/* * Copyright (c) 2003 Poul-Henning Kamp. * Copyright (c) 1995 Jason R. Thorpe. * Copyright (c) 1990, 1993 * The Regents of the University of California. All rights reserved. * All rights reserved. * Copyright (c) 1988 University of Utah. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the NetBSD Project * by Jason R. Thorpe. * 4. The names of the authors may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Dynamic configuration and disklabel support by: * Jason R. Thorpe * Numerical Aerodynamic Simulation Facility * Mail Stop 258-6 * NASA Ames Research Center * Moffett Field, CA 94035 * * from: Utah $Hdr: cd.c 1.6 90/11/28$ * * @(#)cd.c 8.2 (Berkeley) 11/16/93 * * $NetBSD: ccd.c,v 1.22 1995/12/08 19:13:26 thorpej Exp $ * * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MALLOC_DEFINE(M_CCD, "CCD driver", "Concatenated Disk driver"); /* This is how mirroring works (only writes are special): When initiating a write, ccdbuffer() returns two "struct ccdbuf *"s linked together by the cb_mirror field. "cb_pflags & CCDPF_MIRROR_DONE" is set to 0 on both of them. When a component returns to ccdiodone(), it checks if "cb_pflags & CCDPF_MIRROR_DONE" is set or not. If not, it sets the partner's flag and returns. If it is, it means its partner has already returned, so it will go to the regular cleanup. */ struct ccdbuf { struct bio cb_buf; /* new I/O buf */ struct bio *cb_obp; /* ptr. to original I/O buf */ struct ccdbuf *cb_freenext; /* free list link */ struct ccd_s *cb_softc; int cb_comp; /* target component */ int cb_pflags; /* mirror/parity status flag */ struct ccdbuf *cb_mirror; /* mirror counterpart */ }; /* bits in cb_pflags */ #define CCDPF_MIRROR_DONE 1 /* if set, mirror counterpart is done */ /* convinient macros for often-used statements */ #define IS_ALLOCATED(unit) (ccdfind(unit) != NULL) #define IS_INITED(cs) (((cs)->sc_flags & CCDF_INITED) != 0) static dev_t ccdctldev; static d_strategy_t ccdstrategy; static d_ioctl_t ccdctlioctl; #define NCCDFREEHIWAT 16 #define CDEV_MAJOR 74 static struct cdevsw ccdctl_cdevsw = { /* open */ nullopen, /* close */ nullclose, /* read */ noread, /* write */ nowrite, /* ioctl */ ccdctlioctl, /* poll */ nopoll, /* mmap */ nommap, /* strategy */ nostrategy, /* name */ "ccdctl", /* maj */ CDEV_MAJOR, /* dump */ nodump, /* psize */ nopsize, /* flags */ 0 }; static LIST_HEAD(, ccd_s) ccd_softc_list = LIST_HEAD_INITIALIZER(&ccd_softc_list); static struct ccd_s *ccdfind(int); static struct ccd_s *ccdnew(int); static int ccddestroy(struct ccd_s *); /* called during module initialization */ static void ccdattach(void); static int ccd_modevent(module_t, int, void *); /* called by biodone() at interrupt time */ static void ccdiodone(struct bio *bp); static void ccdstart(struct ccd_s *, struct bio *); static void ccdinterleave(struct ccd_s *, int); static int ccdinit(struct ccd_s *, char **, struct thread *); static int ccdlookup(char *, struct thread *p, struct vnode **); static int ccdbuffer(struct ccdbuf **ret, struct ccd_s *, struct bio *, daddr_t, caddr_t, long); static int ccdlock(struct ccd_s *); static void ccdunlock(struct ccd_s *); /* * Number of blocks to untouched in front of a component partition. * This is to avoid violating its disklabel area when it starts at the * beginning of the slice. */ #if !defined(CCD_OFFSET) #define CCD_OFFSET 16 #endif static struct ccd_s * ccdfind(int unit) { struct ccd_s *sc = NULL; /* XXX: LOCK(unique unit numbers) */ LIST_FOREACH(sc, &ccd_softc_list, list) { if (sc->sc_unit == unit) break; } /* XXX: UNLOCK(unique unit numbers) */ return ((sc == NULL) || (sc->sc_unit != unit) ? NULL : sc); } static struct ccd_s * ccdnew(int unit) { struct ccd_s *sc; /* XXX: LOCK(unique unit numbers) */ if (IS_ALLOCATED(unit) || unit > 32) return (NULL); MALLOC(sc, struct ccd_s *, sizeof(*sc), M_CCD, M_ZERO); sc->sc_unit = unit; LIST_INSERT_HEAD(&ccd_softc_list, sc, list); /* XXX: UNLOCK(unique unit numbers) */ return (sc); } static int ccddestroy(struct ccd_s *sc) { /* XXX: LOCK(unique unit numbers) */ LIST_REMOVE(sc, list); /* XXX: UNLOCK(unique unit numbers) */ FREE(sc, M_CCD); return (0); } /* * Called by main() during pseudo-device attachment. All we need * to do is to add devsw entries. */ static void ccdattach() { ccdctldev = make_dev(&ccdctl_cdevsw, 0xffff00ff, UID_ROOT, GID_OPERATOR, 0640, "ccd.ctl"); ccdctldev->si_drv1 = ccdctldev; } static int ccd_modevent(module_t mod, int type, void *data) { int error = 0; switch (type) { case MOD_LOAD: ccdattach(); break; case MOD_UNLOAD: printf("ccd0: Unload not supported!\n"); error = EOPNOTSUPP; break; case MOD_SHUTDOWN: break; default: error = EOPNOTSUPP; } return (error); } DEV_MODULE(ccd, ccd_modevent, NULL); static int ccdinit(struct ccd_s *cs, char **cpaths, struct thread *td) { struct ccdcinfo *ci = NULL; /* XXX */ size_t size; int ix; struct vnode *vp; size_t minsize; int maxsecsize; struct ccdgeom *ccg = &cs->sc_geom; char *tmppath = NULL; int error = 0; off_t mediasize; u_int sectorsize; cs->sc_size = 0; /* Allocate space for the component info. */ cs->sc_cinfo = malloc(cs->sc_nccdisks * sizeof(struct ccdcinfo), M_CCD, 0); /* * Verify that each component piece exists and record * relevant information about it. */ maxsecsize = 0; minsize = 0; tmppath = malloc(MAXPATHLEN, M_CCD, 0); for (ix = 0; ix < cs->sc_nccdisks; ix++) { vp = cs->sc_vpp[ix]; ci = &cs->sc_cinfo[ix]; ci->ci_vp = vp; /* * Copy in the pathname of the component. */ if ((error = copyinstr(cpaths[ix], tmppath, MAXPATHLEN, &ci->ci_pathlen)) != 0) { goto fail; } ci->ci_path = malloc(ci->ci_pathlen, M_CCD, 0); bcopy(tmppath, ci->ci_path, ci->ci_pathlen); ci->ci_dev = vn_todev(vp); /* * Get partition information for the component. */ error = VOP_IOCTL(vp, DIOCGMEDIASIZE, (caddr_t)&mediasize, FREAD, td->td_ucred, td); if (error != 0) { goto fail; } /* * Get partition information for the component. */ error = VOP_IOCTL(vp, DIOCGSECTORSIZE, (caddr_t)§orsize, FREAD, td->td_ucred, td); if (error != 0) { goto fail; } if (sectorsize > maxsecsize) maxsecsize = sectorsize; size = mediasize / DEV_BSIZE - CCD_OFFSET; /* * Calculate the size, truncating to an interleave * boundary if necessary. */ if (cs->sc_ileave > 1) size -= size % cs->sc_ileave; if (size == 0) { error = ENODEV; goto fail; } if (minsize == 0 || size < minsize) minsize = size; ci->ci_size = size; cs->sc_size += size; } free(tmppath, M_CCD); tmppath = NULL; /* * Don't allow the interleave to be smaller than * the biggest component sector. */ if ((cs->sc_ileave > 0) && (cs->sc_ileave < (maxsecsize / DEV_BSIZE))) { error = EINVAL; goto fail; } /* * If uniform interleave is desired set all sizes to that of * the smallest component. This will guarentee that a single * interleave table is generated. * * Lost space must be taken into account when calculating the * overall size. Half the space is lost when CCDF_MIRROR is * specified. */ if (cs->sc_flags & CCDF_UNIFORM) { for (ci = cs->sc_cinfo; ci < &cs->sc_cinfo[cs->sc_nccdisks]; ci++) { ci->ci_size = minsize; } if (cs->sc_flags & CCDF_MIRROR) { /* * Check to see if an even number of components * have been specified. The interleave must also * be non-zero in order for us to be able to * guarentee the topology. */ if (cs->sc_nccdisks % 2) { printf("ccd%d: mirroring requires an even number of disks\n", cs->sc_unit ); error = EINVAL; goto fail; } if (cs->sc_ileave == 0) { printf("ccd%d: an interleave must be specified when mirroring\n", cs->sc_unit); error = EINVAL; goto fail; } cs->sc_size = (cs->sc_nccdisks/2) * minsize; } else { if (cs->sc_ileave == 0) { printf("ccd%d: an interleave must be specified when using parity\n", cs->sc_unit); error = EINVAL; goto fail; } cs->sc_size = cs->sc_nccdisks * minsize; } } /* * Construct the interleave table. */ ccdinterleave(cs, cs->sc_unit); /* * Create pseudo-geometry based on 1MB cylinders. It's * pretty close. */ ccg->ccg_secsize = maxsecsize; ccg->ccg_ntracks = 1; ccg->ccg_nsectors = 1024 * 1024 / ccg->ccg_secsize; ccg->ccg_ncylinders = cs->sc_size / ccg->ccg_nsectors; /* * Add a devstat entry for this device. */ devstat_add_entry(&cs->device_stats, "ccd", cs->sc_unit, ccg->ccg_secsize, DEVSTAT_ALL_SUPPORTED, DEVSTAT_TYPE_STORARRAY |DEVSTAT_TYPE_IF_OTHER, DEVSTAT_PRIORITY_ARRAY); cs->sc_flags |= CCDF_INITED; cs->sc_cflags = cs->sc_flags; /* So we can find out later... */ return (0); fail: while (ci > cs->sc_cinfo) { ci--; free(ci->ci_path, M_CCD); } if (tmppath != NULL) free(tmppath, M_CCD); free(cs->sc_cinfo, M_CCD); ccddestroy(cs); return (error); } static void ccdinterleave(struct ccd_s *cs, int unit) { struct ccdcinfo *ci, *smallci; struct ccdiinfo *ii; daddr_t bn, lbn; int ix; u_long size; /* * Allocate an interleave table. The worst case occurs when each * of N disks is of a different size, resulting in N interleave * tables. * * Chances are this is too big, but we don't care. */ size = (cs->sc_nccdisks + 1) * sizeof(struct ccdiinfo); cs->sc_itable = (struct ccdiinfo *)malloc(size, M_CCD, M_ZERO); /* * Trivial case: no interleave (actually interleave of disk size). * Each table entry represents a single component in its entirety. * * An interleave of 0 may not be used with a mirror setup. */ if (cs->sc_ileave == 0) { bn = 0; ii = cs->sc_itable; for (ix = 0; ix < cs->sc_nccdisks; ix++) { /* Allocate space for ii_index. */ ii->ii_index = malloc(sizeof(int), M_CCD, 0); ii->ii_ndisk = 1; ii->ii_startblk = bn; ii->ii_startoff = 0; ii->ii_index[0] = ix; bn += cs->sc_cinfo[ix].ci_size; ii++; } ii->ii_ndisk = 0; return; } /* * The following isn't fast or pretty; it doesn't have to be. */ size = 0; bn = lbn = 0; for (ii = cs->sc_itable; ; ii++) { /* * Allocate space for ii_index. We might allocate more then * we use. */ ii->ii_index = malloc((sizeof(int) * cs->sc_nccdisks), M_CCD, 0); /* * Locate the smallest of the remaining components */ smallci = NULL; for (ci = cs->sc_cinfo; ci < &cs->sc_cinfo[cs->sc_nccdisks]; ci++) { if (ci->ci_size > size && (smallci == NULL || ci->ci_size < smallci->ci_size)) { smallci = ci; } } /* * Nobody left, all done */ if (smallci == NULL) { ii->ii_ndisk = 0; free(ii->ii_index, M_CCD); break; } /* * Record starting logical block using an sc_ileave blocksize. */ ii->ii_startblk = bn / cs->sc_ileave; /* * Record starting comopnent block using an sc_ileave * blocksize. This value is relative to the beginning of * a component disk. */ ii->ii_startoff = lbn; /* * Determine how many disks take part in this interleave * and record their indices. */ ix = 0; for (ci = cs->sc_cinfo; ci < &cs->sc_cinfo[cs->sc_nccdisks]; ci++) { if (ci->ci_size >= smallci->ci_size) { ii->ii_index[ix++] = ci - cs->sc_cinfo; } } ii->ii_ndisk = ix; bn += ix * (smallci->ci_size - size); lbn = smallci->ci_size / cs->sc_ileave; size = smallci->ci_size; } } static void ccdstrategy(struct bio *bp) { struct ccd_s *cs; int pbn; /* in sc_secsize chunks */ long sz; /* in sc_secsize chunks */ cs = bp->bio_dev->si_drv1; pbn = bp->bio_blkno / (cs->sc_geom.ccg_secsize / DEV_BSIZE); sz = howmany(bp->bio_bcount, cs->sc_geom.ccg_secsize); /* * If out of bounds return an error. If at the EOF point, * simply read or write less. */ if (pbn < 0 || pbn >= cs->sc_size) { bp->bio_resid = bp->bio_bcount; if (pbn != cs->sc_size) biofinish(bp, NULL, EINVAL); else biodone(bp); return; } /* * If the request crosses EOF, truncate the request. */ if (pbn + sz > cs->sc_size) { bp->bio_bcount = (cs->sc_size - pbn) * cs->sc_geom.ccg_secsize; } bp->bio_resid = bp->bio_bcount; /* * "Start" the unit. */ ccdstart(cs, bp); return; } static void ccdstart(struct ccd_s *cs, struct bio *bp) { long bcount, rcount; struct ccdbuf *cbp[2]; caddr_t addr; daddr_t bn; int err; /* Record the transaction start */ devstat_start_transaction(&cs->device_stats); /* * Translate the partition-relative block number to an absolute. */ bn = bp->bio_blkno; /* * Allocate component buffers and fire off the requests */ addr = bp->bio_data; for (bcount = bp->bio_bcount; bcount > 0; bcount -= rcount) { err = ccdbuffer(cbp, cs, bp, bn, addr, bcount); if (err) { printf("ccdbuffer error %d\n", err); /* We're screwed */ bp->bio_resid -= bcount; bp->bio_error = ENOMEM; bp->bio_flags |= BIO_ERROR; return; } rcount = cbp[0]->cb_buf.bio_bcount; if (cs->sc_cflags & CCDF_MIRROR) { /* * Mirroring. Writes go to both disks, reads are * taken from whichever disk seems most appropriate. * * We attempt to localize reads to the disk whos arm * is nearest the read request. We ignore seeks due * to writes when making this determination and we * also try to avoid hogging. */ if (cbp[0]->cb_buf.bio_cmd == BIO_WRITE) { BIO_STRATEGY(&cbp[0]->cb_buf); BIO_STRATEGY(&cbp[1]->cb_buf); } else { int pick = cs->sc_pick; daddr_t range = cs->sc_size / 16; if (bn < cs->sc_blk[pick] - range || bn > cs->sc_blk[pick] + range ) { cs->sc_pick = pick = 1 - pick; } cs->sc_blk[pick] = bn + btodb(rcount); BIO_STRATEGY(&cbp[pick]->cb_buf); } } else { /* * Not mirroring */ BIO_STRATEGY(&cbp[0]->cb_buf); } bn += btodb(rcount); addr += rcount; } } /* * Build a component buffer header. */ static int ccdbuffer(struct ccdbuf **cb, struct ccd_s *cs, struct bio *bp, daddr_t bn, caddr_t addr, long bcount) { struct ccdcinfo *ci, *ci2 = NULL; /* XXX */ struct ccdbuf *cbp; daddr_t cbn, cboff; off_t cbc; /* * Determine which component bn falls in. */ cbn = bn; cboff = 0; if (cs->sc_ileave == 0) { /* * Serially concatenated and neither a mirror nor a parity * config. This is a special case. */ daddr_t sblk; sblk = 0; for (ci = cs->sc_cinfo; cbn >= sblk + ci->ci_size; ci++) sblk += ci->ci_size; cbn -= sblk; } else { struct ccdiinfo *ii; int ccdisk, off; /* * Calculate cbn, the logical superblock (sc_ileave chunks), * and cboff, a normal block offset (DEV_BSIZE chunks) relative * to cbn. */ cboff = cbn % cs->sc_ileave; /* DEV_BSIZE gran */ cbn = cbn / cs->sc_ileave; /* DEV_BSIZE * ileave gran */ /* * Figure out which interleave table to use. */ for (ii = cs->sc_itable; ii->ii_ndisk; ii++) { if (ii->ii_startblk > cbn) break; } ii--; /* * off is the logical superblock relative to the beginning * of this interleave block. */ off = cbn - ii->ii_startblk; /* * We must calculate which disk component to use (ccdisk), * and recalculate cbn to be the superblock relative to * the beginning of the component. This is typically done by * adding 'off' and ii->ii_startoff together. However, 'off' * must typically be divided by the number of components in * this interleave array to be properly convert it from a * CCD-relative logical superblock number to a * component-relative superblock number. */ if (ii->ii_ndisk == 1) { /* * When we have just one disk, it can't be a mirror * or a parity config. */ ccdisk = ii->ii_index[0]; cbn = ii->ii_startoff + off; } else { if (cs->sc_cflags & CCDF_MIRROR) { /* * We have forced a uniform mapping, resulting * in a single interleave array. We double * up on the first half of the available * components and our mirror is in the second * half. This only works with a single * interleave array because doubling up * doubles the number of sectors, so there * cannot be another interleave array because * the next interleave array's calculations * would be off. */ int ndisk2 = ii->ii_ndisk / 2; ccdisk = ii->ii_index[off % ndisk2]; cbn = ii->ii_startoff + off / ndisk2; ci2 = &cs->sc_cinfo[ccdisk + ndisk2]; } else { ccdisk = ii->ii_index[off % ii->ii_ndisk]; cbn = ii->ii_startoff + off / ii->ii_ndisk; } } ci = &cs->sc_cinfo[ccdisk]; /* * Convert cbn from a superblock to a normal block so it * can be used to calculate (along with cboff) the normal * block index into this particular disk. */ cbn *= cs->sc_ileave; } /* * Fill in the component buf structure. */ cbp = malloc(sizeof(struct ccdbuf), M_CCD, M_NOWAIT | M_ZERO); if (cbp == NULL) return (ENOMEM); cbp->cb_buf.bio_cmd = bp->bio_cmd; cbp->cb_buf.bio_done = ccdiodone; cbp->cb_buf.bio_dev = ci->ci_dev; /* XXX */ cbp->cb_buf.bio_blkno = cbn + cboff + CCD_OFFSET; cbp->cb_buf.bio_offset = dbtob(cbn + cboff + CCD_OFFSET); cbp->cb_buf.bio_data = addr; cbp->cb_buf.bio_caller2 = cbp; if (cs->sc_ileave == 0) cbc = dbtob((off_t)(ci->ci_size - cbn)); else cbc = dbtob((off_t)(cs->sc_ileave - cboff)); cbp->cb_buf.bio_bcount = (cbc < bcount) ? cbc : bcount; cbp->cb_buf.bio_caller1 = (void*)cbp->cb_buf.bio_bcount; /* * context for ccdiodone */ cbp->cb_obp = bp; cbp->cb_softc = cs; cbp->cb_comp = ci - cs->sc_cinfo; cb[0] = cbp; /* * Note: both I/O's setup when reading from mirror, but only one * will be executed. */ if (cs->sc_cflags & CCDF_MIRROR) { /* mirror, setup second I/O */ cbp = malloc(sizeof(struct ccdbuf), M_CCD, M_NOWAIT); if (cbp == NULL) { free(cb[0], M_CCD); cb[0] = NULL; return (ENOMEM); } bcopy(cb[0], cbp, sizeof(struct ccdbuf)); cbp->cb_buf.bio_dev = ci2->ci_dev; cbp->cb_comp = ci2 - cs->sc_cinfo; cb[1] = cbp; /* link together the ccdbuf's and clear "mirror done" flag */ cb[0]->cb_mirror = cb[1]; cb[1]->cb_mirror = cb[0]; cb[0]->cb_pflags &= ~CCDPF_MIRROR_DONE; cb[1]->cb_pflags &= ~CCDPF_MIRROR_DONE; } return (0); } /* * Called at interrupt time. * Mark the component as done and if all components are done, * take a ccd interrupt. */ static void ccdiodone(struct bio *ibp) { struct ccdbuf *cbp; struct bio *bp; struct ccd_s *cs; int count; cbp = ibp->bio_caller2; cs = cbp->cb_softc; bp = cbp->cb_obp; /* * If an error occured, report it. If this is a mirrored * configuration and the first of two possible reads, do not * set the error in the bp yet because the second read may * succeed. */ if (cbp->cb_buf.bio_flags & BIO_ERROR) { const char *msg = ""; if ((cs->sc_cflags & CCDF_MIRROR) && (cbp->cb_buf.bio_cmd == BIO_READ) && (cbp->cb_pflags & CCDPF_MIRROR_DONE) == 0) { /* * We will try our read on the other disk down * below, also reverse the default pick so if we * are doing a scan we do not keep hitting the * bad disk first. */ msg = ", trying other disk"; cs->sc_pick = 1 - cs->sc_pick; cs->sc_blk[cs->sc_pick] = bp->bio_blkno; } else { bp->bio_flags |= BIO_ERROR; bp->bio_error = cbp->cb_buf.bio_error ? cbp->cb_buf.bio_error : EIO; } printf("ccd%d: error %d on component %d block %jd " "(ccd block %jd)%s\n", cs->sc_unit, bp->bio_error, cbp->cb_comp, (intmax_t)cbp->cb_buf.bio_blkno, (intmax_t)bp->bio_blkno, msg); } /* * Process mirror. If we are writing, I/O has been initiated on both * buffers and we fall through only after both are finished. * * If we are reading only one I/O is initiated at a time. If an * error occurs we initiate the second I/O and return, otherwise * we free the second I/O without initiating it. */ if (cs->sc_cflags & CCDF_MIRROR) { if (cbp->cb_buf.bio_cmd == BIO_WRITE) { /* * When writing, handshake with the second buffer * to determine when both are done. If both are not * done, return here. */ if ((cbp->cb_pflags & CCDPF_MIRROR_DONE) == 0) { cbp->cb_mirror->cb_pflags |= CCDPF_MIRROR_DONE; free(cbp, M_CCD); return; } } else { /* * When reading, either dispose of the second buffer * or initiate I/O on the second buffer if an error * occured with this one. */ if ((cbp->cb_pflags & CCDPF_MIRROR_DONE) == 0) { if (cbp->cb_buf.bio_flags & BIO_ERROR) { cbp->cb_mirror->cb_pflags |= CCDPF_MIRROR_DONE; BIO_STRATEGY(&cbp->cb_mirror->cb_buf); free(cbp, M_CCD); return; } else { free(cbp->cb_mirror, M_CCD); } } } } /* * use bio_caller1 to determine how big the original request was rather * then bio_bcount, because bio_bcount may have been truncated for EOF. * * XXX We check for an error, but we do not test the resid for an * aligned EOF condition. This may result in character & block * device access not recognizing EOF properly when read or written * sequentially, but will not effect filesystems. */ count = (long)cbp->cb_buf.bio_caller1; free(cbp, M_CCD); /* * If all done, "interrupt". */ bp->bio_resid -= count; if (bp->bio_resid < 0) panic("ccdiodone: count"); if (bp->bio_resid == 0) { if (bp->bio_flags & BIO_ERROR) bp->bio_resid = bp->bio_bcount; biofinish(bp, &cs->device_stats, 0); } } static int ccdioctltoo(int unit, u_long cmd, caddr_t data, int flag, struct thread *td); static int ccdctlioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct thread *td) { struct ccd_ioctl *ccio; u_int unit; dev_t dev2; int error; switch (cmd) { case CCDIOCSET: case CCDIOCCLR: ccio = (struct ccd_ioctl *)data; unit = ccio->ccio_size; return (ccdioctltoo(unit, cmd, data, flag, td)); case CCDCONFINFO: { int ninit = 0; struct ccdconf *conf = (struct ccdconf *)data; struct ccd_s *tmpcs; struct ccd_s *ubuf = conf->buffer; /* XXX: LOCK(unique unit numbers) */ LIST_FOREACH(tmpcs, &ccd_softc_list, list) if (IS_INITED(tmpcs)) ninit++; if (conf->size == 0) { conf->size = sizeof(struct ccd_s) * ninit; return (0); } else if ((conf->size / sizeof(struct ccd_s) != ninit) || (conf->size % sizeof(struct ccd_s) != 0)) { /* XXX: UNLOCK(unique unit numbers) */ return (EINVAL); } ubuf += ninit; LIST_FOREACH(tmpcs, &ccd_softc_list, list) { if (!IS_INITED(tmpcs)) continue; error = copyout(tmpcs, --ubuf, sizeof(struct ccd_s)); if (error != 0) /* XXX: UNLOCK(unique unit numbers) */ return (error); } /* XXX: UNLOCK(unique unit numbers) */ return (0); } case CCDCPPINFO: { struct ccdcpps *cpps = (struct ccdcpps *)data; char *ubuf = cpps->buffer; struct ccd_s *cs; error = copyin(ubuf, &unit, sizeof (unit)); if (error) return (error); if (!IS_ALLOCATED(unit)) return (ENXIO); dev2 = makedev(CDEV_MAJOR, unit * 8 + 2); cs = ccdfind(unit); if (!IS_INITED(cs)) return (ENXIO); { int len = 0, i; struct ccdcpps *cpps = (struct ccdcpps *)data; char *ubuf = cpps->buffer; for (i = 0; i < cs->sc_nccdisks; ++i) len += cs->sc_cinfo[i].ci_pathlen; if (cpps->size < len) return (ENOMEM); for (i = 0; i < cs->sc_nccdisks; ++i) { len = cs->sc_cinfo[i].ci_pathlen; error = copyout(cs->sc_cinfo[i].ci_path, ubuf, len); if (error != 0) return (error); ubuf += len; } return(copyout("", ubuf, 1)); } break; } default: return (ENXIO); } } static int ccdioctltoo(int unit, u_long cmd, caddr_t data, int flag, struct thread *td) { int i, j, lookedup = 0, error = 0; struct ccd_s *cs; struct ccd_ioctl *ccio = (struct ccd_ioctl *)data; struct ccdgeom *ccg; char **cpp; struct vnode **vpp; cs = ccdfind(unit); switch (cmd) { case CCDIOCSET: if (cs == NULL) cs = ccdnew(unit); if (IS_INITED(cs)) return (EBUSY); if ((flag & FWRITE) == 0) return (EBADF); if ((error = ccdlock(cs)) != 0) return (error); if (ccio->ccio_ndisks > CCD_MAXNDISKS) return (EINVAL); /* Fill in some important bits. */ cs->sc_ileave = ccio->ccio_ileave; if (cs->sc_ileave == 0 && (ccio->ccio_flags & CCDF_MIRROR)) { printf("ccd%d: disabling mirror, interleave is 0\n", unit); ccio->ccio_flags &= ~(CCDF_MIRROR); } if ((ccio->ccio_flags & CCDF_MIRROR) && !(ccio->ccio_flags & CCDF_UNIFORM)) { printf("ccd%d: mirror/parity forces uniform flag\n", unit); ccio->ccio_flags |= CCDF_UNIFORM; } cs->sc_flags = ccio->ccio_flags & CCDF_USERMASK; /* * Allocate space for and copy in the array of * componet pathnames and device numbers. */ cpp = malloc(ccio->ccio_ndisks * sizeof(char *), M_CCD, 0); vpp = malloc(ccio->ccio_ndisks * sizeof(struct vnode *), M_CCD, 0); error = copyin((caddr_t)ccio->ccio_disks, (caddr_t)cpp, ccio->ccio_ndisks * sizeof(char **)); if (error) { free(vpp, M_CCD); free(cpp, M_CCD); ccdunlock(cs); return (error); } for (i = 0; i < ccio->ccio_ndisks; ++i) { if ((error = ccdlookup(cpp[i], td, &vpp[i])) != 0) { for (j = 0; j < lookedup; ++j) (void)vn_close(vpp[j], FREAD|FWRITE, td->td_ucred, td); free(vpp, M_CCD); free(cpp, M_CCD); ccdunlock(cs); return (error); } ++lookedup; } cs->sc_vpp = vpp; cs->sc_nccdisks = ccio->ccio_ndisks; /* * Initialize the ccd. Fills in the softc for us. */ if ((error = ccdinit(cs, cpp, td)) != 0) { for (j = 0; j < lookedup; ++j) (void)vn_close(vpp[j], FREAD|FWRITE, td->td_ucred, td); /* * We can't ccddestroy() cs just yet, because nothing * prevents user-level app to do another ioctl() * without closing the device first, therefore * declare unit null and void and let ccdclose() * destroy it when it is safe to do so. */ cs->sc_flags &= (CCDF_WANTED | CCDF_LOCKED); free(vpp, M_CCD); free(cpp, M_CCD); ccdunlock(cs); return (error); } free(cpp, M_CCD); /* * The ccd has been successfully initialized, so * we can place it into the array and read the disklabel. */ ccio->ccio_unit = unit; ccio->ccio_size = cs->sc_size; ccg = &cs->sc_geom; cs->sc_disk = malloc(sizeof(struct disk), M_CCD, M_ZERO); cs->sc_disk->d_strategy = ccdstrategy; cs->sc_disk->d_name = "ccd"; cs->sc_disk->d_sectorsize = ccg->ccg_secsize; cs->sc_disk->d_mediasize = cs->sc_size * (off_t)ccg->ccg_secsize; cs->sc_disk->d_fwsectors = ccg->ccg_nsectors; cs->sc_disk->d_fwheads = ccg->ccg_ntracks; cs->sc_dev = disk_create(unit, cs->sc_disk, 0, NULL, NULL); cs->sc_dev->si_drv1 = cs; ccdunlock(cs); break; case CCDIOCCLR: if (cs == NULL) return (ENXIO); if (!IS_INITED(cs)) return (ENXIO); if ((flag & FWRITE) == 0) return (EBADF); if ((error = ccdlock(cs)) != 0) return (error); /* Don't unconfigure if any other partitions are open */ if (cs->sc_disk->d_flags & DISKFLAG_OPEN) { ccdunlock(cs); return (EBUSY); } disk_destroy(cs->sc_dev); free(cs->sc_disk, M_CCD); cs->sc_disk = NULL; /* Declare unit null and void (reset all flags) */ cs->sc_flags &= (CCDF_WANTED | CCDF_LOCKED); /* Close the components and free their pathnames. */ for (i = 0; i < cs->sc_nccdisks; ++i) { /* * XXX: this close could potentially fail and * cause Bad Things. Maybe we need to force * the close to happen? */ (void)vn_close(cs->sc_cinfo[i].ci_vp, FREAD|FWRITE, td->td_ucred, td); free(cs->sc_cinfo[i].ci_path, M_CCD); } /* Free interleave index. */ for (i = 0; cs->sc_itable[i].ii_ndisk; ++i) free(cs->sc_itable[i].ii_index, M_CCD); /* Free component info and interleave table. */ free(cs->sc_cinfo, M_CCD); free(cs->sc_itable, M_CCD); free(cs->sc_vpp, M_CCD); /* And remove the devstat entry. */ devstat_remove_entry(&cs->device_stats); /* This must be atomic. */ ccdunlock(cs); ccddestroy(cs); break; } return (0); } /* * Lookup the provided name in the filesystem. If the file exists, * is a valid block device, and isn't being used by anyone else, * set *vpp to the file's vnode. */ static int ccdlookup(char *path, struct thread *td, struct vnode **vpp) { struct nameidata nd; struct vnode *vp; int error, flags; NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, path, td); flags = FREAD | FWRITE; if ((error = vn_open(&nd, &flags, 0)) != 0) { return (error); } vp = nd.ni_vp; if (vrefcnt(vp) > 1) { error = EBUSY; goto bad; } if (!vn_isdisk(vp, &error)) goto bad; VOP_UNLOCK(vp, 0, td); NDFREE(&nd, NDF_ONLY_PNBUF); *vpp = vp; return (0); bad: VOP_UNLOCK(vp, 0, td); NDFREE(&nd, NDF_ONLY_PNBUF); /* vn_close does vrele() for vp */ (void)vn_close(vp, FREAD|FWRITE, td->td_ucred, td); return (error); } /* * Wait interruptibly for an exclusive lock. * * XXX * Several drivers do this; it should be abstracted and made MP-safe. */ static int ccdlock(struct ccd_s *cs) { int error; while ((cs->sc_flags & CCDF_LOCKED) != 0) { cs->sc_flags |= CCDF_WANTED; if ((error = tsleep(cs, PRIBIO | PCATCH, "ccdlck", 0)) != 0) return (error); } cs->sc_flags |= CCDF_LOCKED; return (0); } /* * Unlock and wake up any waiters. */ static void ccdunlock(struct ccd_s *cs) { cs->sc_flags &= ~CCDF_LOCKED; if ((cs->sc_flags & CCDF_WANTED) != 0) { cs->sc_flags &= ~CCDF_WANTED; wakeup(cs); } }