/*- * Copyright (c) 2014 Ruslan Bukin * All rights reserved. * * This software was developed by SRI International and the University of * Cambridge Computer Laboratory under DARPA/AFRL contract (FA8750-10-C-0237) * ("CTSRD"), as part of the DARPA CRASH research programme. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Ethernet media access controller (EMAC) * Chapter 17, Altera Cyclone V Device Handbook (CV-5V2 2014.07.22) * * EMAC is an instance of the Synopsys DesignWare 3504-0 * Universal 10/100/1000 Ethernet MAC (DWC_gmac). */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "miibus_if.h" #define READ4(_sc, _reg) \ bus_read_4((_sc)->res[0], _reg) #define WRITE4(_sc, _reg, _val) \ bus_write_4((_sc)->res[0], _reg, _val) #define MAC_RESET_TIMEOUT 100 #define WATCHDOG_TIMEOUT_SECS 5 #define STATS_HARVEST_INTERVAL 2 #define MII_CLK_VAL 2 #include #define DWC_LOCK(sc) mtx_lock(&(sc)->mtx) #define DWC_UNLOCK(sc) mtx_unlock(&(sc)->mtx) #define DWC_ASSERT_LOCKED(sc) mtx_assert(&(sc)->mtx, MA_OWNED) #define DWC_ASSERT_UNLOCKED(sc) mtx_assert(&(sc)->mtx, MA_NOTOWNED) #define DDESC_TDES0_OWN (1U << 31) #define DDESC_TDES0_TXINT (1U << 30) #define DDESC_TDES0_TXLAST (1U << 29) #define DDESC_TDES0_TXFIRST (1U << 28) #define DDESC_TDES0_TXCRCDIS (1U << 27) #define DDESC_TDES0_TXRINGEND (1U << 21) #define DDESC_TDES0_TXCHAIN (1U << 20) #define DDESC_RDES0_OWN (1U << 31) #define DDESC_RDES0_FL_MASK 0x3fff #define DDESC_RDES0_FL_SHIFT 16 /* Frame Length */ #define DDESC_RDES1_CHAINED (1U << 14) struct dwc_bufmap { bus_dmamap_t map; struct mbuf *mbuf; }; /* * A hardware buffer descriptor. Rx and Tx buffers have the same descriptor * layout, but the bits in the flags field have different meanings. */ struct dwc_hwdesc { uint32_t tdes0; uint32_t tdes1; uint32_t addr; /* pointer to buffer data */ uint32_t addr_next; /* link to next descriptor */ }; /* * Driver data and defines. */ #define RX_DESC_COUNT 1024 #define RX_DESC_SIZE (sizeof(struct dwc_hwdesc) * RX_DESC_COUNT) #define TX_DESC_COUNT 1024 #define TX_DESC_SIZE (sizeof(struct dwc_hwdesc) * TX_DESC_COUNT) /* * The hardware imposes alignment restrictions on various objects involved in * DMA transfers. These values are expressed in bytes (not bits). */ #define DWC_DESC_RING_ALIGN 2048 struct dwc_softc { struct resource *res[2]; bus_space_tag_t bst; bus_space_handle_t bsh; device_t dev; int mii_clk; device_t miibus; struct mii_data * mii_softc; struct ifnet *ifp; int if_flags; struct mtx mtx; void * intr_cookie; struct callout dwc_callout; boolean_t link_is_up; boolean_t is_attached; boolean_t is_detaching; int tx_watchdog_count; int stats_harvest_count; /* RX */ bus_dma_tag_t rxdesc_tag; bus_dmamap_t rxdesc_map; struct dwc_hwdesc *rxdesc_ring; bus_addr_t rxdesc_ring_paddr; bus_dma_tag_t rxbuf_tag; struct dwc_bufmap rxbuf_map[RX_DESC_COUNT]; uint32_t rx_idx; /* TX */ bus_dma_tag_t txdesc_tag; bus_dmamap_t txdesc_map; struct dwc_hwdesc *txdesc_ring; bus_addr_t txdesc_ring_paddr; bus_dma_tag_t txbuf_tag; struct dwc_bufmap txbuf_map[RX_DESC_COUNT]; uint32_t tx_idx_head; uint32_t tx_idx_tail; int txcount; }; static struct resource_spec dwc_spec[] = { { SYS_RES_MEMORY, 0, RF_ACTIVE }, { SYS_RES_IRQ, 0, RF_ACTIVE }, { -1, 0 } }; static void dwc_txfinish_locked(struct dwc_softc *sc); static void dwc_rxfinish_locked(struct dwc_softc *sc); static void dwc_stop_locked(struct dwc_softc *sc); static void dwc_setup_rxfilter(struct dwc_softc *sc); static inline uint32_t next_rxidx(struct dwc_softc *sc, uint32_t curidx) { return ((curidx + 1) % RX_DESC_COUNT); } static inline uint32_t next_txidx(struct dwc_softc *sc, uint32_t curidx) { return ((curidx + 1) % TX_DESC_COUNT); } static void dwc_get1paddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { if (error != 0) return; *(bus_addr_t *)arg = segs[0].ds_addr; } inline static uint32_t dwc_setup_txdesc(struct dwc_softc *sc, int idx, bus_addr_t paddr, uint32_t len) { uint32_t flags; uint32_t nidx; nidx = next_txidx(sc, idx); /* Addr/len 0 means we're clearing the descriptor after xmit done. */ if (paddr == 0 || len == 0) { flags = 0; --sc->txcount; } else { flags = DDESC_TDES0_TXCHAIN | DDESC_TDES0_TXFIRST | DDESC_TDES0_TXLAST | DDESC_TDES0_TXINT; ++sc->txcount; } sc->txdesc_ring[idx].addr = (uint32_t)(paddr); sc->txdesc_ring[idx].tdes0 = flags; sc->txdesc_ring[idx].tdes1 = len; if (paddr && len) { wmb(); sc->txdesc_ring[idx].tdes0 |= DDESC_TDES0_OWN; wmb(); } return (nidx); } static int dwc_setup_txbuf(struct dwc_softc *sc, int idx, struct mbuf **mp) { struct bus_dma_segment seg; int error, nsegs; struct mbuf * m; if ((m = m_defrag(*mp, M_NOWAIT)) == NULL) return (ENOMEM); *mp = m; error = bus_dmamap_load_mbuf_sg(sc->txbuf_tag, sc->txbuf_map[idx].map, m, &seg, &nsegs, 0); if (error != 0) { return (ENOMEM); } KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); bus_dmamap_sync(sc->txbuf_tag, sc->txbuf_map[idx].map, BUS_DMASYNC_PREWRITE); sc->txbuf_map[idx].mbuf = m; dwc_setup_txdesc(sc, idx, seg.ds_addr, seg.ds_len); return (0); } static void dwc_txstart_locked(struct dwc_softc *sc) { struct ifnet *ifp; struct mbuf *m; int enqueued; DWC_ASSERT_LOCKED(sc); if (!sc->link_is_up) return; ifp = sc->ifp; if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { return; } enqueued = 0; for (;;) { if (sc->txcount == (TX_DESC_COUNT-1)) { ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } IFQ_DRV_DEQUEUE(&ifp->if_snd, m); if (m == NULL) break; if (dwc_setup_txbuf(sc, sc->tx_idx_head, &m) != 0) { IFQ_DRV_PREPEND(&ifp->if_snd, m); break; } BPF_MTAP(ifp, m); sc->tx_idx_head = next_txidx(sc, sc->tx_idx_head); ++enqueued; } if (enqueued != 0) { WRITE4(sc, TRANSMIT_POLL_DEMAND, 0x1); sc->tx_watchdog_count = WATCHDOG_TIMEOUT_SECS; } } static void dwc_txstart(struct ifnet *ifp) { struct dwc_softc *sc = ifp->if_softc; DWC_LOCK(sc); dwc_txstart_locked(sc); DWC_UNLOCK(sc); } static void dwc_stop_locked(struct dwc_softc *sc) { struct ifnet *ifp; uint32_t reg; DWC_ASSERT_LOCKED(sc); ifp = sc->ifp; ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); sc->tx_watchdog_count = 0; sc->stats_harvest_count = 0; callout_stop(&sc->dwc_callout); /* Stop DMA TX */ reg = READ4(sc, OPERATION_MODE); reg &= ~(MODE_ST); WRITE4(sc, OPERATION_MODE, reg); /* Flush TX */ reg = READ4(sc, OPERATION_MODE); reg |= (MODE_FTF); WRITE4(sc, OPERATION_MODE, reg); /* Stop transmitters */ reg = READ4(sc, MAC_CONFIGURATION); reg &= ~(CONF_TE | CONF_RE); WRITE4(sc, MAC_CONFIGURATION, reg); /* Stop DMA RX */ reg = READ4(sc, OPERATION_MODE); reg &= ~(MODE_SR); WRITE4(sc, OPERATION_MODE, reg); } static void dwc_clear_stats(struct dwc_softc *sc) { uint32_t reg; reg = READ4(sc, MMC_CONTROL); reg |= (MMC_CONTROL_CNTRST); WRITE4(sc, MMC_CONTROL, reg); } static void dwc_harvest_stats(struct dwc_softc *sc) { struct ifnet *ifp; /* We don't need to harvest too often. */ if (++sc->stats_harvest_count < STATS_HARVEST_INTERVAL) return; sc->stats_harvest_count = 0; ifp = sc->ifp; if_inc_counter(ifp, IFCOUNTER_IPACKETS, READ4(sc, RXFRAMECOUNT_GB)); if_inc_counter(ifp, IFCOUNTER_IMCASTS, READ4(sc, RXMULTICASTFRAMES_G)); if_inc_counter(ifp, IFCOUNTER_IERRORS, READ4(sc, RXOVERSIZE_G) + READ4(sc, RXUNDERSIZE_G) + READ4(sc, RXCRCERROR) + READ4(sc, RXALIGNMENTERROR) + READ4(sc, RXRUNTERROR) + READ4(sc, RXJABBERERROR) + READ4(sc, RXLENGTHERROR)); if_inc_counter(ifp, IFCOUNTER_OPACKETS, READ4(sc, TXFRAMECOUNT_G)); if_inc_counter(ifp, IFCOUNTER_OMCASTS, READ4(sc, TXMULTICASTFRAMES_G)); if_inc_counter(ifp, IFCOUNTER_OERRORS, READ4(sc, TXOVERSIZE_G) + READ4(sc, TXEXCESSDEF) + READ4(sc, TXCARRIERERR) + READ4(sc, TXUNDERFLOWERROR)); if_inc_counter(ifp, IFCOUNTER_COLLISIONS, READ4(sc, TXEXESSCOL) + READ4(sc, TXLATECOL)); dwc_clear_stats(sc); } static void dwc_tick(void *arg) { struct dwc_softc *sc; struct ifnet *ifp; int link_was_up; sc = arg; DWC_ASSERT_LOCKED(sc); ifp = sc->ifp; if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) return; /* * Typical tx watchdog. If this fires it indicates that we enqueued * packets for output and never got a txdone interrupt for them. Maybe * it's a missed interrupt somehow, just pretend we got one. */ if (sc->tx_watchdog_count > 0) { if (--sc->tx_watchdog_count == 0) { dwc_txfinish_locked(sc); } } /* Gather stats from hardware counters. */ dwc_harvest_stats(sc); /* Check the media status. */ link_was_up = sc->link_is_up; mii_tick(sc->mii_softc); if (sc->link_is_up && !link_was_up) dwc_txstart_locked(sc); /* Schedule another check one second from now. */ callout_reset(&sc->dwc_callout, hz, dwc_tick, sc); } static void dwc_init_locked(struct dwc_softc *sc) { struct ifnet *ifp = sc->ifp; uint32_t reg; DWC_ASSERT_LOCKED(sc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) return; ifp->if_drv_flags |= IFF_DRV_RUNNING; dwc_setup_rxfilter(sc); /* Initializa DMA and enable transmitters */ reg = READ4(sc, OPERATION_MODE); reg |= (MODE_TSF | MODE_OSF | MODE_FUF); reg &= ~(MODE_RSF); reg |= (MODE_RTC_LEV32 << MODE_RTC_SHIFT); WRITE4(sc, OPERATION_MODE, reg); WRITE4(sc, INTERRUPT_ENABLE, INT_EN_DEFAULT); /* Start DMA */ reg = READ4(sc, OPERATION_MODE); reg |= (MODE_ST | MODE_SR); WRITE4(sc, OPERATION_MODE, reg); /* Enable transmitters */ reg = READ4(sc, MAC_CONFIGURATION); reg |= (CONF_JD | CONF_ACS | CONF_BE); reg |= (CONF_TE | CONF_RE); WRITE4(sc, MAC_CONFIGURATION, reg); /* * Call mii_mediachg() which will call back into dwc_miibus_statchg() * to set up the remaining config registers based on current media. */ mii_mediachg(sc->mii_softc); callout_reset(&sc->dwc_callout, hz, dwc_tick, sc); } static void dwc_init(void *if_softc) { struct dwc_softc *sc = if_softc; DWC_LOCK(sc); dwc_init_locked(sc); DWC_UNLOCK(sc); } inline static uint32_t dwc_setup_rxdesc(struct dwc_softc *sc, int idx, bus_addr_t paddr) { uint32_t nidx; sc->rxdesc_ring[idx].addr = (uint32_t)paddr; nidx = next_rxidx(sc, idx); sc->rxdesc_ring[idx].addr_next = sc->rxdesc_ring_paddr + \ (nidx * sizeof(struct dwc_hwdesc)); sc->rxdesc_ring[idx].tdes1 = DDESC_RDES1_CHAINED | MCLBYTES; wmb(); sc->rxdesc_ring[idx].tdes0 = DDESC_RDES0_OWN; wmb(); return (nidx); } static int dwc_setup_rxbuf(struct dwc_softc *sc, int idx, struct mbuf *m) { struct bus_dma_segment seg; int error, nsegs; m_adj(m, ETHER_ALIGN); error = bus_dmamap_load_mbuf_sg(sc->rxbuf_tag, sc->rxbuf_map[idx].map, m, &seg, &nsegs, 0); if (error != 0) { return (error); } KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); bus_dmamap_sync(sc->rxbuf_tag, sc->rxbuf_map[idx].map, BUS_DMASYNC_PREREAD); sc->rxbuf_map[idx].mbuf = m; dwc_setup_rxdesc(sc, idx, seg.ds_addr); return (0); } static struct mbuf * dwc_alloc_mbufcl(struct dwc_softc *sc) { struct mbuf *m; m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m != NULL) m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; return (m); } static void dwc_media_status(struct ifnet * ifp, struct ifmediareq *ifmr) { struct dwc_softc *sc; struct mii_data *mii; sc = ifp->if_softc; mii = sc->mii_softc; DWC_LOCK(sc); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; DWC_UNLOCK(sc); } static int dwc_media_change_locked(struct dwc_softc *sc) { return (mii_mediachg(sc->mii_softc)); } static int dwc_media_change(struct ifnet * ifp) { struct dwc_softc *sc; int error; sc = ifp->if_softc; DWC_LOCK(sc); error = dwc_media_change_locked(sc); DWC_UNLOCK(sc); return (error); } static const uint8_t nibbletab[] = { /* 0x0 0000 -> 0000 */ 0x0, /* 0x1 0001 -> 1000 */ 0x8, /* 0x2 0010 -> 0100 */ 0x4, /* 0x3 0011 -> 1100 */ 0xc, /* 0x4 0100 -> 0010 */ 0x2, /* 0x5 0101 -> 1010 */ 0xa, /* 0x6 0110 -> 0110 */ 0x6, /* 0x7 0111 -> 1110 */ 0xe, /* 0x8 1000 -> 0001 */ 0x1, /* 0x9 1001 -> 1001 */ 0x9, /* 0xa 1010 -> 0101 */ 0x5, /* 0xb 1011 -> 1101 */ 0xd, /* 0xc 1100 -> 0011 */ 0x3, /* 0xd 1101 -> 1011 */ 0xb, /* 0xe 1110 -> 0111 */ 0x7, /* 0xf 1111 -> 1111 */ 0xf, }; static uint8_t bitreverse(uint8_t x) { return (nibbletab[x & 0xf] << 4) | nibbletab[x >> 4]; } static void dwc_setup_rxfilter(struct dwc_softc *sc) { struct ifmultiaddr *ifma; struct ifnet *ifp; uint8_t *eaddr, val; uint32_t crc, ffval, hashbit, hashreg, hi, lo, reg; DWC_ASSERT_LOCKED(sc); ifp = sc->ifp; /* * Set the multicast (group) filter hash. */ if ((ifp->if_flags & IFF_ALLMULTI)) ffval = (FRAME_FILTER_PM); else { ffval = (FRAME_FILTER_HMC); if_maddr_rlock(ifp); TAILQ_FOREACH(ifma, &sc->ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; crc = ether_crc32_le(LLADDR((struct sockaddr_dl *) ifma->ifma_addr), ETHER_ADDR_LEN); /* Take lower 8 bits and reverse it */ val = bitreverse(~crc & 0xff); hashreg = (val >> 5); hashbit = (val & 31); reg = READ4(sc, HASH_TABLE_REG(hashreg)); reg |= (1 << hashbit); WRITE4(sc, HASH_TABLE_REG(hashreg), reg); } if_maddr_runlock(ifp); } /* * Set the individual address filter hash. */ if (ifp->if_flags & IFF_PROMISC) ffval |= (FRAME_FILTER_PR); /* * Set the primary address. */ eaddr = IF_LLADDR(ifp); lo = eaddr[0] | (eaddr[1] << 8) | (eaddr[2] << 16) | (eaddr[3] << 24); hi = eaddr[4] | (eaddr[5] << 8); WRITE4(sc, MAC_ADDRESS_LOW(0), lo); WRITE4(sc, MAC_ADDRESS_HIGH(0), hi); WRITE4(sc, MAC_FRAME_FILTER, ffval); } static int dwc_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct dwc_softc *sc; struct mii_data *mii; struct ifreq *ifr; int mask, error; sc = ifp->if_softc; ifr = (struct ifreq *)data; error = 0; switch (cmd) { case SIOCSIFFLAGS: DWC_LOCK(sc); if (ifp->if_flags & IFF_UP) { if (ifp->if_drv_flags & IFF_DRV_RUNNING) { if ((ifp->if_flags ^ sc->if_flags) & (IFF_PROMISC | IFF_ALLMULTI)) dwc_setup_rxfilter(sc); } else { if (!sc->is_detaching) dwc_init_locked(sc); } } else { if (ifp->if_drv_flags & IFF_DRV_RUNNING) dwc_stop_locked(sc); } sc->if_flags = ifp->if_flags; DWC_UNLOCK(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: if (ifp->if_drv_flags & IFF_DRV_RUNNING) { DWC_LOCK(sc); dwc_setup_rxfilter(sc); DWC_UNLOCK(sc); } break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: mii = sc->mii_softc; error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); break; case SIOCSIFCAP: mask = ifp->if_capenable ^ ifr->ifr_reqcap; if (mask & IFCAP_VLAN_MTU) { /* No work to do except acknowledge the change took */ ifp->if_capenable ^= IFCAP_VLAN_MTU; } break; default: error = ether_ioctl(ifp, cmd, data); break; } return (error); } static void dwc_txfinish_locked(struct dwc_softc *sc) { struct dwc_bufmap *bmap; struct dwc_hwdesc *desc; struct ifnet *ifp; DWC_ASSERT_LOCKED(sc); ifp = sc->ifp; while (sc->tx_idx_tail != sc->tx_idx_head) { desc = &sc->txdesc_ring[sc->tx_idx_tail]; if ((desc->tdes0 & DDESC_TDES0_OWN) != 0) break; bmap = &sc->txbuf_map[sc->tx_idx_tail]; bus_dmamap_sync(sc->txbuf_tag, bmap->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->txbuf_tag, bmap->map); m_freem(bmap->mbuf); bmap->mbuf = NULL; dwc_setup_txdesc(sc, sc->tx_idx_tail, 0, 0); sc->tx_idx_tail = next_txidx(sc, sc->tx_idx_tail); ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); } /* If there are no buffers outstanding, muzzle the watchdog. */ if (sc->tx_idx_tail == sc->tx_idx_head) { sc->tx_watchdog_count = 0; } } static void dwc_rxfinish_locked(struct dwc_softc *sc) { struct ifnet *ifp; struct mbuf *m0; struct mbuf *m; int error, idx, len; uint32_t rdes0; ifp = sc->ifp; for (;;) { idx = sc->rx_idx; rdes0 = sc->rxdesc_ring[idx].tdes0; if ((rdes0 & DDESC_RDES0_OWN) != 0) break; bus_dmamap_sync(sc->rxbuf_tag, sc->rxbuf_map[idx].map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->rxbuf_tag, sc->rxbuf_map[idx].map); len = (rdes0 >> DDESC_RDES0_FL_SHIFT) & DDESC_RDES0_FL_MASK; if (len != 0) { m = sc->rxbuf_map[idx].mbuf; m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = len; m->m_len = len; if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); DWC_UNLOCK(sc); (*ifp->if_input)(ifp, m); DWC_LOCK(sc); } else { /* XXX Zero-length packet ? */ } if ((m0 = dwc_alloc_mbufcl(sc)) != NULL) { if ((error = dwc_setup_rxbuf(sc, idx, m0)) != 0) { /* * XXX Now what? * We've got a hole in the rx ring. */ } } else if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, 1); sc->rx_idx = next_rxidx(sc, sc->rx_idx); } } static void dwc_intr(void *arg) { struct dwc_softc *sc; uint32_t reg; sc = arg; DWC_LOCK(sc); reg = READ4(sc, INTERRUPT_STATUS); if (reg) READ4(sc, SGMII_RGMII_SMII_CTRL_STATUS); reg = READ4(sc, DMA_STATUS); if (reg & DMA_STATUS_NIS) { if (reg & DMA_STATUS_RI) dwc_rxfinish_locked(sc); if (reg & DMA_STATUS_TI) { dwc_txfinish_locked(sc); dwc_txstart_locked(sc); } } if (reg & DMA_STATUS_AIS) { if (reg & DMA_STATUS_FBI) { /* Fatal bus error */ device_printf(sc->dev, "Ethernet DMA error, restarting controller.\n"); dwc_stop_locked(sc); dwc_init_locked(sc); } } WRITE4(sc, DMA_STATUS, reg & DMA_STATUS_INTR_MASK); DWC_UNLOCK(sc); } static int setup_dma(struct dwc_softc *sc) { struct mbuf *m; int error; int nidx; int idx; /* * Set up TX descriptor ring, descriptors, and dma maps. */ error = bus_dma_tag_create( bus_get_dma_tag(sc->dev), /* Parent tag. */ DWC_DESC_RING_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ TX_DESC_SIZE, 1, /* maxsize, nsegments */ TX_DESC_SIZE, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->txdesc_tag); if (error != 0) { device_printf(sc->dev, "could not create TX ring DMA tag.\n"); goto out; } error = bus_dmamem_alloc(sc->txdesc_tag, (void**)&sc->txdesc_ring, BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->txdesc_map); if (error != 0) { device_printf(sc->dev, "could not allocate TX descriptor ring.\n"); goto out; } error = bus_dmamap_load(sc->txdesc_tag, sc->txdesc_map, sc->txdesc_ring, TX_DESC_SIZE, dwc_get1paddr, &sc->txdesc_ring_paddr, 0); if (error != 0) { device_printf(sc->dev, "could not load TX descriptor ring map.\n"); goto out; } for (idx = 0; idx < TX_DESC_COUNT; idx++) { nidx = next_txidx(sc, idx); sc->txdesc_ring[idx].addr_next = sc->txdesc_ring_paddr + (nidx * sizeof(struct dwc_hwdesc)); } error = bus_dma_tag_create( bus_get_dma_tag(sc->dev), /* Parent tag. */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MCLBYTES, 1, /* maxsize, nsegments */ MCLBYTES, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->txbuf_tag); if (error != 0) { device_printf(sc->dev, "could not create TX ring DMA tag.\n"); goto out; } for (idx = 0; idx < TX_DESC_COUNT; idx++) { error = bus_dmamap_create(sc->txbuf_tag, BUS_DMA_COHERENT, &sc->txbuf_map[idx].map); if (error != 0) { device_printf(sc->dev, "could not create TX buffer DMA map.\n"); goto out; } dwc_setup_txdesc(sc, idx, 0, 0); } /* * Set up RX descriptor ring, descriptors, dma maps, and mbufs. */ error = bus_dma_tag_create( bus_get_dma_tag(sc->dev), /* Parent tag. */ DWC_DESC_RING_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ RX_DESC_SIZE, 1, /* maxsize, nsegments */ RX_DESC_SIZE, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->rxdesc_tag); if (error != 0) { device_printf(sc->dev, "could not create RX ring DMA tag.\n"); goto out; } error = bus_dmamem_alloc(sc->rxdesc_tag, (void **)&sc->rxdesc_ring, BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->rxdesc_map); if (error != 0) { device_printf(sc->dev, "could not allocate RX descriptor ring.\n"); goto out; } error = bus_dmamap_load(sc->rxdesc_tag, sc->rxdesc_map, sc->rxdesc_ring, RX_DESC_SIZE, dwc_get1paddr, &sc->rxdesc_ring_paddr, 0); if (error != 0) { device_printf(sc->dev, "could not load RX descriptor ring map.\n"); goto out; } error = bus_dma_tag_create( bus_get_dma_tag(sc->dev), /* Parent tag. */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MCLBYTES, 1, /* maxsize, nsegments */ MCLBYTES, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->rxbuf_tag); if (error != 0) { device_printf(sc->dev, "could not create RX buf DMA tag.\n"); goto out; } for (idx = 0; idx < RX_DESC_COUNT; idx++) { error = bus_dmamap_create(sc->rxbuf_tag, BUS_DMA_COHERENT, &sc->rxbuf_map[idx].map); if (error != 0) { device_printf(sc->dev, "could not create RX buffer DMA map.\n"); goto out; } if ((m = dwc_alloc_mbufcl(sc)) == NULL) { device_printf(sc->dev, "Could not alloc mbuf\n"); error = ENOMEM; goto out; } if ((error = dwc_setup_rxbuf(sc, idx, m)) != 0) { device_printf(sc->dev, "could not create new RX buffer.\n"); goto out; } } out: if (error != 0) return (ENXIO); return (0); } static int dwc_get_hwaddr(struct dwc_softc *sc, uint8_t *hwaddr) { uint32_t hi, lo, rnd; /* * Try to recover a MAC address from the running hardware. If there's * something non-zero there, assume the bootloader did the right thing * and just use it. * * Otherwise, set the address to a convenient locally assigned address, * 'bsd' + random 24 low-order bits. 'b' is 0x62, which has the locally * assigned bit set, and the broadcast/multicast bit clear. */ lo = READ4(sc, MAC_ADDRESS_LOW(0)); hi = READ4(sc, MAC_ADDRESS_HIGH(0)) & 0xffff; if ((lo != 0xffffffff) || (hi != 0xffff)) { hwaddr[0] = (lo >> 0) & 0xff; hwaddr[1] = (lo >> 8) & 0xff; hwaddr[2] = (lo >> 16) & 0xff; hwaddr[3] = (lo >> 24) & 0xff; hwaddr[4] = (hi >> 0) & 0xff; hwaddr[5] = (hi >> 8) & 0xff; } else { rnd = arc4random() & 0x00ffffff; hwaddr[0] = 'b'; hwaddr[1] = 's'; hwaddr[2] = 'd'; hwaddr[3] = rnd >> 16; hwaddr[4] = rnd >> 8; hwaddr[5] = rnd >> 0; } return (0); } static int dwc_probe(device_t dev) { if (!ofw_bus_status_okay(dev)) return (ENXIO); if (!ofw_bus_is_compatible(dev, "snps,dwmac")) return (ENXIO); device_set_desc(dev, "Gigabit Ethernet Controller"); return (BUS_PROBE_DEFAULT); } static int dwc_attach(device_t dev) { uint8_t macaddr[ETHER_ADDR_LEN]; struct dwc_softc *sc; struct ifnet *ifp; int error, i; uint32_t reg; sc = device_get_softc(dev); sc->dev = dev; sc->mii_clk = MII_CLK_VAL; sc->rx_idx = 0; sc->txcount = TX_DESC_COUNT; if (bus_alloc_resources(dev, dwc_spec, sc->res)) { device_printf(dev, "could not allocate resources\n"); return (ENXIO); } /* Memory interface */ sc->bst = rman_get_bustag(sc->res[0]); sc->bsh = rman_get_bushandle(sc->res[0]); /* Read MAC before reset */ if (dwc_get_hwaddr(sc, macaddr)) { device_printf(sc->dev, "can't get mac\n"); return (ENXIO); } /* Reset */ reg = READ4(sc, BUS_MODE); reg |= (BUS_MODE_SWR); WRITE4(sc, BUS_MODE, reg); for (i = 0; i < MAC_RESET_TIMEOUT; i++) { if ((READ4(sc, BUS_MODE) & BUS_MODE_SWR) == 0) break; DELAY(10); } if (i >= MAC_RESET_TIMEOUT) { device_printf(sc->dev, "Can't reset DWC.\n"); return (ENXIO); } reg = READ4(sc, BUS_MODE); reg |= (BUS_MODE_EIGHTXPBL); reg |= (BUS_MODE_PBL_BEATS_8 << BUS_MODE_PBL_SHIFT); WRITE4(sc, BUS_MODE, reg); /* * DMA must be stop while changing descriptor list addresses. */ reg = READ4(sc, OPERATION_MODE); reg &= ~(MODE_ST | MODE_SR); WRITE4(sc, OPERATION_MODE, reg); if (setup_dma(sc)) return (ENXIO); /* Setup addresses */ WRITE4(sc, RX_DESCR_LIST_ADDR, sc->rxdesc_ring_paddr); WRITE4(sc, TX_DESCR_LIST_ADDR, sc->txdesc_ring_paddr); mtx_init(&sc->mtx, device_get_nameunit(sc->dev), MTX_NETWORK_LOCK, MTX_DEF); callout_init_mtx(&sc->dwc_callout, &sc->mtx, 0); /* Setup interrupt handler. */ error = bus_setup_intr(dev, sc->res[1], INTR_TYPE_NET | INTR_MPSAFE, NULL, dwc_intr, sc, &sc->intr_cookie); if (error != 0) { device_printf(dev, "could not setup interrupt handler.\n"); return (ENXIO); } /* Set up the ethernet interface. */ sc->ifp = ifp = if_alloc(IFT_ETHER); ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_capabilities = IFCAP_VLAN_MTU; ifp->if_capenable = ifp->if_capabilities; ifp->if_start = dwc_txstart; ifp->if_ioctl = dwc_ioctl; ifp->if_init = dwc_init; IFQ_SET_MAXLEN(&ifp->if_snd, TX_DESC_COUNT - 1); ifp->if_snd.ifq_drv_maxlen = TX_DESC_COUNT - 1; IFQ_SET_READY(&ifp->if_snd); ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* Attach the mii driver. */ error = mii_attach(dev, &sc->miibus, ifp, dwc_media_change, dwc_media_status, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (error != 0) { device_printf(dev, "PHY attach failed\n"); return (ENXIO); } sc->mii_softc = device_get_softc(sc->miibus); /* All ready to run, attach the ethernet interface. */ ether_ifattach(ifp, macaddr); sc->is_attached = true; return (0); } static int dwc_miibus_read_reg(device_t dev, int phy, int reg) { struct dwc_softc *sc; uint16_t mii; size_t cnt; int rv = 0; sc = device_get_softc(dev); mii = ((phy & GMII_ADDRESS_PA_MASK) << GMII_ADDRESS_PA_SHIFT) | ((reg & GMII_ADDRESS_GR_MASK) << GMII_ADDRESS_GR_SHIFT) | (sc->mii_clk << GMII_ADDRESS_CR_SHIFT) | GMII_ADDRESS_GB; /* Busy flag */ WRITE4(sc, GMII_ADDRESS, mii); for (cnt = 0; cnt < 1000; cnt++) { if (!(READ4(sc, GMII_ADDRESS) & GMII_ADDRESS_GB)) { rv = READ4(sc, GMII_DATA); break; } DELAY(10); } return rv; } static int dwc_miibus_write_reg(device_t dev, int phy, int reg, int val) { struct dwc_softc *sc; uint16_t mii; size_t cnt; sc = device_get_softc(dev); mii = ((phy & GMII_ADDRESS_PA_MASK) << GMII_ADDRESS_PA_SHIFT) | ((reg & GMII_ADDRESS_GR_MASK) << GMII_ADDRESS_GR_SHIFT) | (sc->mii_clk << GMII_ADDRESS_CR_SHIFT) | GMII_ADDRESS_GB | GMII_ADDRESS_GW; WRITE4(sc, GMII_DATA, val); WRITE4(sc, GMII_ADDRESS, mii); for (cnt = 0; cnt < 1000; cnt++) { if (!(READ4(sc, GMII_ADDRESS) & GMII_ADDRESS_GB)) { break; } DELAY(10); } return (0); } static void dwc_miibus_statchg(device_t dev) { struct dwc_softc *sc; struct mii_data *mii; uint32_t reg; /* * Called by the MII bus driver when the PHY establishes * link to set the MAC interface registers. */ sc = device_get_softc(dev); DWC_ASSERT_LOCKED(sc); mii = sc->mii_softc; if (mii->mii_media_status & IFM_ACTIVE) sc->link_is_up = true; else sc->link_is_up = false; reg = READ4(sc, MAC_CONFIGURATION); switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_1000_T: case IFM_1000_SX: reg &= ~(CONF_FES | CONF_PS); break; case IFM_100_TX: reg |= (CONF_FES | CONF_PS); break; case IFM_10_T: reg &= ~(CONF_FES); reg |= (CONF_PS); break; case IFM_NONE: sc->link_is_up = false; return; default: sc->link_is_up = false; device_printf(dev, "Unsupported media %u\n", IFM_SUBTYPE(mii->mii_media_active)); return; } if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) reg |= (CONF_DM); else reg &= ~(CONF_DM); WRITE4(sc, MAC_CONFIGURATION, reg); } static device_method_t dwc_methods[] = { DEVMETHOD(device_probe, dwc_probe), DEVMETHOD(device_attach, dwc_attach), /* MII Interface */ DEVMETHOD(miibus_readreg, dwc_miibus_read_reg), DEVMETHOD(miibus_writereg, dwc_miibus_write_reg), DEVMETHOD(miibus_statchg, dwc_miibus_statchg), { 0, 0 } }; static driver_t dwc_driver = { "dwc", dwc_methods, sizeof(struct dwc_softc), }; static devclass_t dwc_devclass; DRIVER_MODULE(dwc, simplebus, dwc_driver, dwc_devclass, 0, 0); DRIVER_MODULE(miibus, dwc, miibus_driver, miibus_devclass, 0, 0); MODULE_DEPEND(dwc, ether, 1, 1, 1); MODULE_DEPEND(dwc, miibus, 1, 1, 1);