/* * Copyright (c) 1999, 2000 Udo Schweigert. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * 4. Altered versions must be plainly marked as such, and must not be * misrepresented as being the original software and/or documentation. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * *--------------------------------------------------------------------------- * * i4b_ifpnp_avm.c: AVM Fritz!Card PnP hardware driver * --------------------------------------------------- * * $FreeBSD$ * * last edit-date: [Fri Jan 12 17:05:28 2001] * *---------------------------------------------------------------------------*/ #include "ifpnp.h" #include "opt_i4b.h" #if (NIFPNP > 0) #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* prototypes */ static void avm_pnp_intr(void *); static void hscx_write_reg(int, u_int, struct l1_softc *, u_int); static void hscx_write_reg_val(int, u_int, u_int8_t, struct l1_softc *); static u_int hscx_read_reg(int, u_int, struct l1_softc *); static void hscx_read_fifo(int, void *, size_t, struct l1_softc *); static void hscx_write_fifo(int, void *, size_t, struct l1_softc *); static void avm_pnp_hscx_int_handler(struct l1_softc *); static void avm_pnp_hscx_intr(int, u_int, u_int, struct l1_softc *); static void avm_pnp_init_linktab(struct l1_softc *); static void avm_pnp_bchannel_setup(int, int, int, int); static void avm_pnp_bchannel_start(int, int); static void avm_pnp_hscx_init(struct l1_softc *, int, int); static void avm_pnp_bchannel_stat(int, int, bchan_statistics_t *); static void avm_pnp_set_linktab(int, int, drvr_link_t *); static isdn_link_t * avm_pnp_ret_linktab(int, int); static int avm_pnp_probe(device_t); static int avm_pnp_hscx_fifo(l1_bchan_state_t *, struct l1_softc *); int avm_pnp_attach(device_t); static void ifpnp_isac_intr(struct l1_softc *sc); static device_method_t avm_pnp_methods[] = { /* Device interface */ DEVMETHOD(device_probe, avm_pnp_probe), DEVMETHOD(device_attach, avm_pnp_attach), { 0, 0 } }; static driver_t avm_pnp_driver = { "ifpnp", avm_pnp_methods, sizeof(struct l1_softc) }; static devclass_t avm_pnp_devclass; DRIVER_MODULE(avm_pnp, isa, avm_pnp_driver, avm_pnp_devclass, 0, 0); /* jump table for multiplex routines */ struct i4b_l1mux_func avm_pnp_l1mux_func = { avm_pnp_ret_linktab, avm_pnp_set_linktab, ifpnp_mph_command_req, ifpnp_ph_data_req, ifpnp_ph_activate_req, }; struct l1_softc *ifpnp_scp[IFPNP_MAXUNIT]; /*---------------------------------------------------------------------------* * AVM PnP Fritz!Card special registers *---------------------------------------------------------------------------*/ /* * register offsets from i/o base */ #define CLASS_OFFSET 0x00 #define REVISION_OFFSET 0x01 #define STAT0_OFFSET 0x02 #define STAT1_OFFSET 0x03 #define ADDR_REG_OFFSET 0x04 /*#define MODREG_OFFSET 0x06 #define VERREG_OFFSET 0x07*/ /* these 2 are used to select an ISAC register set */ #define ISAC_LO_REG_OFFSET 0x04 #define ISAC_HI_REG_OFFSET 0x06 /* offset higher than this goes to the HI register set */ #define MAX_LO_REG_OFFSET 0x2f /* mask for the offset */ #define ISAC_REGSET_MASK 0x0f /* the offset from the base to the ISAC registers */ #define ISAC_REG_OFFSET 0x10 /* the offset from the base to the ISAC FIFO */ #define ISAC_FIFO 0x02 /* not really the HSCX, but sort of */ #define HSCX_FIFO 0x00 #define HSCX_STAT 0x04 /* * AVM PnP Status Latch 0 read only bits */ #define ASL_IRQ_ISAC 0x01 /* ISAC interrupt, active low */ #define ASL_IRQ_HSCX 0x02 /* HSX interrupt, active low */ #define ASL_IRQ_TIMER 0x04 /* Timer interrupt, active low */ #define ASL_IRQ_BCHAN ASL_IRQ_HSCX /* actually active LOW */ #define ASL_IRQ_Pending (ASL_IRQ_ISAC | ASL_IRQ_HSCX | ASL_IRQ_TIMER) /* * AVM Status Latch 0 write only bits */ #define ASL_RESET_ALL 0x01 /* reset siemens IC's, active 1 */ #define ASL_TIMERDISABLE 0x02 /* active high */ #define ASL_TIMERRESET 0x04 /* active high */ #define ASL_ENABLE_INT 0x08 /* active high */ #define ASL_TESTBIT 0x10 /* active high */ /* * AVM Status Latch 1 write only bits */ #define ASL1_INTSEL 0x0f /* active high */ #define ASL1_ENABLE_IOM 0x80 /* active high */ /* * "HSCX" mode bits */ #define HSCX_MODE_ITF_FLG 0x01 #define HSCX_MODE_TRANS 0x02 #define HSCX_MODE_CCR_7 0x04 #define HSCX_MODE_CCR_16 0x08 #define HSCX_MODE_TESTLOOP 0x80 /* * "HSCX" status bits */ #define HSCX_STAT_RME 0x01 #define HSCX_STAT_RDO 0x10 #define HSCX_STAT_CRCVFRRAB 0x0E #define HSCX_STAT_CRCVFR 0x06 #define HSCX_STAT_RML_MASK 0x3f00 /* * "HSCX" interrupt bits */ #define HSCX_INT_XPR 0x80 #define HSCX_INT_XDU 0x40 #define HSCX_INT_RPR 0x20 #define HSCX_INT_MASK 0xE0 /* * "HSCX" command bits */ #define HSCX_CMD_XRS 0x80 #define HSCX_CMD_XME 0x01 #define HSCX_CMD_RRS 0x20 #define HSCX_CMD_XML_MASK 0x3f00 /* * to prevent deactivating the "HSCX" when both channels are active we * define an HSCX_ACTIVE flag which is or'd into the channel's state * flag in avm_pnp_bchannel_setup upon active and cleared upon deactivation. * It is set high to allow room for new flags. */ #define HSCX_AVMA1PP_ACTIVE 0x1000 /*---------------------------------------------------------------------------* * AVM read fifo routines *---------------------------------------------------------------------------*/ static void avm_pnp_read_fifo(struct l1_softc *sc, int what, void *buf, size_t size) { bus_space_handle_t bhandle = rman_get_bushandle(sc->sc_resources.io_base[0]); bus_space_tag_t btag = rman_get_bustag(sc->sc_resources.io_base[0]); switch (what) { case ISIC_WHAT_ISAC: bus_space_write_1(btag, bhandle, ADDR_REG_OFFSET, ISAC_FIFO); bus_space_read_multi_1(btag, bhandle, ISAC_REG_OFFSET, buf, size); break; case ISIC_WHAT_HSCXA: hscx_read_fifo(0, buf, size, sc); break; case ISIC_WHAT_HSCXB: hscx_read_fifo(1, buf, size, sc); break; } } static void hscx_read_fifo(int chan, void *buf, size_t len, struct l1_softc *sc) { u_int8_t *ip; size_t cnt; bus_space_handle_t bhandle = rman_get_bushandle(sc->sc_resources.io_base[0]); bus_space_tag_t btag = rman_get_bustag(sc->sc_resources.io_base[0]); bus_space_write_1(btag, bhandle, ADDR_REG_OFFSET, chan); ip = (u_int8_t *)buf; cnt = 0; while (cnt++ < len) { *ip++ = bus_space_read_1(btag, bhandle, ISAC_REG_OFFSET); } } /*---------------------------------------------------------------------------* * AVM write fifo routines *---------------------------------------------------------------------------*/ static void avm_pnp_write_fifo(struct l1_softc *sc, int what, void *buf, size_t size) { bus_space_handle_t bhandle = rman_get_bushandle(sc->sc_resources.io_base[0]); bus_space_tag_t btag = rman_get_bustag(sc->sc_resources.io_base[0]); switch (what) { case ISIC_WHAT_ISAC: bus_space_write_1(btag, bhandle, ADDR_REG_OFFSET, ISAC_FIFO); bus_space_write_multi_1(btag, bhandle, ISAC_REG_OFFSET, (u_int8_t*)buf, size); break; case ISIC_WHAT_HSCXA: hscx_write_fifo(0, buf, size, sc); break; case ISIC_WHAT_HSCXB: hscx_write_fifo(1, buf, size, sc); break; } } static void hscx_write_fifo(int chan, void *buf, size_t len, struct l1_softc *sc) { u_int8_t *ip; size_t cnt; l1_bchan_state_t *Bchan = &sc->sc_chan[chan]; bus_space_handle_t bhandle = rman_get_bushandle(sc->sc_resources.io_base[0]); bus_space_tag_t btag = rman_get_bustag(sc->sc_resources.io_base[0]); sc->avma1pp_cmd &= ~HSCX_CMD_XME; sc->avma1pp_txl = 0; if (Bchan->out_mbuf_cur == NULL) { if (Bchan->bprot != BPROT_NONE) sc->avma1pp_cmd |= HSCX_CMD_XME; } if (len != sc->sc_bfifolen) sc->avma1pp_txl = len; hscx_write_reg(chan, HSCX_STAT, sc, 3); ip = (u_int8_t *)buf; cnt = 0; while (cnt++ < len) { bus_space_write_1(btag, bhandle, ISAC_REG_OFFSET, *ip++); } } /*---------------------------------------------------------------------------* * AVM write register routines *---------------------------------------------------------------------------*/ static void avm_pnp_write_reg(struct l1_softc *sc, int what, bus_size_t offs, u_int8_t data) { u_char reg_bank; bus_space_handle_t bhandle = rman_get_bushandle(sc->sc_resources.io_base[0]); bus_space_tag_t btag = rman_get_bustag(sc->sc_resources.io_base[0]); switch (what) { case ISIC_WHAT_ISAC: reg_bank = (offs > MAX_LO_REG_OFFSET) ? ISAC_HI_REG_OFFSET:ISAC_LO_REG_OFFSET; /* set the register bank */ bus_space_write_1(btag, bhandle, ADDR_REG_OFFSET, reg_bank); bus_space_write_1(btag, bhandle, ISAC_REG_OFFSET + (offs & ISAC_REGSET_MASK), data); break; case ISIC_WHAT_HSCXA: hscx_write_reg_val(0, offs, data, sc); break; case ISIC_WHAT_HSCXB: hscx_write_reg_val(1, offs, data, sc); break; } } static void hscx_write_reg(int chan, u_int off, struct l1_softc *sc, u_int which) { bus_space_handle_t bhandle = rman_get_bushandle(sc->sc_resources.io_base[0]); bus_space_tag_t btag = rman_get_bustag(sc->sc_resources.io_base[0]); /* point at the correct channel */ bus_space_write_1(btag, bhandle, ADDR_REG_OFFSET, chan); if (which & 4) bus_space_write_1(btag, bhandle, ISAC_REG_OFFSET + off + 2, sc->avma1pp_prot); if (which & 2) bus_space_write_1(btag, bhandle, ISAC_REG_OFFSET + off + 1, sc->avma1pp_txl); if (which & 1) bus_space_write_1(btag, bhandle, ISAC_REG_OFFSET + off, sc->avma1pp_cmd); } static void hscx_write_reg_val(int chan, u_int off, u_int8_t val, struct l1_softc *sc) { bus_space_handle_t bhandle = rman_get_bushandle(sc->sc_resources.io_base[0]); bus_space_tag_t btag = rman_get_bustag(sc->sc_resources.io_base[0]); /* point at the correct channel */ bus_space_write_1(btag, bhandle, ADDR_REG_OFFSET, chan); bus_space_write_1(btag, bhandle, ISAC_REG_OFFSET + off, val); } /*---------------------------------------------------------------------------* * AVM read register routines *---------------------------------------------------------------------------*/ static u_int8_t avm_pnp_read_reg(struct l1_softc *sc, int what, bus_size_t offs) { u_char reg_bank; bus_space_handle_t bhandle = rman_get_bushandle(sc->sc_resources.io_base[0]); bus_space_tag_t btag = rman_get_bustag(sc->sc_resources.io_base[0]); switch (what) { case ISIC_WHAT_ISAC: reg_bank = (offs > MAX_LO_REG_OFFSET) ? ISAC_HI_REG_OFFSET:ISAC_LO_REG_OFFSET; /* set the register bank */ bus_space_write_1(btag, bhandle, ADDR_REG_OFFSET, reg_bank); return(bus_space_read_1(btag, bhandle, ISAC_REG_OFFSET + (offs & ISAC_REGSET_MASK))); case ISIC_WHAT_HSCXA: return hscx_read_reg(0, offs, sc); case ISIC_WHAT_HSCXB: return hscx_read_reg(1, offs, sc); } return 0; } static u_int hscx_read_reg(int chan, u_int off, struct l1_softc *sc) { bus_space_handle_t bhandle = rman_get_bushandle(sc->sc_resources.io_base[0]); bus_space_tag_t btag = rman_get_bustag(sc->sc_resources.io_base[0]); /* point at the correct channel */ bus_space_write_1(btag, bhandle, ADDR_REG_OFFSET, chan); return(bus_space_read_1(btag, bhandle, ISAC_REG_OFFSET + off)); } static struct ifpnp_ids { u_long vend_id; char *id_str; } ifpnp_ids[] = { { 0x0009cd06, "AVM Fritz!Card PnP" }, { 0, 0 } }; /*---------------------------------------------------------------------------* * avm_pnp_probe - probe for a card *---------------------------------------------------------------------------*/ static int avm_pnp_probe(dev) device_t dev; { struct ifpnp_ids *ids; /* pnp id's */ char *string = NULL; /* the name */ u_int32_t vend_id = isa_get_vendorid(dev); /* vendor id */ /* search table of knowd id's */ for(ids = ifpnp_ids; ids->vend_id != 0; ids++) { if(vend_id == ids->vend_id) { string = ids->id_str; break; } } if(string) /* set name if we have one */ { device_set_desc(dev, string); /* set description */ return 0; } else { return ENXIO; } } /*---------------------------------------------------------------------------* * avm_pnp_attach - attach Fritz!Card PnP *---------------------------------------------------------------------------*/ int avm_pnp_attach(device_t dev) { struct l1_softc *sc; u_int v; int unit, error = 0; int s; u_int16_t vid; void *ih = 0; bus_space_handle_t bhandle; bus_space_tag_t btag; s = splimp(); vid = isa_get_vendorid(dev); sc = device_get_softc(dev); unit = device_get_unit(dev); bzero(sc, sizeof(struct l1_softc)); /* probably not really required */ if(unit > IFPNP_MAXUNIT) { printf("avm_pnp%d: Error, unit > IFPNP_MAXUNIT!\n", unit); splx(s); return(ENXIO); } ifpnp_scp[unit] = sc; /* get io_base */ if(!(sc->sc_resources.io_base[0] = bus_alloc_resource(dev, SYS_RES_IOPORT, &sc->sc_resources.io_rid[0], 0UL, ~0UL, 1, RF_ACTIVE ) )) { printf("avm_pnp_attach: Couldn't get my io_base.\n"); return ENXIO; } if (sc->sc_resources.io_base[0] == NULL) { printf("avm_pnp%d: couldn't map IO port\n", unit); error = ENXIO; goto fail; } bhandle = rman_get_bushandle(sc->sc_resources.io_base[0]); btag = rman_get_bustag(sc->sc_resources.io_base[0]); /* will not be used for pnp devices */ sc->sc_port = rman_get_start(sc->sc_resources.io_base[0]); /* get irq, release io_base if we don't get it */ if(!(sc->sc_resources.irq = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->sc_resources.irq_rid, 0UL, ~0UL, 1, RF_ACTIVE))) { printf("avm_pnp%d: Could not get irq.\n",unit); error = ENXIO; goto fail; } /* not needed */ sc->sc_irq = rman_get_start(sc->sc_resources.irq); bus_setup_intr(dev,sc->sc_resources.irq,INTR_TYPE_NET, (void(*)(void*))avm_pnp_intr, sc,&ih); sc->sc_unit = unit; /* end of new-bus stuff */ ISAC_BASE = (caddr_t)ISIC_WHAT_ISAC; HSCX_A_BASE = (caddr_t)ISIC_WHAT_HSCXA; HSCX_B_BASE = (caddr_t)ISIC_WHAT_HSCXB; /* setup access routines */ sc->clearirq = NULL; sc->readreg = avm_pnp_read_reg; sc->writereg = avm_pnp_write_reg; sc->readfifo = avm_pnp_read_fifo; sc->writefifo = avm_pnp_write_fifo; /* setup card type */ sc->sc_cardtyp = CARD_TYPEP_AVM_PNP; /* setup IOM bus type */ sc->sc_bustyp = BUS_TYPE_IOM2; /* set up some other miscellaneous things */ sc->sc_ipac = 0; sc->sc_bfifolen = HSCX_FIFO_LEN; /* reset the card */ /* the Linux driver does this to clear any pending ISAC interrupts */ v = 0; v = ISAC_READ(I_STAR); v = ISAC_READ(I_MODE); v = ISAC_READ(I_ADF2); v = ISAC_READ(I_ISTA); if (v & ISAC_ISTA_EXI) { v = ISAC_READ(I_EXIR); } v = ISAC_READ(I_CIRR); ISAC_WRITE(I_MASK, 0xff); /* the Linux driver does this to clear any pending HSCX interrupts */ v = hscx_read_reg(0, HSCX_STAT, sc); v = hscx_read_reg(1, HSCX_STAT, sc); bus_space_write_1(btag, bhandle, STAT0_OFFSET, ASL_RESET_ALL|ASL_TIMERDISABLE); DELAY(SEC_DELAY/100); /* 10 ms */ bus_space_write_1(btag, bhandle, STAT1_OFFSET, ASL1_ENABLE_IOM|sc->sc_irq); DELAY(SEC_DELAY/100); /* 10 ms */ bus_space_write_1(btag, bhandle, STAT0_OFFSET, ASL_TIMERRESET|ASL_ENABLE_INT|ASL_TIMERDISABLE); DELAY(SEC_DELAY/100); /* 10 ms */ printf("ifpnp%d: AVM Fritz!Card PnP Class %#x Revision %d \n", unit, bus_space_read_1(btag, bhandle, CLASS_OFFSET), bus_space_read_1(btag, bhandle, REVISION_OFFSET)); printf("ifpnp%d: ISAC %s (IOM-%c)\n", unit, "2085 Version A1/A2 or 2086/2186 Version 1.1", sc->sc_bustyp == BUS_TYPE_IOM1 ? '1' : '2'); /* init the ISAC */ ifpnp_isac_init(sc); /* init the "HSCX" */ avm_pnp_bchannel_setup(sc->sc_unit, HSCX_CH_A, BPROT_NONE, 0); avm_pnp_bchannel_setup(sc->sc_unit, HSCX_CH_B, BPROT_NONE, 0); /* can't use the normal B-Channel stuff */ avm_pnp_init_linktab(sc); /* set trace level */ sc->sc_trace = TRACE_OFF; sc->sc_state = ISAC_IDLE; sc->sc_ibuf = NULL; sc->sc_ib = NULL; sc->sc_ilen = 0; sc->sc_obuf = NULL; sc->sc_op = NULL; sc->sc_ol = 0; sc->sc_freeflag = 0; sc->sc_obuf2 = NULL; sc->sc_freeflag2 = 0; callout_handle_init(&sc->sc_T3_callout); callout_handle_init(&sc->sc_T4_callout); /* init higher protocol layers */ i4b_l1_mph_status_ind(L0IFPNPUNIT(sc->sc_unit), STI_ATTACH, sc->sc_cardtyp, &avm_pnp_l1mux_func); fail: splx(s); return(error); } /* * this is the real interrupt routine */ static void avm_pnp_hscx_intr(int h_chan, u_int stat, u_int cnt, struct l1_softc *sc) { register l1_bchan_state_t *chan = &sc->sc_chan[h_chan]; int activity = -1; NDBGL1(L1_H_IRQ, "%#x", stat); if((stat & HSCX_INT_XDU) && (chan->bprot != BPROT_NONE))/* xmit data underrun */ { chan->stat_XDU++; NDBGL1(L1_H_XFRERR, "xmit data underrun"); /* abort the transmission */ sc->avma1pp_txl = 0; sc->avma1pp_cmd |= HSCX_CMD_XRS; hscx_write_reg(h_chan, HSCX_STAT, sc, 1); sc->avma1pp_cmd &= ~HSCX_CMD_XRS; hscx_write_reg(h_chan, HSCX_STAT, sc, 1); if (chan->out_mbuf_head != NULL) /* don't continue to transmit this buffer */ { i4b_Bfreembuf(chan->out_mbuf_head); chan->out_mbuf_cur = chan->out_mbuf_head = NULL; } } /* * The following is based on examination of the Linux driver. * * The logic here is different than with a "real" HSCX; all kinds * of information (interrupt/status bits) are in stat. * HSCX_INT_RPR indicates a receive interrupt * HSCX_STAT_RDO indicates an overrun condition, abort - * otherwise read the bytes ((stat & HSCX_STZT_RML_MASK) >> 8) * HSCX_STAT_RME indicates end-of-frame and apparently any * CRC/framing errors are only reported in this state. * if ((stat & HSCX_STAT_CRCVFRRAB) != HSCX_STAT_CRCVFR) * CRC/framing error */ if(stat & HSCX_INT_RPR) { register int fifo_data_len; int error = 0; /* always have to read the FIFO, so use a scratch buffer */ u_char scrbuf[HSCX_FIFO_LEN]; if(stat & HSCX_STAT_RDO) { chan->stat_RDO++; NDBGL1(L1_H_XFRERR, "receive data overflow"); error++; } /* * check whether we're receiving data for an inactive B-channel * and discard it. This appears to happen for telephony when * both B-channels are active and one is deactivated. Since * it is not really possible to deactivate the channel in that * case (the ASIC seems to deactivate _both_ channels), the * "deactivated" channel keeps receiving data which can lead * to exhaustion of mbufs and a kernel panic. * * This is a hack, but it's the only solution I can think of * without having the documentation for the ASIC. * GJ - 28 Nov 1999 */ if (chan->state == HSCX_IDLE) { NDBGL1(L1_H_XFRERR, "toss data from %d", h_chan); error++; } fifo_data_len = cnt; if(fifo_data_len == 0) fifo_data_len = sc->sc_bfifolen; /* ALWAYS read data from HSCX fifo */ HSCX_RDFIFO(h_chan, scrbuf, fifo_data_len); chan->rxcount += fifo_data_len; /* all error conditions checked, now decide and take action */ if(error == 0) { if(chan->in_mbuf == NULL) { if((chan->in_mbuf = i4b_Bgetmbuf(BCH_MAX_DATALEN)) == NULL) panic("L1 avm_pnp_hscx_intr: RME, cannot allocate mbuf!\n"); chan->in_cbptr = chan->in_mbuf->m_data; chan->in_len = 0; } if((chan->in_len + fifo_data_len) <= BCH_MAX_DATALEN) { /* OK to copy the data */ bcopy(scrbuf, chan->in_cbptr, fifo_data_len); chan->in_cbptr += fifo_data_len; chan->in_len += fifo_data_len; /* setup mbuf data length */ chan->in_mbuf->m_len = chan->in_len; chan->in_mbuf->m_pkthdr.len = chan->in_len; if(sc->sc_trace & TRACE_B_RX) { i4b_trace_hdr_t hdr; hdr.unit = L0IFPNPUNIT(sc->sc_unit); hdr.type = (h_chan == HSCX_CH_A ? TRC_CH_B1 : TRC_CH_B2); hdr.dir = FROM_NT; hdr.count = ++sc->sc_trace_bcount; MICROTIME(hdr.time); i4b_l1_trace_ind(&hdr, chan->in_mbuf->m_len, chan->in_mbuf->m_data); } if (stat & HSCX_STAT_RME) { if((stat & HSCX_STAT_CRCVFRRAB) == HSCX_STAT_CRCVFR) { (*chan->isic_drvr_linktab->bch_rx_data_ready)(chan->isic_drvr_linktab->unit); activity = ACT_RX; /* mark buffer ptr as unused */ chan->in_mbuf = NULL; chan->in_cbptr = NULL; chan->in_len = 0; } else { chan->stat_CRC++; NDBGL1(L1_H_XFRERR, "CRC/RAB"); if (chan->in_mbuf != NULL) { i4b_Bfreembuf(chan->in_mbuf); chan->in_mbuf = NULL; chan->in_cbptr = NULL; chan->in_len = 0; } } } } /* END enough space in mbuf */ else { if(chan->bprot == BPROT_NONE) { /* setup mbuf data length */ chan->in_mbuf->m_len = chan->in_len; chan->in_mbuf->m_pkthdr.len = chan->in_len; if(sc->sc_trace & TRACE_B_RX) { i4b_trace_hdr_t hdr; hdr.unit = L0IFPNPUNIT(sc->sc_unit); hdr.type = (h_chan == HSCX_CH_A ? TRC_CH_B1 : TRC_CH_B2); hdr.dir = FROM_NT; hdr.count = ++sc->sc_trace_bcount; MICROTIME(hdr.time); i4b_l1_trace_ind(&hdr, chan->in_mbuf->m_len, chan->in_mbuf->m_data); } if(!(i4b_l1_bchan_tel_silence(chan->in_mbuf->m_data, chan->in_mbuf->m_len))) activity = ACT_RX; /* move rx'd data to rx queue */ #if defined (__FreeBSD__) && __FreeBSD__ > 4 (void) IF_HANDOFF(&chan->rx_queue, chan->in_mbuf, NULL); #else if(!(IF_QFULL(&chan->rx_queue))) { IF_ENQUEUE(&chan->rx_queue, chan->in_mbuf); } else { i4b_Bfreembuf(chan->in_mbuf); } #endif /* signal upper layer that data are available */ (*chan->isic_drvr_linktab->bch_rx_data_ready)(chan->isic_drvr_linktab->unit); /* alloc new buffer */ if((chan->in_mbuf = i4b_Bgetmbuf(BCH_MAX_DATALEN)) == NULL) panic("L1 avm_pnp_hscx_intr: RPF, cannot allocate new mbuf!\n"); /* setup new data ptr */ chan->in_cbptr = chan->in_mbuf->m_data; /* OK to copy the data */ bcopy(scrbuf, chan->in_cbptr, fifo_data_len); chan->in_cbptr += fifo_data_len; chan->in_len = fifo_data_len; chan->rxcount += fifo_data_len; } else { NDBGL1(L1_H_XFRERR, "RAWHDLC rx buffer overflow in RPF, in_len=%d", chan->in_len); chan->in_cbptr = chan->in_mbuf->m_data; chan->in_len = 0; } } } /* if(error == 0) */ else { /* land here for RDO */ if (chan->in_mbuf != NULL) { i4b_Bfreembuf(chan->in_mbuf); chan->in_mbuf = NULL; chan->in_cbptr = NULL; chan->in_len = 0; } sc->avma1pp_txl = 0; sc->avma1pp_cmd |= HSCX_CMD_RRS; hscx_write_reg(h_chan, HSCX_STAT, sc, 1); sc->avma1pp_cmd &= ~HSCX_CMD_RRS; hscx_write_reg(h_chan, HSCX_STAT, sc, 1); } } /* transmit fifo empty, new data can be written to fifo */ if(stat & HSCX_INT_XPR) { /* * for a description what is going on here, please have * a look at isic_bchannel_start() in i4b_bchan.c ! */ NDBGL1(L1_H_IRQ, "unit %d, chan %d - XPR, Tx Fifo Empty!", sc->sc_unit, h_chan); if(chan->out_mbuf_cur == NULL) /* last frame is transmitted */ { IF_DEQUEUE(&chan->tx_queue, chan->out_mbuf_head); if(chan->out_mbuf_head == NULL) { chan->state &= ~HSCX_TX_ACTIVE; (*chan->isic_drvr_linktab->bch_tx_queue_empty)(chan->isic_drvr_linktab->unit); } else { chan->state |= HSCX_TX_ACTIVE; chan->out_mbuf_cur = chan->out_mbuf_head; chan->out_mbuf_cur_ptr = chan->out_mbuf_cur->m_data; chan->out_mbuf_cur_len = chan->out_mbuf_cur->m_len; if(sc->sc_trace & TRACE_B_TX) { i4b_trace_hdr_t hdr; hdr.unit = L0IFPNPUNIT(sc->sc_unit); hdr.type = (h_chan == HSCX_CH_A ? TRC_CH_B1 : TRC_CH_B2); hdr.dir = FROM_TE; hdr.count = ++sc->sc_trace_bcount; MICROTIME(hdr.time); i4b_l1_trace_ind(&hdr, chan->out_mbuf_cur->m_len, chan->out_mbuf_cur->m_data); } if(chan->bprot == BPROT_NONE) { if(!(i4b_l1_bchan_tel_silence(chan->out_mbuf_cur->m_data, chan->out_mbuf_cur->m_len))) activity = ACT_TX; } else { activity = ACT_TX; } } } avm_pnp_hscx_fifo(chan, sc); } /* call timeout handling routine */ if(activity == ACT_RX || activity == ACT_TX) (*chan->isic_drvr_linktab->bch_activity)(chan->isic_drvr_linktab->unit, activity); } /* * this is the main routine which checks each channel and then calls * the real interrupt routine as appropriate */ static void avm_pnp_hscx_int_handler(struct l1_softc *sc) { u_char stat = 0; u_char cnt = 0; stat = hscx_read_reg(0, HSCX_STAT, sc); if (stat & HSCX_INT_RPR) cnt = hscx_read_reg(0, HSCX_STAT+1, sc); if (stat & HSCX_INT_MASK) avm_pnp_hscx_intr(0, stat, cnt, sc); cnt = 0; stat = hscx_read_reg(1, HSCX_STAT, sc); if (stat & HSCX_INT_RPR) cnt = hscx_read_reg(1, HSCX_STAT+1, sc); if (stat & HSCX_INT_MASK) avm_pnp_hscx_intr(1, stat, cnt, sc); } static void avm_pnp_intr(void *xsc) { u_char stat; struct l1_softc *sc; bus_space_handle_t bhandle; bus_space_tag_t btag; sc = xsc; bhandle = rman_get_bushandle(sc->sc_resources.io_base[0]); btag = rman_get_bustag(sc->sc_resources.io_base[0]); stat = bus_space_read_1(btag, bhandle, STAT0_OFFSET); NDBGL1(L1_H_IRQ, "stat %x", stat); /* was there an interrupt from this card ? */ if ((stat & ASL_IRQ_Pending) == ASL_IRQ_Pending) return; /* no */ /* interrupts are low active */ if (!(stat & ASL_IRQ_TIMER)) NDBGL1(L1_H_IRQ, "timer interrupt ???"); if (!(stat & ASL_IRQ_HSCX)) { NDBGL1(L1_H_IRQ, "HSCX"); avm_pnp_hscx_int_handler(sc); } if (!(stat & ASL_IRQ_ISAC)) { NDBGL1(L1_H_IRQ, "ISAC"); ifpnp_isac_intr(sc); } } static void avm_pnp_hscx_init(struct l1_softc *sc, int h_chan, int activate) { l1_bchan_state_t *chan = &sc->sc_chan[h_chan]; NDBGL1(L1_BCHAN, "unit=%d, channel=%d, %s", sc->sc_unit, h_chan, activate ? "activate" : "deactivate"); if (activate == 0) { /* only deactivate if both channels are idle */ if (sc->sc_chan[HSCX_CH_A].state != HSCX_IDLE || sc->sc_chan[HSCX_CH_B].state != HSCX_IDLE) { return; } sc->avma1pp_cmd = HSCX_CMD_XRS|HSCX_CMD_RRS; sc->avma1pp_prot = HSCX_MODE_TRANS; hscx_write_reg(h_chan, HSCX_STAT, sc, 5); return; } if(chan->bprot == BPROT_RHDLC) { NDBGL1(L1_BCHAN, "BPROT_RHDLC"); /* HDLC Frames, transparent mode 0 */ sc->avma1pp_cmd = HSCX_CMD_XRS|HSCX_CMD_RRS; sc->avma1pp_prot = HSCX_MODE_ITF_FLG; hscx_write_reg(h_chan, HSCX_STAT, sc, 5); sc->avma1pp_cmd = HSCX_CMD_XRS; hscx_write_reg(h_chan, HSCX_STAT, sc, 1); sc->avma1pp_cmd = 0; } else { NDBGL1(L1_BCHAN, "BPROT_NONE??"); /* Raw Telephony, extended transparent mode 1 */ sc->avma1pp_cmd = HSCX_CMD_XRS|HSCX_CMD_RRS; sc->avma1pp_prot = HSCX_MODE_TRANS; hscx_write_reg(h_chan, HSCX_STAT, sc, 5); sc->avma1pp_cmd = HSCX_CMD_XRS; hscx_write_reg(h_chan, HSCX_STAT, sc, 1); sc->avma1pp_cmd = 0; } } static void avm_pnp_bchannel_setup(int unit, int h_chan, int bprot, int activate) { struct l1_softc *sc = ifpnp_scp[unit]; l1_bchan_state_t *chan = &sc->sc_chan[h_chan]; int s = SPLI4B(); if(activate == 0) { /* deactivation */ chan->state = HSCX_IDLE; avm_pnp_hscx_init(sc, h_chan, activate); } NDBGL1(L1_BCHAN, "unit=%d, channel=%d, %s", sc->sc_unit, h_chan, activate ? "activate" : "deactivate"); /* general part */ chan->unit = sc->sc_unit; /* unit number */ chan->channel = h_chan; /* B channel */ chan->bprot = bprot; /* B channel protocol */ chan->state = HSCX_IDLE; /* B channel state */ /* receiver part */ chan->rx_queue.ifq_maxlen = IFQ_MAXLEN; #if defined (__FreeBSD__) && __FreeBSD__ > 4 mtx_init(&chan->rx_queue.ifq_mtx, "i4b_avm_pnp_rx", MTX_DEF); #endif i4b_Bcleanifq(&chan->rx_queue); /* clean rx queue */ chan->rxcount = 0; /* reset rx counter */ i4b_Bfreembuf(chan->in_mbuf); /* clean rx mbuf */ chan->in_mbuf = NULL; /* reset mbuf ptr */ chan->in_cbptr = NULL; /* reset mbuf curr ptr */ chan->in_len = 0; /* reset mbuf data len */ /* transmitter part */ chan->tx_queue.ifq_maxlen = IFQ_MAXLEN; #if defined (__FreeBSD__) && __FreeBSD__ > 4 mtx_init(&chan->tx_queue.ifq_mtx, "i4b_avm_pnp_tx", MTX_DEF); #endif i4b_Bcleanifq(&chan->tx_queue); /* clean tx queue */ chan->txcount = 0; /* reset tx counter */ i4b_Bfreembuf(chan->out_mbuf_head); /* clean tx mbuf */ chan->out_mbuf_head = NULL; /* reset head mbuf ptr */ chan->out_mbuf_cur = NULL; /* reset current mbuf ptr */ chan->out_mbuf_cur_ptr = NULL; /* reset current mbuf data ptr */ chan->out_mbuf_cur_len = 0; /* reset current mbuf data cnt */ if(activate != 0) { /* activation */ avm_pnp_hscx_init(sc, h_chan, activate); chan->state |= HSCX_AVMA1PP_ACTIVE; } splx(s); } static void avm_pnp_bchannel_start(int unit, int h_chan) { struct l1_softc *sc = ifpnp_scp[unit]; register l1_bchan_state_t *chan = &sc->sc_chan[h_chan]; int s; int activity = -1; s = SPLI4B(); /* enter critical section */ if(chan->state & HSCX_TX_ACTIVE) /* already running ? */ { splx(s); return; /* yes, leave */ } /* get next mbuf from queue */ IF_DEQUEUE(&chan->tx_queue, chan->out_mbuf_head); if(chan->out_mbuf_head == NULL) /* queue empty ? */ { splx(s); /* leave critical section */ return; /* yes, exit */ } /* init current mbuf values */ chan->out_mbuf_cur = chan->out_mbuf_head; chan->out_mbuf_cur_len = chan->out_mbuf_cur->m_len; chan->out_mbuf_cur_ptr = chan->out_mbuf_cur->m_data; /* activity indicator for timeout handling */ if(chan->bprot == BPROT_NONE) { if(!(i4b_l1_bchan_tel_silence(chan->out_mbuf_cur->m_data, chan->out_mbuf_cur->m_len))) activity = ACT_TX; } else { activity = ACT_TX; } chan->state |= HSCX_TX_ACTIVE; /* we start transmitting */ if(sc->sc_trace & TRACE_B_TX) /* if trace, send mbuf to trace dev */ { i4b_trace_hdr_t hdr; hdr.unit = L0IFPNPUNIT(sc->sc_unit); hdr.type = (h_chan == HSCX_CH_A ? TRC_CH_B1 : TRC_CH_B2); hdr.dir = FROM_TE; hdr.count = ++sc->sc_trace_bcount; MICROTIME(hdr.time); i4b_l1_trace_ind(&hdr, chan->out_mbuf_cur->m_len, chan->out_mbuf_cur->m_data); } avm_pnp_hscx_fifo(chan, sc); /* call timeout handling routine */ if(activity == ACT_RX || activity == ACT_TX) (*chan->isic_drvr_linktab->bch_activity)(chan->isic_drvr_linktab->unit, activity); splx(s); } /*---------------------------------------------------------------------------* * return the address of isic drivers linktab *---------------------------------------------------------------------------*/ static isdn_link_t * avm_pnp_ret_linktab(int unit, int channel) { struct l1_softc *sc = ifpnp_scp[unit]; l1_bchan_state_t *chan = &sc->sc_chan[channel]; return(&chan->isic_isdn_linktab); } /*---------------------------------------------------------------------------* * set the driver linktab in the b channel softc *---------------------------------------------------------------------------*/ static void avm_pnp_set_linktab(int unit, int channel, drvr_link_t *dlt) { struct l1_softc *sc = ifpnp_scp[unit]; l1_bchan_state_t *chan = &sc->sc_chan[channel]; chan->isic_drvr_linktab = dlt; } /*---------------------------------------------------------------------------* * initialize our local linktab *---------------------------------------------------------------------------*/ static void avm_pnp_init_linktab(struct l1_softc *sc) { l1_bchan_state_t *chan = &sc->sc_chan[HSCX_CH_A]; isdn_link_t *lt = &chan->isic_isdn_linktab; /* make sure the hardware driver is known to layer 4 */ /* avoid overwriting if already set */ if (ctrl_types[CTRL_PASSIVE].set_linktab == NULL) { ctrl_types[CTRL_PASSIVE].set_linktab = avm_pnp_set_linktab; ctrl_types[CTRL_PASSIVE].get_linktab = avm_pnp_ret_linktab; } /* local setup */ lt->unit = sc->sc_unit; lt->channel = HSCX_CH_A; lt->bch_config = avm_pnp_bchannel_setup; lt->bch_tx_start = avm_pnp_bchannel_start; lt->bch_stat = avm_pnp_bchannel_stat; lt->tx_queue = &chan->tx_queue; /* used by non-HDLC data transfers, i.e. telephony drivers */ lt->rx_queue = &chan->rx_queue; /* used by HDLC data transfers, i.e. ipr and isp drivers */ lt->rx_mbuf = &chan->in_mbuf; chan = &sc->sc_chan[HSCX_CH_B]; lt = &chan->isic_isdn_linktab; lt->unit = sc->sc_unit; lt->channel = HSCX_CH_B; lt->bch_config = avm_pnp_bchannel_setup; lt->bch_tx_start = avm_pnp_bchannel_start; lt->bch_stat = avm_pnp_bchannel_stat; lt->tx_queue = &chan->tx_queue; /* used by non-HDLC data transfers, i.e. telephony drivers */ lt->rx_queue = &chan->rx_queue; /* used by HDLC data transfers, i.e. ipr and isp drivers */ lt->rx_mbuf = &chan->in_mbuf; } /* * use this instead of isic_bchannel_stat in i4b_bchan.c because it's static */ static void avm_pnp_bchannel_stat(int unit, int h_chan, bchan_statistics_t *bsp) { struct l1_softc *sc = ifpnp_scp[unit]; l1_bchan_state_t *chan = &sc->sc_chan[h_chan]; int s; s = SPLI4B(); bsp->outbytes = chan->txcount; bsp->inbytes = chan->rxcount; chan->txcount = 0; chan->rxcount = 0; splx(s); } /*---------------------------------------------------------------------------* * fill HSCX fifo with data from the current mbuf * Put this here until it can go into i4b_hscx.c *---------------------------------------------------------------------------*/ static int avm_pnp_hscx_fifo(l1_bchan_state_t *chan, struct l1_softc *sc) { int len; int nextlen; int i; int cmd = 0; /* using a scratch buffer simplifies writing to the FIFO */ u_char scrbuf[HSCX_FIFO_LEN]; len = 0; /* * fill the HSCX tx fifo with data from the current mbuf. if * current mbuf holds less data than HSCX fifo length, try to * get the next mbuf from (a possible) mbuf chain. if there is * not enough data in a single mbuf or in a chain, then this * is the last mbuf and we tell the HSCX that it has to send * CRC and closing flag */ while(chan->out_mbuf_cur && len != sc->sc_bfifolen) { nextlen = min(chan->out_mbuf_cur_len, sc->sc_bfifolen - len); #ifdef NOTDEF printf("i:mh=%p, mc=%p, mcp=%p, mcl=%d l=%d nl=%d # ", chan->out_mbuf_head, chan->out_mbuf_cur, chan->out_mbuf_cur_ptr, chan->out_mbuf_cur_len, len, nextlen); #endif cmd |= HSCX_CMDR_XTF; /* collect the data in the scratch buffer */ for (i = 0; i < nextlen; i++) scrbuf[i + len] = chan->out_mbuf_cur_ptr[i]; len += nextlen; chan->txcount += nextlen; chan->out_mbuf_cur_ptr += nextlen; chan->out_mbuf_cur_len -= nextlen; if(chan->out_mbuf_cur_len == 0) { if((chan->out_mbuf_cur = chan->out_mbuf_cur->m_next) != NULL) { chan->out_mbuf_cur_ptr = chan->out_mbuf_cur->m_data; chan->out_mbuf_cur_len = chan->out_mbuf_cur->m_len; if(sc->sc_trace & TRACE_B_TX) { i4b_trace_hdr_t hdr; hdr.unit = L0IFPNPUNIT(sc->sc_unit); hdr.type = (chan->channel == HSCX_CH_A ? TRC_CH_B1 : TRC_CH_B2); hdr.dir = FROM_TE; hdr.count = ++sc->sc_trace_bcount; MICROTIME(hdr.time); i4b_l1_trace_ind(&hdr, chan->out_mbuf_cur->m_len, chan->out_mbuf_cur->m_data); } } else { if (chan->bprot != BPROT_NONE) cmd |= HSCX_CMDR_XME; i4b_Bfreembuf(chan->out_mbuf_head); chan->out_mbuf_head = NULL; } } } /* write what we have from the scratch buf to the HSCX fifo */ if (len != 0) HSCX_WRFIFO(chan->channel, scrbuf, len); return(cmd); } /*---------------------------------------------------------------------------* * ifpnp - ISAC interrupt routine *---------------------------------------------------------------------------*/ static void ifpnp_isac_intr(struct l1_softc *sc) { register u_char isac_irq_stat; for(;;) { /* get isac irq status */ isac_irq_stat = ISAC_READ(I_ISTA); if(isac_irq_stat) ifpnp_isac_irq(sc, isac_irq_stat); /* isac handler */ else break; } ISAC_WRITE(I_MASK, 0xff); DELAY(100); ISAC_WRITE(I_MASK, ISAC_IMASK); } /*---------------------------------------------------------------------------* * ifpnp_recover - try to recover from irq lockup *---------------------------------------------------------------------------*/ void ifpnp_recover(struct l1_softc *sc) { u_char byte; /* get isac irq status */ byte = ISAC_READ(I_ISTA); NDBGL1(L1_ERROR, " ISAC: ISTA = 0x%x", byte); if(byte & ISAC_ISTA_EXI) NDBGL1(L1_ERROR, " ISAC: EXIR = 0x%x", (u_char)ISAC_READ(I_EXIR)); if(byte & ISAC_ISTA_CISQ) { byte = ISAC_READ(I_CIRR); NDBGL1(L1_ERROR, " ISAC: CISQ = 0x%x", byte); if(byte & ISAC_CIRR_SQC) NDBGL1(L1_ERROR, " ISAC: SQRR = 0x%x", (u_char)ISAC_READ(I_SQRR)); } NDBGL1(L1_ERROR, " ISAC: IMASK = 0x%x", ISAC_IMASK); ISAC_WRITE(I_MASK, 0xff); DELAY(100); ISAC_WRITE(I_MASK, ISAC_IMASK); } #endif /* NIFPNP > 0 */