc *sc) { uint32_t reg; int i; AGE_LOCK_ASSERT(sc); reg = CSR_READ_4(sc, AGE_MAC_CFG); if ((reg & MAC_CFG_TX_ENB) != 0) { reg &= ~MAC_CFG_TX_ENB; CSR_WRITE_4(sc, AGE_MAC_CFG, reg); } /* Stop Tx DMA engine. */ reg = CSR_READ_4(sc, AGE_DMA_CFG); if ((reg & DMA_CFG_RD_ENB) != 0) { reg &= ~DMA_CFG_RD_ENB; CSR_WRITE_4(sc, AGE_DMA_CFG, reg); } for (i = AGE_RESET_TIMEOUT; i > 0; i--) { if ((CSR_READ_4(sc, AGE_IDLE_STATUS) & (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0) break; DELAY(10); } if (i == 0) device_printf(sc->age_dev, "stopping TxMAC timeout!\n"); } static void age_stop_rxmac(struct age_softc *sc) { uint32_t reg; int i; AGE_LOCK_ASSERT(sc); reg = CSR_READ_4(sc, AGE_MAC_CFG); if ((reg & MAC_CFG_RX_ENB) != 0) { reg &= ~MAC_CFG_RX_ENB; CSR_WRITE_4(sc, AGE_MAC_CFG, reg); } /* Stop Rx DMA engine. */ reg = CSR_READ_4(sc, AGE_DMA_CFG); if ((reg & DMA_CFG_WR_ENB) != 0) { reg &= ~DMA_CFG_WR_ENB; CSR_WRITE_4(sc, AGE_DMA_CFG, reg); } for (i = AGE_RESET_TIMEOUT; i > 0; i--) { if ((CSR_READ_4(sc, AGE_IDLE_STATUS) & (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0) break; DELAY(10); } if (i == 0) device_printf(sc->age_dev, "stopping RxMAC timeout!\n"); } static void age_init_tx_ring(struct age_softc *sc) { struct age_ring_data *rd; struct age_txdesc *txd; int i; AGE_LOCK_ASSERT(sc); sc->age_cdata.age_tx_prod = 0; sc->age_cdata.age_tx_cons = 0; sc->age_cdata.age_tx_cnt = 0; rd = &sc->age_rdata; bzero(rd->age_tx_ring, AGE_TX_RING_SZ); for (i = 0; i < AGE_TX_RING_CNT; i++) { txd = &sc->age_cdata.age_txdesc[i]; txd->tx_desc = &rd->age_tx_ring[i]; txd->tx_m = NULL; } bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag, sc->age_cdata.age_tx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } static int age_init_rx_ring(struct age_softc *sc) { struct age_ring_data *rd; struct age_rxdesc *rxd; int i; AGE_LOCK_ASSERT(sc); sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1; sc->age_morework = 0; rd = &sc->age_rdata; bzero(rd->age_rx_ring, AGE_RX_RING_SZ); for (i = 0; i < AGE_RX_RING_CNT; i++) { rxd = &sc->age_cdata.age_rxdesc[i]; rxd->rx_m = NULL; rxd->rx_desc = &rd->age_rx_ring[i]; if (age_newbuf(sc, rxd) != 0) return (ENOBUFS); } bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag, sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return (0); } static void age_init_rr_ring(struct age_softc *sc) { struct age_ring_data *rd; AGE_LOCK_ASSERT(sc); sc->age_cdata.age_rr_cons = 0; AGE_RXCHAIN_RESET(sc); rd = &sc->age_rdata; bzero(rd->age_rr_ring, AGE_RR_RING_SZ); bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag, sc->age_cdata.age_rr_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } static void age_init_cmb_block(struct age_softc *sc) { struct age_ring_data *rd; AGE_LOCK_ASSERT(sc); rd = &sc->age_rdata; bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ); bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag, sc->age_cdata.age_cmb_block_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } static void age_init_smb_block(struct age_softc *sc) { struct age_ring_data *rd; AGE_LOCK_ASSERT(sc); rd = &sc->age_rdata; bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ); bus_dmamap_sync(sc->age_cdata.age_smb_block_tag, sc->age_cdata.age_smb_block_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } static int age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd) { struct rx_desc *desc; struct mbuf *m; bus_dma_segment_t segs[1]; bus_dmamap_t map; int nsegs; AGE_LOCK_ASSERT(sc); m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (m == NULL) return (ENOBUFS); m->m_len = m->m_pkthdr.len = MCLBYTES; m_adj(m, ETHER_ALIGN); if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag, sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) { m_freem(m); return (ENOBUFS); } KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); if (rxd->rx_m != NULL) { bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap); } map = rxd->rx_dmamap; rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap; sc->age_cdata.age_rx_sparemap = map; bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_PREREAD); rxd->rx_m = m; desc = rxd->rx_desc; desc->addr = htole64(segs[0].ds_addr); desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) << AGE_RD_LEN_SHIFT); return (0); } static void age_rxvlan(struct age_softc *sc) { struct ifnet *ifp; uint32_t reg; AGE_LOCK_ASSERT(sc); ifp = sc->age_ifp; reg = CSR_READ_4(sc, AGE_MAC_CFG); reg &= ~MAC_CFG_VLAN_TAG_STRIP; if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) reg |= MAC_CFG_VLAN_TAG_STRIP; CSR_WRITE_4(sc, AGE_MAC_CFG, reg); } static void age_rxfilter(struct age_softc *sc) { struct ifnet *ifp; struct ifmultiaddr *ifma; uint32_t crc; uint32_t mchash[2]; uint32_t rxcfg; AGE_LOCK_ASSERT(sc); ifp = sc->age_ifp; rxcfg = CSR_READ_4(sc, AGE_MAC_CFG); rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC); if ((ifp->if_flags & IFF_BROADCAST) != 0) rxcfg |= MAC_CFG_BCAST; if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { if ((ifp->if_flags & IFF_PROMISC) != 0) rxcfg |= MAC_CFG_PROMISC; if ((ifp->if_flags & IFF_ALLMULTI) != 0) rxcfg |= MAC_CFG_ALLMULTI; CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF); CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF); CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg); return; } /* Program new filter. */ bzero(mchash, sizeof(mchash)); IF_ADDR_LOCK(ifp); TAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; crc = ether_crc32_le(LLADDR((struct sockaddr_dl *) ifma->ifma_addr), ETHER_ADDR_LEN); mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f); } IF_ADDR_UNLOCK(ifp); CSR_WRITE_4(sc, AGE_MAR0, mchash[0]); CSR_WRITE_4(sc, AGE_MAR1, mchash[1]); CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg); } static int sysctl_age_stats(SYSCTL_HANDLER_ARGS) { struct age_softc *sc; struct age_stats *stats; int error, result; result = -1; error = sysctl_handle_int(oidp, &result, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (result != 1) return (error); sc = (struct age_softc *)arg1; stats = &sc->age_stat; printf("%s statistics:\n", device_get_nameunit(sc->age_dev)); printf("Transmit good frames : %ju\n", (uintmax_t)stats->tx_frames); printf("Transmit good broadcast frames : %ju\n", (uintmax_t)stats->tx_bcast_frames); printf("Transmit good multicast frames : %ju\n", (uintmax_t)stats->tx_mcast_frames); printf("Transmit pause control frames : %u\n", stats->tx_pause_frames); printf("Transmit control frames : %u\n", stats->tx_control_frames); printf("Transmit frames with excessive deferrals : %u\n", stats->tx_excess_defer); printf("Transmit deferrals : %u\n", stats->tx_deferred); printf("Transmit good octets : %ju\n", (uintmax_t)stats->tx_bytes); printf("Transmit good broadcast octets : %ju\n", (uintmax_t)stats->tx_bcast_bytes); printf("Transmit good multicast octets : %ju\n", (uintmax_t)stats->tx_mcast_bytes); printf("Transmit frames 64 bytes : %ju\n", (uintmax_t)stats->tx_pkts_64); printf("Transmit frames 65 to 127 bytes : %ju\n", (uintmax_t)stats->tx_pkts_65_127); printf("Transmit frames 128 to 255 bytes : %ju\n", (uintmax_t)stats->tx_pkts_128_255); printf("Transmit frames 256 to 511 bytes : %ju\n", (uintmax_t)stats->tx_pkts_256_511); printf("Transmit frames 512 to 1024 bytes : %ju\n", (uintmax_t)stats->tx_pkts_512_1023); printf("Transmit frames 1024 to 1518 bytes : %ju\n", (uintmax_t)stats->tx_pkts_1024_1518); printf("Transmit frames 1519 to MTU bytes : %ju\n", (uintmax_t)stats->tx_pkts_1519_max); printf("Transmit single collisions : %u\n", stats->tx_single_colls); printf("Transmit multiple collisions : %u\n", stats->tx_multi_colls); printf("Transmit late collisions : %u\n", stats->tx_late_colls); printf("Transmit abort due to excessive collisions : %u\n", stats->tx_excess_colls); printf("Transmit underruns due to FIFO underruns : %u\n", stats->tx_underrun); printf("Transmit descriptor write-back errors : %u\n", stats->tx_desc_underrun); printf("Transmit frames with length mismatched frame size : %u\n", stats->tx_lenerrs); printf("Transmit frames with truncated due to MTU size : %u\n", stats->tx_lenerrs); printf("Receive good frames : %ju\n", (uintmax_t)stats->rx_frames); printf("Receive good broadcast frames : %ju\n", (uintmax_t)stats->rx_bcast_frames); printf("Receive good multicast frames : %ju\n", (uintmax_t)stats->rx_mcast_frames); printf("Receive pause control frames : %u\n", stats->rx_pause_frames); printf("Receive control frames : %u\n", stats->rx_control_frames); printf("Receive CRC errors : %u\n", stats->rx_crcerrs); printf("Receive frames with length errors : %u\n", stats->rx_lenerrs); printf("Receive good octets : %ju\n", (uintmax_t)stats->rx_bytes); printf("Receive good broadcast octets : %ju\n", (uintmax_t)stats->rx_bcast_bytes); printf("Receive good multicast octets : %ju\n", (uintmax_t)stats->rx_mcast_bytes); printf("Receive frames too short : %u\n", stats->rx_runts); printf("Receive fragmented frames : %ju\n", (uintmax_t)stats->rx_fragments); printf("Receive frames 64 bytes : %ju\n", (uintmax_t)stats->rx_pkts_64); printf("Receive frames 65 to 127 bytes : %ju\n", (uintmax_t)stats->rx_pkts_65_127); printf("Receive frames 128 to 255 bytes : %ju\n", (uintmax_t)stats->rx_pkts_128_255); printf("Receive frames 256 to 511 bytes : %ju\n", (uintmax_t)stats->rx_pkts_256_511); printf("Receive frames 512 to 1024 bytes : %ju\n", (uintmax_t)stats->rx_pkts_512_1023); printf("Receive frames 1024 to 1518 bytes : %ju\n", (uintmax_t)stats->rx_pkts_1024_1518); printf("Receive frames 1519 to MTU bytes : %ju\n", (uintmax_t)stats->rx_pkts_1519_max); printf("Receive frames too long : %ju\n", (uint64_t)stats->rx_pkts_truncated); printf("Receive frames with FIFO overflow : %u\n", stats->rx_fifo_oflows); printf("Receive frames with return descriptor overflow : %u\n", stats->rx_desc_oflows); printf("Receive frames with alignment errors : %u\n", stats->rx_alignerrs); printf("Receive frames dropped due to address filtering : %ju\n", (uint64_t)stats->rx_pkts_filtered); return (error); } static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) { int error, value; if (arg1 == NULL) return (EINVAL); value = *(int *)arg1; error = sysctl_handle_int(oidp, &value, 0, req); if (error || req->newptr == NULL) return (error); if (value < low || value > high) return (EINVAL); *(int *)arg1 = value; return (0); } static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS) { return (sysctl_int_range(oidp, arg1, arg2, req, AGE_PROC_MIN, AGE_PROC_MAX)); } static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS) { return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN, AGE_IM_TIMER_MAX)); }