/*- * Copyright (c) 1982, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)if_ethersubr.c 8.1 (Berkeley) 6/10/93 * $FreeBSD$ */ #include "opt_atalk.h" #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipx.h" #include "opt_bdg.h" #include "opt_mac.h" #include "opt_netgraph.h" #include "opt_carp.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(INET) || defined(INET6) #include #include #include #include #include #endif #ifdef INET6 #include #endif #ifdef DEV_CARP #include #endif #ifdef IPX #include #include #endif int (*ef_inputp)(struct ifnet*, struct ether_header *eh, struct mbuf *m); int (*ef_outputp)(struct ifnet *ifp, struct mbuf **mp, struct sockaddr *dst, short *tp, int *hlen); #ifdef NETATALK #include #include #include #define llc_snap_org_code llc_un.type_snap.org_code #define llc_snap_ether_type llc_un.type_snap.ether_type extern u_char at_org_code[3]; extern u_char aarp_org_code[3]; #endif /* NETATALK */ /* netgraph node hooks for ng_ether(4) */ void (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp); void (*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m); int (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp); void (*ng_ether_attach_p)(struct ifnet *ifp); void (*ng_ether_detach_p)(struct ifnet *ifp); void (*vlan_input_p)(struct ifnet *, struct mbuf *); /* bridge support */ int do_bridge; bridge_in_t *bridge_in_ptr; bdg_forward_t *bdg_forward_ptr; bdgtakeifaces_t *bdgtakeifaces_ptr; struct bdg_softc *ifp2sc; struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *); int (*bridge_output_p)(struct ifnet *, struct mbuf *, struct sockaddr *, struct rtentry *); void (*bridge_dn_p)(struct mbuf *, struct ifnet *); static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; static int ether_resolvemulti(struct ifnet *, struct sockaddr **, struct sockaddr *); /* XXX: should be in an arp support file, not here */ MALLOC_DEFINE(M_ARPCOM, "arpcom", "802.* interface internals"); #define senderr(e) do { error = (e); goto bad;} while (0) #if defined(INET) || defined(INET6) int ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst, struct ip_fw **rule, int shared); static int ether_ipfw; #endif /* * Ethernet output routine. * Encapsulate a packet of type family for the local net. * Use trailer local net encapsulation if enough data in first * packet leaves a multiple of 512 bytes of data in remainder. */ int ether_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst, struct rtentry *rt0) { short type; int error, hdrcmplt = 0; u_char esrc[ETHER_ADDR_LEN], edst[ETHER_ADDR_LEN]; struct ether_header *eh; int loop_copy = 1; int hlen; /* link layer header length */ #ifdef MAC error = mac_check_ifnet_transmit(ifp, m); if (error) senderr(error); #endif if (ifp->if_flags & IFF_MONITOR) senderr(ENETDOWN); if (!((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))) senderr(ENETDOWN); hlen = ETHER_HDR_LEN; switch (dst->sa_family) { #ifdef INET case AF_INET: error = arpresolve(ifp, rt0, m, dst, edst); if (error) return (error == EWOULDBLOCK ? 0 : error); type = htons(ETHERTYPE_IP); break; case AF_ARP: { struct arphdr *ah; ah = mtod(m, struct arphdr *); ah->ar_hrd = htons(ARPHRD_ETHER); loop_copy = 0; /* if this is for us, don't do it */ switch(ntohs(ah->ar_op)) { case ARPOP_REVREQUEST: case ARPOP_REVREPLY: type = htons(ETHERTYPE_REVARP); break; case ARPOP_REQUEST: case ARPOP_REPLY: default: type = htons(ETHERTYPE_ARP); break; } if (m->m_flags & M_BCAST) bcopy(ifp->if_broadcastaddr, edst, ETHER_ADDR_LEN); else bcopy(ar_tha(ah), edst, ETHER_ADDR_LEN); } break; #endif #ifdef INET6 case AF_INET6: error = nd6_storelladdr(ifp, rt0, m, dst, (u_char *)edst); if (error) return error; type = htons(ETHERTYPE_IPV6); break; #endif #ifdef IPX case AF_IPX: if (ef_outputp) { error = ef_outputp(ifp, &m, dst, &type, &hlen); if (error) goto bad; } else type = htons(ETHERTYPE_IPX); bcopy((caddr_t)&(((struct sockaddr_ipx *)dst)->sipx_addr.x_host), (caddr_t)edst, sizeof (edst)); break; #endif #ifdef NETATALK case AF_APPLETALK: { struct at_ifaddr *aa; if ((aa = at_ifawithnet((struct sockaddr_at *)dst)) == NULL) senderr(EHOSTUNREACH); /* XXX */ if (!aarpresolve(ifp, m, (struct sockaddr_at *)dst, edst)) return (0); /* * In the phase 2 case, need to prepend an mbuf for the llc header. */ if ( aa->aa_flags & AFA_PHASE2 ) { struct llc llc; M_PREPEND(m, LLC_SNAPFRAMELEN, M_DONTWAIT); if (m == NULL) senderr(ENOBUFS); llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP; llc.llc_control = LLC_UI; bcopy(at_org_code, llc.llc_snap_org_code, sizeof(at_org_code)); llc.llc_snap_ether_type = htons( ETHERTYPE_AT ); bcopy(&llc, mtod(m, caddr_t), LLC_SNAPFRAMELEN); type = htons(m->m_pkthdr.len); hlen = LLC_SNAPFRAMELEN + ETHER_HDR_LEN; } else { type = htons(ETHERTYPE_AT); } break; } #endif /* NETATALK */ case pseudo_AF_HDRCMPLT: hdrcmplt = 1; eh = (struct ether_header *)dst->sa_data; (void)memcpy(esrc, eh->ether_shost, sizeof (esrc)); /* FALLTHROUGH */ case AF_UNSPEC: loop_copy = 0; /* if this is for us, don't do it */ eh = (struct ether_header *)dst->sa_data; (void)memcpy(edst, eh->ether_dhost, sizeof (edst)); type = eh->ether_type; break; default: if_printf(ifp, "can't handle af%d\n", dst->sa_family); senderr(EAFNOSUPPORT); } /* * Add local net header. If no space in first mbuf, * allocate another. */ M_PREPEND(m, ETHER_HDR_LEN, M_DONTWAIT); if (m == NULL) senderr(ENOBUFS); eh = mtod(m, struct ether_header *); (void)memcpy(&eh->ether_type, &type, sizeof(eh->ether_type)); (void)memcpy(eh->ether_dhost, edst, sizeof (edst)); if (hdrcmplt) (void)memcpy(eh->ether_shost, esrc, sizeof(eh->ether_shost)); else (void)memcpy(eh->ether_shost, IFP2ENADDR(ifp), sizeof(eh->ether_shost)); /* * Bridges require special output handling. */ if (ifp->if_bridge) { BRIDGE_OUTPUT(ifp, m, error); return (error); } /* * If a simplex interface, and the packet is being sent to our * Ethernet address or a broadcast address, loopback a copy. * XXX To make a simplex device behave exactly like a duplex * device, we should copy in the case of sending to our own * ethernet address (thus letting the original actually appear * on the wire). However, we don't do that here for security * reasons and compatibility with the original behavior. */ if ((ifp->if_flags & IFF_SIMPLEX) && loop_copy && m_tag_find(m, PACKET_TAG_PF_ROUTED, NULL) == NULL) { int csum_flags = 0; if (m->m_pkthdr.csum_flags & CSUM_IP) csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID); if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR); if (m->m_flags & M_BCAST) { struct mbuf *n; if ((n = m_copy(m, 0, (int)M_COPYALL)) != NULL) { n->m_pkthdr.csum_flags |= csum_flags; if (csum_flags & CSUM_DATA_VALID) n->m_pkthdr.csum_data = 0xffff; (void)if_simloop(ifp, n, dst->sa_family, hlen); } else ifp->if_iqdrops++; } else if (bcmp(eh->ether_dhost, eh->ether_shost, ETHER_ADDR_LEN) == 0) { m->m_pkthdr.csum_flags |= csum_flags; if (csum_flags & CSUM_DATA_VALID) m->m_pkthdr.csum_data = 0xffff; (void) if_simloop(ifp, m, dst->sa_family, hlen); return (0); /* XXX */ } } #ifdef DEV_CARP if (ifp->if_carp && (error = carp_output(ifp, m, dst, NULL))) goto bad; #endif /* Handle ng_ether(4) processing, if any */ if (IFP2AC(ifp)->ac_netgraph != NULL) { if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) { bad: if (m != NULL) m_freem(m); return (error); } if (m == NULL) return (0); } /* Continue with link-layer output */ return ether_output_frame(ifp, m); } /* * Ethernet link layer output routine to send a raw frame to the device. * * This assumes that the 14 byte Ethernet header is present and contiguous * in the first mbuf (if BRIDGE'ing). */ int ether_output_frame(struct ifnet *ifp, struct mbuf *m) { #if defined(INET) || defined(INET6) struct ip_fw *rule = ip_dn_claim_rule(m); #else void *rule = NULL; #endif int error; if (rule == NULL && BDG_ACTIVE(ifp)) { /* * Beware, the bridge code notices the null rcvif and * uses that identify that it's being called from * ether_output as opposd to ether_input. Yech. */ m->m_pkthdr.rcvif = NULL; m = bdg_forward_ptr(m, ifp); if (m != NULL) m_freem(m); return (0); } #if defined(INET) || defined(INET6) if (IPFW_LOADED && ether_ipfw != 0) { if (ether_ipfw_chk(&m, ifp, &rule, 0) == 0) { if (m) { m_freem(m); return EACCES; /* pkt dropped */ } else return 0; /* consumed e.g. in a pipe */ } } #endif /* * Queue message on interface, update output statistics if * successful, and start output if interface not yet active. */ IFQ_HANDOFF(ifp, m, error); return (error); } #if defined(INET) || defined(INET6) /* * ipfw processing for ethernet packets (in and out). * The second parameter is NULL from ether_demux, and ifp from * ether_output_frame. This section of code could be used from * bridge.c as well as long as we use some extra info * to distinguish that case from ether_output_frame(); */ int ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst, struct ip_fw **rule, int shared) { struct ether_header *eh; struct ether_header save_eh; struct mbuf *m; int i; struct ip_fw_args args; if (*rule != NULL && fw_one_pass) return 1; /* dummynet packet, already partially processed */ /* * I need some amt of data to be contiguous, and in case others need * the packet (shared==1) also better be in the first mbuf. */ m = *m0; i = min( m->m_pkthdr.len, max_protohdr); if ( shared || m->m_len < i) { m = m_pullup(m, i); if (m == NULL) { *m0 = m; return 0; } } eh = mtod(m, struct ether_header *); save_eh = *eh; /* save copy for restore below */ m_adj(m, ETHER_HDR_LEN); /* strip ethernet header */ args.m = m; /* the packet we are looking at */ args.oif = dst; /* destination, if any */ args.rule = *rule; /* matching rule to restart */ args.next_hop = NULL; /* we do not support forward yet */ args.eh = &save_eh; /* MAC header for bridged/MAC packets */ i = ip_fw_chk_ptr(&args); m = args.m; if (m != NULL) { /* * Restore Ethernet header, as needed, in case the * mbuf chain was replaced by ipfw. */ M_PREPEND(m, ETHER_HDR_LEN, M_DONTWAIT); if (m == NULL) { *m0 = m; return 0; } if (eh != mtod(m, struct ether_header *)) bcopy(&save_eh, mtod(m, struct ether_header *), ETHER_HDR_LEN); } *m0 = m; *rule = args.rule; if (i == IP_FW_DENY) /* drop */ return 0; KASSERT(m != NULL, ("ether_ipfw_chk: m is NULL")); if (i == IP_FW_PASS) /* a PASS rule. */ return 1; if (DUMMYNET_LOADED && (i == IP_FW_DUMMYNET)) { /* * Pass the pkt to dummynet, which consumes it. * If shared, make a copy and keep the original. */ if (shared) { m = m_copypacket(m, M_DONTWAIT); if (m == NULL) return 0; } else { /* * Pass the original to dummynet and * nothing back to the caller */ *m0 = NULL ; } ip_dn_io_ptr(m, dst ? DN_TO_ETH_OUT: DN_TO_ETH_DEMUX, &args); return 0; } /* * XXX at some point add support for divert/forward actions. * If none of the above matches, we have to drop the pkt. */ return 0; } #endif /* * Process a received Ethernet packet; the packet is in the * mbuf chain m with the ethernet header at the front. */ static void ether_input(struct ifnet *ifp, struct mbuf *m) { struct ether_header *eh; u_short etype; /* * Do consistency checks to verify assumptions * made by code past this point. */ if ((m->m_flags & M_PKTHDR) == 0) { if_printf(ifp, "discard frame w/o packet header\n"); ifp->if_ierrors++; m_freem(m); return; } if (m->m_len < ETHER_HDR_LEN) { /* XXX maybe should pullup? */ if_printf(ifp, "discard frame w/o leading ethernet " "header (len %u pkt len %u)\n", m->m_len, m->m_pkthdr.len); ifp->if_ierrors++; m_freem(m); return; } eh = mtod(m, struct ether_header *); etype = ntohs(eh->ether_type); if (m->m_pkthdr.len > ETHER_MAX_FRAME(ifp, etype, m->m_flags & M_HASFCS)) { if_printf(ifp, "discard oversize frame " "(ether type %x flags %x len %u > max %lu)\n", etype, m->m_flags, m->m_pkthdr.len, ETHER_MAX_FRAME(ifp, etype, m->m_flags & M_HASFCS)); ifp->if_ierrors++; m_freem(m); return; } if (m->m_pkthdr.rcvif == NULL) { if_printf(ifp, "discard frame w/o interface pointer\n"); ifp->if_ierrors++; m_freem(m); return; } #ifdef DIAGNOSTIC if (m->m_pkthdr.rcvif != ifp) { if_printf(ifp, "Warning, frame marked as received on %s\n", m->m_pkthdr.rcvif->if_xname); } #endif #ifdef MAC /* * Tag the mbuf with an appropriate MAC label before any other * consumers can get to it. */ mac_create_mbuf_from_ifnet(ifp, m); #endif /* * Give bpf a chance at the packet. */ BPF_MTAP(ifp, m); if (ifp->if_flags & IFF_MONITOR) { /* * Interface marked for monitoring; discard packet. */ m_freem(m); return; } /* If the CRC is still on the packet, trim it off. */ if (m->m_flags & M_HASFCS) { m_adj(m, -ETHER_CRC_LEN); m->m_flags &= ~M_HASFCS; } ifp->if_ibytes += m->m_pkthdr.len; /* Handle ng_ether(4) processing, if any */ if (IFP2AC(ifp)->ac_netgraph != NULL) { (*ng_ether_input_p)(ifp, &m); if (m == NULL) return; } /* * Tap the packet off here for a bridge. bridge_input() * will return NULL if it has consumed the packet, otherwise * it gets processed as normal. Note that bridge_input() * will always return the original packet if we need to * process it locally. */ if (ifp->if_bridge) { BRIDGE_INPUT(ifp, m); if (m == NULL) return; } /* Check for bridging mode */ if (BDG_ACTIVE(ifp) ) if ((m = bridge_in_ptr(ifp, m)) == NULL) return; /* First chunk of an mbuf contains good entropy */ if (harvest.ethernet) random_harvest(m, 16, 3, 0, RANDOM_NET); ether_demux(ifp, m); } /* * Upper layer processing for a received Ethernet packet. */ void ether_demux(struct ifnet *ifp, struct mbuf *m) { struct ether_header *eh; int isr; u_short ether_type; #if defined(NETATALK) struct llc *l; #endif #if defined(INET) || defined(INET6) struct ip_fw *rule = ip_dn_claim_rule(m); #endif KASSERT(ifp != NULL, ("ether_demux: NULL interface pointer")); eh = mtod(m, struct ether_header *); ether_type = ntohs(eh->ether_type); #if defined(INET) || defined(INET6) if (rule) /* packet was already bridged */ goto post_stats; #endif if (!(BDG_ACTIVE(ifp)) && !(ifp->if_bridge) && !((ether_type == ETHERTYPE_VLAN || m->m_flags & M_VLANTAG) && ifp->if_nvlans > 0)) { #ifdef DEV_CARP /* * XXX: Okay, we need to call carp_forus() and - if it is for * us jump over code that does the normal check * "IFP2ENADDR(ifp) == ether_dhost". The check sequence is a bit * different from OpenBSD, so we jump over as few code as * possible, to catch _all_ sanity checks. This needs * evaluation, to see if the carp ether_dhost values break any * of these checks! */ if (ifp->if_carp && carp_forus(ifp->if_carp, eh->ether_dhost)) goto pre_stats; #endif /* * Discard packet if upper layers shouldn't see it because it * was unicast to a different Ethernet address. If the driver * is working properly, then this situation can only happen * when the interface is in promiscuous mode. * * If VLANs are active, and this packet has a VLAN tag, do * not drop it here but pass it on to the VLAN layer, to * give them a chance to consider it as well (e. g. in case * bridging is only active on a VLAN). They will drop it if * it's undesired. */ if ((ifp->if_flags & IFF_PROMISC) != 0 && !ETHER_IS_MULTICAST(eh->ether_dhost) && bcmp(eh->ether_dhost, IFP2ENADDR(ifp), ETHER_ADDR_LEN) != 0 && (ifp->if_flags & IFF_PPROMISC) == 0) { m_freem(m); return; } } #ifdef DEV_CARP pre_stats: #endif /* Discard packet if interface is not up */ if ((ifp->if_flags & IFF_UP) == 0) { m_freem(m); return; } if (ETHER_IS_MULTICAST(eh->ether_dhost)) { if (bcmp(etherbroadcastaddr, eh->ether_dhost, sizeof(etherbroadcastaddr)) == 0) m->m_flags |= M_BCAST; else m->m_flags |= M_MCAST; } if (m->m_flags & (M_BCAST|M_MCAST)) ifp->if_imcasts++; #if defined(INET) || defined(INET6) post_stats: if (IPFW_LOADED && ether_ipfw != 0) { if (ether_ipfw_chk(&m, NULL, &rule, 0) == 0) { if (m) m_freem(m); return; } } #endif /* * Check to see if the device performed the VLAN decapsulation and * provided us with the tag. */ if (m->m_flags & M_VLANTAG) { /* * If no VLANs are configured, drop. */ if (ifp->if_nvlans == 0) { ifp->if_noproto++; m_freem(m); return; } /* * vlan_input() will either recursively call ether_input() * or drop the packet. */ KASSERT(vlan_input_p != NULL,("ether_input: VLAN not loaded!")); (*vlan_input_p)(ifp, m); return; } /* * Handle protocols that expect to have the Ethernet header * (and possibly FCS) intact. */ switch (ether_type) { case ETHERTYPE_VLAN: if (ifp->if_nvlans != 0) { KASSERT(vlan_input_p,("ether_input: VLAN not loaded!")); (*vlan_input_p)(ifp, m); } else { ifp->if_noproto++; m_freem(m); } return; } /* Strip off Ethernet header. */ m_adj(m, ETHER_HDR_LEN); /* If the CRC is still on the packet, trim it off. */ if (m->m_flags & M_HASFCS) { m_adj(m, -ETHER_CRC_LEN); m->m_flags &= ~M_HASFCS; } switch (ether_type) { #ifdef INET case ETHERTYPE_IP: if (ip_fastforward(m)) return; isr = NETISR_IP; break; case ETHERTYPE_ARP: if (ifp->if_flags & IFF_NOARP) { /* Discard packet if ARP is disabled on interface */ m_freem(m); return; } isr = NETISR_ARP; break; #endif #ifdef IPX case ETHERTYPE_IPX: if (ef_inputp && ef_inputp(ifp, eh, m) == 0) return; isr = NETISR_IPX; break; #endif #ifdef INET6 case ETHERTYPE_IPV6: isr = NETISR_IPV6; break; #endif #ifdef NETATALK case ETHERTYPE_AT: isr = NETISR_ATALK1; break; case ETHERTYPE_AARP: isr = NETISR_AARP; break; #endif /* NETATALK */ default: #ifdef IPX if (ef_inputp && ef_inputp(ifp, eh, m) == 0) return; #endif /* IPX */ #if defined(NETATALK) if (ether_type > ETHERMTU) goto discard; l = mtod(m, struct llc *); if (l->llc_dsap == LLC_SNAP_LSAP && l->llc_ssap == LLC_SNAP_LSAP && l->llc_control == LLC_UI) { if (bcmp(&(l->llc_snap_org_code)[0], at_org_code, sizeof(at_org_code)) == 0 && ntohs(l->llc_snap_ether_type) == ETHERTYPE_AT) { m_adj(m, LLC_SNAPFRAMELEN); isr = NETISR_ATALK2; break; } if (bcmp(&(l->llc_snap_org_code)[0], aarp_org_code, sizeof(aarp_org_code)) == 0 && ntohs(l->llc_snap_ether_type) == ETHERTYPE_AARP) { m_adj(m, LLC_SNAPFRAMELEN); isr = NETISR_AARP; break; } } #endif /* NETATALK */ goto discard; } netisr_dispatch(isr, m); return; discard: /* * Packet is to be discarded. If netgraph is present, * hand the packet to it for last chance processing; * otherwise dispose of it. */ if (IFP2AC(ifp)->ac_netgraph != NULL) { /* * Put back the ethernet header so netgraph has a * consistent view of inbound packets. */ M_PREPEND(m, ETHER_HDR_LEN, M_DONTWAIT); (*ng_ether_input_orphan_p)(ifp, m); return; } m_freem(m); } /* * Convert Ethernet address to printable (loggable) representation. * This routine is for compatibility; it's better to just use * * printf("%6D", , ":"); * * since there's no static buffer involved. */ char * ether_sprintf(const u_char *ap) { static char etherbuf[18]; snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":"); return (etherbuf); } /* * Perform common duties while attaching to interface list */ void ether_ifattach(struct ifnet *ifp, const u_int8_t *llc) { int i; struct ifaddr *ifa; struct sockaddr_dl *sdl; ifp->if_addrlen = ETHER_ADDR_LEN; ifp->if_hdrlen = ETHER_HDR_LEN; if_attach(ifp); ifp->if_mtu = ETHERMTU; ifp->if_output = ether_output; ifp->if_input = ether_input; ifp->if_resolvemulti = ether_resolvemulti; if (ifp->if_baudrate == 0) ifp->if_baudrate = IF_Mbps(10); /* just a default */ ifp->if_broadcastaddr = etherbroadcastaddr; ifa = ifaddr_byindex(ifp->if_index); KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); sdl = (struct sockaddr_dl *)ifa->ifa_addr; sdl->sdl_type = IFT_ETHER; sdl->sdl_alen = ifp->if_addrlen; bcopy(llc, LLADDR(sdl), ifp->if_addrlen); /* * XXX: This doesn't belong here; we do it until * XXX: all drivers are cleaned up */ if (llc != IFP2ENADDR(ifp)) bcopy(llc, IFP2ENADDR(ifp), ifp->if_addrlen); bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN); if (ng_ether_attach_p != NULL) (*ng_ether_attach_p)(ifp); if (BDG_LOADED) bdgtakeifaces_ptr(); /* Announce Ethernet MAC address if non-zero. */ for (i = 0; i < ifp->if_addrlen; i++) if (llc[i] != 0) break; if (i != ifp->if_addrlen) if_printf(ifp, "Ethernet address: %6D\n", llc, ":"); if (debug_mpsafenet && (ifp->if_flags & IFF_NEEDSGIANT) != 0) if_printf(ifp, "if_start running deferred for Giant\n"); } /* * Perform common duties while detaching an Ethernet interface */ void ether_ifdetach(struct ifnet *ifp) { if (IFP2AC(ifp)->ac_netgraph != NULL) (*ng_ether_detach_p)(ifp); bpfdetach(ifp); if_detach(ifp); if (BDG_LOADED) bdgtakeifaces_ptr(); } SYSCTL_DECL(_net_link); SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet"); #if defined(INET) || defined(INET6) SYSCTL_INT(_net_link_ether, OID_AUTO, ipfw, CTLFLAG_RW, ðer_ipfw,0,"Pass ether pkts through firewall"); #endif #if 0 /* * This is for reference. We have a table-driven version * of the little-endian crc32 generator, which is faster * than the double-loop. */ uint32_t ether_crc32_le(const uint8_t *buf, size_t len) { size_t i; uint32_t crc; int bit; uint8_t data; crc = 0xffffffff; /* initial value */ for (i = 0; i < len; i++) { for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) carry = (crc ^ data) & 1; crc >>= 1; if (carry) crc = (crc ^ ETHER_CRC_POLY_LE); } return (crc); } #else uint32_t ether_crc32_le(const uint8_t *buf, size_t len) { static const uint32_t crctab[] = { 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c }; size_t i; uint32_t crc; crc = 0xffffffff; /* initial value */ for (i = 0; i < len; i++) { crc ^= buf[i]; crc = (crc >> 4) ^ crctab[crc & 0xf]; crc = (crc >> 4) ^ crctab[crc & 0xf]; } return (crc); } #endif uint32_t ether_crc32_be(const uint8_t *buf, size_t len) { size_t i; uint32_t crc, carry; int bit; uint8_t data; crc = 0xffffffff; /* initial value */ for (i = 0; i < len; i++) { for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01); crc <<= 1; if (carry) crc = (crc ^ ETHER_CRC_POLY_BE) | carry; } } return (crc); } int ether_ioctl(struct ifnet *ifp, int command, caddr_t data) { struct ifaddr *ifa = (struct ifaddr *) data; struct ifreq *ifr = (struct ifreq *) data; int error = 0; switch (command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: ifp->if_init(ifp->if_softc); /* before arpwhohas */ arp_ifinit(ifp, ifa); break; #endif #ifdef IPX /* * XXX - This code is probably wrong */ case AF_IPX: { struct ipx_addr *ina = &(IA_SIPX(ifa)->sipx_addr); if (ipx_nullhost(*ina)) ina->x_host = *(union ipx_host *) IFP2ENADDR(ifp); else { bcopy((caddr_t) ina->x_host.c_host, (caddr_t) IFP2ENADDR(ifp), ETHER_ADDR_LEN); } /* * Set new address */ ifp->if_init(ifp->if_softc); break; } #endif default: ifp->if_init(ifp->if_softc); break; } break; case SIOCGIFADDR: { struct sockaddr *sa; sa = (struct sockaddr *) & ifr->ifr_data; bcopy(IFP2ENADDR(ifp), (caddr_t) sa->sa_data, ETHER_ADDR_LEN); } break; case SIOCSIFMTU: /* * Set the interface MTU. */ if (ifr->ifr_mtu > ETHERMTU) { error = EINVAL; } else { ifp->if_mtu = ifr->ifr_mtu; } break; default: error = EINVAL; /* XXX netbsd has ENOTTY??? */ break; } return (error); } static int ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa, struct sockaddr *sa) { struct sockaddr_dl *sdl; #ifdef INET struct sockaddr_in *sin; #endif #ifdef INET6 struct sockaddr_in6 *sin6; #endif u_char *e_addr; switch(sa->sa_family) { case AF_LINK: /* * No mapping needed. Just check that it's a valid MC address. */ sdl = (struct sockaddr_dl *)sa; e_addr = LLADDR(sdl); if (!ETHER_IS_MULTICAST(e_addr)) return EADDRNOTAVAIL; *llsa = 0; return 0; #ifdef INET case AF_INET: sin = (struct sockaddr_in *)sa; if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) return EADDRNOTAVAIL; MALLOC(sdl, struct sockaddr_dl *, sizeof *sdl, M_IFMADDR, M_NOWAIT|M_ZERO); if (sdl == NULL) return ENOMEM; sdl->sdl_len = sizeof *sdl; sdl->sdl_family = AF_LINK; sdl->sdl_index = ifp->if_index; sdl->sdl_type = IFT_ETHER; sdl->sdl_alen = ETHER_ADDR_LEN; e_addr = LLADDR(sdl); ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr); *llsa = (struct sockaddr *)sdl; return 0; #endif #ifdef INET6 case AF_INET6: sin6 = (struct sockaddr_in6 *)sa; if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { /* * An IP6 address of 0 means listen to all * of the Ethernet multicast address used for IP6. * (This is used for multicast routers.) */ ifp->if_flags |= IFF_ALLMULTI; *llsa = 0; return 0; } if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) return EADDRNOTAVAIL; MALLOC(sdl, struct sockaddr_dl *, sizeof *sdl, M_IFMADDR, M_NOWAIT|M_ZERO); if (sdl == NULL) return (ENOMEM); sdl->sdl_len = sizeof *sdl; sdl->sdl_family = AF_LINK; sdl->sdl_index = ifp->if_index; sdl->sdl_type = IFT_ETHER; sdl->sdl_alen = ETHER_ADDR_LEN; e_addr = LLADDR(sdl); ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr); *llsa = (struct sockaddr *)sdl; return 0; #endif default: /* * Well, the text isn't quite right, but it's the name * that counts... */ return EAFNOSUPPORT; } } static void* ether_alloc(u_char type, struct ifnet *ifp) { struct arpcom *ac; ac = malloc(sizeof(struct arpcom), M_ARPCOM, M_WAITOK | M_ZERO); ac->ac_ifp = ifp; return (ac); } static void ether_free(void *com, u_char type) { free(com, M_ARPCOM); } static int ether_modevent(module_t mod, int type, void *data) { switch (type) { case MOD_LOAD: if_register_com_alloc(IFT_ETHER, ether_alloc, ether_free); break; case MOD_UNLOAD: if_deregister_com_alloc(IFT_ETHER); break; default: return EOPNOTSUPP; } return (0); } static moduledata_t ether_mod = { "ether", ether_modevent, 0 }; DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY); MODULE_VERSION(ether, 1);