/*- * Copyright (c) 2004 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver. * * Written by Bill Paul * Senior Networking Software Engineer * Wind River Systems */ /* * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that * combines a tri-speed ethernet MAC and PHY, with the following * features: * * o Jumbo frame support up to 16K * o Transmit and receive flow control * o IPv4 checksum offload * o VLAN tag insertion and stripping * o TCP large send * o 64-bit multicast hash table filter * o 64 entry CAM filter * o 16K RX FIFO and 48K TX FIFO memory * o Interrupt moderation * * The VT6122 supports up to four transmit DMA queues. The descriptors * in the transmit ring can address up to 7 data fragments; frames which * span more than 7 data buffers must be coalesced, but in general the * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments * long. The receive descriptors address only a single buffer. * * There are two peculiar design issues with the VT6122. One is that * receive data buffers must be aligned on a 32-bit boundary. This is * not a problem where the VT6122 is used as a LOM device in x86-based * systems, but on architectures that generate unaligned access traps, we * have to do some copying. * * The other issue has to do with the way 64-bit addresses are handled. * The DMA descriptors only allow you to specify 48 bits of addressing * information. The remaining 16 bits are specified using one of the * I/O registers. If you only have a 32-bit system, then this isn't * an issue, but if you have a 64-bit system and more than 4GB of * memory, you must have to make sure your network data buffers reside * in the same 48-bit 'segment.' * * Special thanks to Ryan Fu at VIA Networking for providing documentation * and sample NICs for testing. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MODULE_DEPEND(vge, pci, 1, 1, 1); MODULE_DEPEND(vge, ether, 1, 1, 1); MODULE_DEPEND(vge, miibus, 1, 1, 1); /* "controller miibus0" required. See GENERIC if you get errors here. */ #include "miibus_if.h" #include #include #define VGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) /* * Various supported device vendors/types and their names. */ static struct vge_type vge_devs[] = { { VIA_VENDORID, VIA_DEVICEID_61XX, "VIA Networking Gigabit Ethernet" }, { 0, 0, NULL } }; static int vge_probe (device_t); static int vge_attach (device_t); static int vge_detach (device_t); static int vge_encap (struct vge_softc *, struct mbuf *, int); static void vge_dma_map_addr (void *, bus_dma_segment_t *, int, int); static void vge_dma_map_rx_desc (void *, bus_dma_segment_t *, int, bus_size_t, int); static void vge_dma_map_tx_desc (void *, bus_dma_segment_t *, int, bus_size_t, int); static int vge_allocmem (device_t, struct vge_softc *); static int vge_newbuf (struct vge_softc *, int, struct mbuf *); static int vge_rx_list_init (struct vge_softc *); static int vge_tx_list_init (struct vge_softc *); #ifdef VGE_FIXUP_RX static __inline void vge_fixup_rx (struct mbuf *); #endif static void vge_rxeof (struct vge_softc *); static void vge_txeof (struct vge_softc *); static void vge_intr (void *); static void vge_tick (void *); static void vge_tx_task (void *, int); static void vge_start (struct ifnet *); static int vge_ioctl (struct ifnet *, u_long, caddr_t); static void vge_init (void *); static void vge_stop (struct vge_softc *); static void vge_watchdog (struct ifnet *); static int vge_suspend (device_t); static int vge_resume (device_t); static void vge_shutdown (device_t); static int vge_ifmedia_upd (struct ifnet *); static void vge_ifmedia_sts (struct ifnet *, struct ifmediareq *); #ifdef VGE_EEPROM static void vge_eeprom_getword (struct vge_softc *, int, u_int16_t *); #endif static void vge_read_eeprom (struct vge_softc *, caddr_t, int, int, int); static void vge_miipoll_start (struct vge_softc *); static void vge_miipoll_stop (struct vge_softc *); static int vge_miibus_readreg (device_t, int, int); static int vge_miibus_writereg (device_t, int, int, int); static void vge_miibus_statchg (device_t); static void vge_cam_clear (struct vge_softc *); static int vge_cam_set (struct vge_softc *, uint8_t *); #if __FreeBSD_version < 502113 static uint32_t vge_mchash (uint8_t *); #endif static void vge_setmulti (struct vge_softc *); static void vge_reset (struct vge_softc *); #define VGE_PCI_LOIO 0x10 #define VGE_PCI_LOMEM 0x14 static device_method_t vge_methods[] = { /* Device interface */ DEVMETHOD(device_probe, vge_probe), DEVMETHOD(device_attach, vge_attach), DEVMETHOD(device_detach, vge_detach), DEVMETHOD(device_suspend, vge_suspend), DEVMETHOD(device_resume, vge_resume), DEVMETHOD(device_shutdown, vge_shutdown), /* bus interface */ DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(bus_driver_added, bus_generic_driver_added), /* MII interface */ DEVMETHOD(miibus_readreg, vge_miibus_readreg), DEVMETHOD(miibus_writereg, vge_miibus_writereg), DEVMETHOD(miibus_statchg, vge_miibus_statchg), { 0, 0 } }; static driver_t vge_driver = { "vge", vge_methods, sizeof(struct vge_softc) }; static devclass_t vge_devclass; DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0); DRIVER_MODULE(vge, cardbus, vge_driver, vge_devclass, 0, 0); DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0); #ifdef VGE_EEPROM /* * Read a word of data stored in the EEPROM at address 'addr.' */ static void vge_eeprom_getword(sc, addr, dest) struct vge_softc *sc; int addr; u_int16_t *dest; { register int i; u_int16_t word = 0; /* * Enter EEPROM embedded programming mode. In order to * access the EEPROM at all, we first have to set the * EELOAD bit in the CHIPCFG2 register. */ CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD); CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/); /* Select the address of the word we want to read */ CSR_WRITE_1(sc, VGE_EEADDR, addr); /* Issue read command */ CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD); /* Wait for the done bit to be set. */ for (i = 0; i < VGE_TIMEOUT; i++) { if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE) break; } if (i == VGE_TIMEOUT) { device_printf(sc->vge_dev, "EEPROM read timed out\n"); *dest = 0; return; } /* Read the result */ word = CSR_READ_2(sc, VGE_EERDDAT); /* Turn off EEPROM access mode. */ CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/); CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD); *dest = word; return; } #endif /* * Read a sequence of words from the EEPROM. */ static void vge_read_eeprom(sc, dest, off, cnt, swap) struct vge_softc *sc; caddr_t dest; int off; int cnt; int swap; { int i; #ifdef VGE_EEPROM u_int16_t word = 0, *ptr; for (i = 0; i < cnt; i++) { vge_eeprom_getword(sc, off + i, &word); ptr = (u_int16_t *)(dest + (i * 2)); if (swap) *ptr = ntohs(word); else *ptr = word; } #else for (i = 0; i < ETHER_ADDR_LEN; i++) dest[i] = CSR_READ_1(sc, VGE_PAR0 + i); #endif } static void vge_miipoll_stop(sc) struct vge_softc *sc; { int i; CSR_WRITE_1(sc, VGE_MIICMD, 0); for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(1); if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) break; } if (i == VGE_TIMEOUT) device_printf(sc->vge_dev, "failed to idle MII autopoll\n"); return; } static void vge_miipoll_start(sc) struct vge_softc *sc; { int i; /* First, make sure we're idle. */ CSR_WRITE_1(sc, VGE_MIICMD, 0); CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL); for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(1); if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) break; } if (i == VGE_TIMEOUT) { device_printf(sc->vge_dev, "failed to idle MII autopoll\n"); return; } /* Now enable auto poll mode. */ CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO); /* And make sure it started. */ for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(1); if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0) break; } if (i == VGE_TIMEOUT) device_printf(sc->vge_dev, "failed to start MII autopoll\n"); return; } static int vge_miibus_readreg(dev, phy, reg) device_t dev; int phy, reg; { struct vge_softc *sc; int i; u_int16_t rval = 0; sc = device_get_softc(dev); if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F)) return(0); VGE_LOCK(sc); vge_miipoll_stop(sc); /* Specify the register we want to read. */ CSR_WRITE_1(sc, VGE_MIIADDR, reg); /* Issue read command. */ CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD); /* Wait for the read command bit to self-clear. */ for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(1); if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0) break; } if (i == VGE_TIMEOUT) device_printf(sc->vge_dev, "MII read timed out\n"); else rval = CSR_READ_2(sc, VGE_MIIDATA); vge_miipoll_start(sc); VGE_UNLOCK(sc); return (rval); } static int vge_miibus_writereg(dev, phy, reg, data) device_t dev; int phy, reg, data; { struct vge_softc *sc; int i, rval = 0; sc = device_get_softc(dev); if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F)) return(0); VGE_LOCK(sc); vge_miipoll_stop(sc); /* Specify the register we want to write. */ CSR_WRITE_1(sc, VGE_MIIADDR, reg); /* Specify the data we want to write. */ CSR_WRITE_2(sc, VGE_MIIDATA, data); /* Issue write command. */ CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD); /* Wait for the write command bit to self-clear. */ for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(1); if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0) break; } if (i == VGE_TIMEOUT) { device_printf(sc->vge_dev, "MII write timed out\n"); rval = EIO; } vge_miipoll_start(sc); VGE_UNLOCK(sc); return (rval); } static void vge_cam_clear(sc) struct vge_softc *sc; { int i; /* * Turn off all the mask bits. This tells the chip * that none of the entries in the CAM filter are valid. * desired entries will be enabled as we fill the filter in. */ CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK); CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE); for (i = 0; i < 8; i++) CSR_WRITE_1(sc, VGE_CAM0 + i, 0); /* Clear the VLAN filter too. */ CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0); for (i = 0; i < 8; i++) CSR_WRITE_1(sc, VGE_CAM0 + i, 0); CSR_WRITE_1(sc, VGE_CAMADDR, 0); CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR); sc->vge_camidx = 0; return; } static int vge_cam_set(sc, addr) struct vge_softc *sc; uint8_t *addr; { int i, error = 0; if (sc->vge_camidx == VGE_CAM_MAXADDRS) return(ENOSPC); /* Select the CAM data page. */ CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA); /* Set the filter entry we want to update and enable writing. */ CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx); /* Write the address to the CAM registers */ for (i = 0; i < ETHER_ADDR_LEN; i++) CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]); /* Issue a write command. */ CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE); /* Wake for it to clear. */ for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(1); if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0) break; } if (i == VGE_TIMEOUT) { device_printf(sc->vge_dev, "setting CAM filter failed\n"); error = EIO; goto fail; } /* Select the CAM mask page. */ CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK); /* Set the mask bit that enables this filter. */ CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8), 1<<(sc->vge_camidx & 7)); sc->vge_camidx++; fail: /* Turn off access to CAM. */ CSR_WRITE_1(sc, VGE_CAMADDR, 0); CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR); return (error); } #if __FreeBSD_version < 502113 static uint32_t vge_mchash(addr) uint8_t *addr; { uint32_t crc, carry; int idx, bit; uint8_t data; /* Compute CRC for the address value. */ crc = 0xFFFFFFFF; /* initial value */ for (idx = 0; idx < 6; idx++) { for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) { carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01); crc <<= 1; if (carry) crc = (crc ^ 0x04c11db6) | carry; } } return(crc); } #endif /* * Program the multicast filter. We use the 64-entry CAM filter * for perfect filtering. If there's more than 64 multicast addresses, * we use the hash filter insted. */ static void vge_setmulti(sc) struct vge_softc *sc; { struct ifnet *ifp; int error = 0/*, h = 0*/; struct ifmultiaddr *ifma; u_int32_t h, hashes[2] = { 0, 0 }; ifp = &sc->arpcom.ac_if; /* First, zot all the multicast entries. */ vge_cam_clear(sc); CSR_WRITE_4(sc, VGE_MAR0, 0); CSR_WRITE_4(sc, VGE_MAR1, 0); /* * If the user wants allmulti or promisc mode, enable reception * of all multicast frames. */ if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF); CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF); return; } /* Now program new ones */ TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; error = vge_cam_set(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); if (error) break; } /* If there were too many addresses, use the hash filter. */ if (error) { vge_cam_clear(sc); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; #if __FreeBSD_version < 502113 h = vge_mchash(LLADDR((struct sockaddr_dl *) ifma->ifma_addr)) >> 26; #else h = ether_crc32_be(LLADDR((struct sockaddr_dl *) ifma->ifma_addr), ETHER_ADDR_LEN) >> 26; #endif if (h < 32) hashes[0] |= (1 << h); else hashes[1] |= (1 << (h - 32)); } CSR_WRITE_4(sc, VGE_MAR0, hashes[0]); CSR_WRITE_4(sc, VGE_MAR1, hashes[1]); } return; } static void vge_reset(sc) struct vge_softc *sc; { register int i; CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET); for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(5); if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0) break; } if (i == VGE_TIMEOUT) { device_printf(sc->vge_dev, "soft reset timed out"); CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE); DELAY(2000); } DELAY(5000); CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD); for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(5); if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0) break; } if (i == VGE_TIMEOUT) { device_printf(sc->vge_dev, "EEPROM reload timed out\n"); return; } CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI); return; } /* * Probe for a VIA gigabit chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. */ static int vge_probe(dev) device_t dev; { struct vge_type *t; struct vge_softc *sc; t = vge_devs; sc = device_get_softc(dev); while (t->vge_name != NULL) { if ((pci_get_vendor(dev) == t->vge_vid) && (pci_get_device(dev) == t->vge_did)) { device_set_desc(dev, t->vge_name); return (BUS_PROBE_DEFAULT); } t++; } return (ENXIO); } static void vge_dma_map_rx_desc(arg, segs, nseg, mapsize, error) void *arg; bus_dma_segment_t *segs; int nseg; bus_size_t mapsize; int error; { struct vge_dmaload_arg *ctx; struct vge_rx_desc *d = NULL; if (error) return; ctx = arg; /* Signal error to caller if there's too many segments */ if (nseg > ctx->vge_maxsegs) { ctx->vge_maxsegs = 0; return; } /* * Map the segment array into descriptors. */ d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx]; /* If this descriptor is still owned by the chip, bail. */ if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) { device_printf(ctx->sc->vge_dev, "tried to map busy descriptor\n"); ctx->vge_maxsegs = 0; return; } d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I); d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr)); d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF); d->vge_sts = 0; d->vge_ctl = 0; ctx->vge_maxsegs = 1; return; } static void vge_dma_map_tx_desc(arg, segs, nseg, mapsize, error) void *arg; bus_dma_segment_t *segs; int nseg; bus_size_t mapsize; int error; { struct vge_dmaload_arg *ctx; struct vge_tx_desc *d = NULL; struct vge_tx_frag *f; int i = 0; if (error) return; ctx = arg; /* Signal error to caller if there's too many segments */ if (nseg > ctx->vge_maxsegs) { ctx->vge_maxsegs = 0; return; } /* Map the segment array into descriptors. */ d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx]; /* If this descriptor is still owned by the chip, bail. */ if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) { ctx->vge_maxsegs = 0; return; } for (i = 0; i < nseg; i++) { f = &d->vge_frag[i]; f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len)); f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr)); f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF); } /* Argh. This chip does not autopad short frames */ if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) { f = &d->vge_frag[i]; f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN - ctx->vge_m0->m_pkthdr.len)); f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr)); f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF); ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN; i++; } /* * When telling the chip how many segments there are, we * must use nsegs + 1 instead of just nsegs. Darned if I * know why. */ i++; d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16; d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM; if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN) d->vge_ctl |= VGE_TDCTL_JUMBO; ctx->vge_maxsegs = nseg; return; } /* * Map a single buffer address. */ static void vge_dma_map_addr(arg, segs, nseg, error) void *arg; bus_dma_segment_t *segs; int nseg; int error; { bus_addr_t *addr; if (error) return; KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); addr = arg; *addr = segs->ds_addr; return; } static int vge_allocmem(dev, sc) device_t dev; struct vge_softc *sc; { int error; int nseg; int i; /* * Allocate map for RX mbufs. */ nseg = 32; error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW, NULL, NULL, &sc->vge_ldata.vge_mtag); if (error) { device_printf(dev, "could not allocate dma tag\n"); return (ENOMEM); } /* * Allocate map for TX descriptor list. */ error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW, NULL, NULL, &sc->vge_ldata.vge_tx_list_tag); if (error) { device_printf(dev, "could not allocate dma tag\n"); return (ENOMEM); } /* Allocate DMA'able memory for the TX ring */ error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag, (void **)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->vge_ldata.vge_tx_list_map); if (error) return (ENOMEM); /* Load the map for the TX ring. */ error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag, sc->vge_ldata.vge_tx_list_map, sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ, vge_dma_map_addr, &sc->vge_ldata.vge_tx_list_addr, BUS_DMA_NOWAIT); /* Create DMA maps for TX buffers */ for (i = 0; i < VGE_TX_DESC_CNT; i++) { error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0, &sc->vge_ldata.vge_tx_dmamap[i]); if (error) { device_printf(dev, "can't create DMA map for TX\n"); return (ENOMEM); } } /* * Allocate map for RX descriptor list. */ error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW, NULL, NULL, &sc->vge_ldata.vge_rx_list_tag); if (error) { device_printf(dev, "could not allocate dma tag\n"); return (ENOMEM); } /* Allocate DMA'able memory for the RX ring */ error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag, (void **)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->vge_ldata.vge_rx_list_map); if (error) return (ENOMEM); /* Load the map for the RX ring. */ error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag, sc->vge_ldata.vge_rx_list_map, sc->vge_ldata.vge_rx_list, VGE_TX_LIST_SZ, vge_dma_map_addr, &sc->vge_ldata.vge_rx_list_addr, BUS_DMA_NOWAIT); /* Create DMA maps for RX buffers */ for (i = 0; i < VGE_RX_DESC_CNT; i++) { error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0, &sc->vge_ldata.vge_rx_dmamap[i]); if (error) { device_printf(dev, "can't create DMA map for RX\n"); return (ENOMEM); } } return (0); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static int vge_attach(dev) device_t dev; { u_char eaddr[ETHER_ADDR_LEN]; struct vge_softc *sc; struct ifnet *ifp; int unit, error = 0, rid; sc = device_get_softc(dev); unit = device_get_unit(dev); sc->vge_dev = dev; mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF | MTX_RECURSE); /* * Map control/status registers. */ pci_enable_busmaster(dev); rid = VGE_PCI_LOMEM; sc->vge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid, 0, ~0, 1, RF_ACTIVE); if (sc->vge_res == NULL) { printf ("vge%d: couldn't map ports/memory\n", unit); error = ENXIO; goto fail; } sc->vge_btag = rman_get_bustag(sc->vge_res); sc->vge_bhandle = rman_get_bushandle(sc->vge_res); /* Allocate interrupt */ rid = 0; sc->vge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1, RF_SHAREABLE | RF_ACTIVE); if (sc->vge_irq == NULL) { printf("vge%d: couldn't map interrupt\n", unit); error = ENXIO; goto fail; } /* Reset the adapter. */ vge_reset(sc); /* * Get station address from the EEPROM. */ vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0); sc->vge_unit = unit; bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); #if __FreeBSD_version < 502113 printf("vge%d: Ethernet address: %6D\n", unit, eaddr, ":"); #endif /* * Allocate the parent bus DMA tag appropriate for PCI. */ #define VGE_NSEG_NEW 32 error = bus_dma_tag_create(NULL, /* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MAXBSIZE, VGE_NSEG_NEW, /* maxsize, nsegments */ BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->vge_parent_tag); if (error) goto fail; error = vge_allocmem(dev, sc); if (error) goto fail; /* Do MII setup */ if (mii_phy_probe(dev, &sc->vge_miibus, vge_ifmedia_upd, vge_ifmedia_sts)) { printf("vge%d: MII without any phy!\n", sc->vge_unit); error = ENXIO; goto fail; } ifp = &sc->arpcom.ac_if; ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = vge_ioctl; ifp->if_capabilities = IFCAP_VLAN_MTU; ifp->if_start = vge_start; ifp->if_hwassist = VGE_CSUM_FEATURES; ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING; #ifdef DEVICE_POLLING #ifdef IFCAP_POLLING ifp->if_capabilities |= IFCAP_POLLING; #endif #endif ifp->if_watchdog = vge_watchdog; ifp->if_init = vge_init; ifp->if_baudrate = 1000000000; ifp->if_snd.ifq_maxlen = VGE_IFQ_MAXLEN; ifp->if_capenable = ifp->if_capabilities; TASK_INIT(&sc->vge_txtask, 0, vge_tx_task, ifp); /* * Call MI attach routine. */ ether_ifattach(ifp, eaddr); /* Hook interrupt last to avoid having to lock softc */ error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE, vge_intr, sc, &sc->vge_intrhand); if (error) { printf("vge%d: couldn't set up irq\n", unit); ether_ifdetach(ifp); goto fail; } fail: if (error) vge_detach(dev); return (error); } /* * Shutdown hardware and free up resources. This can be called any * time after the mutex has been initialized. It is called in both * the error case in attach and the normal detach case so it needs * to be careful about only freeing resources that have actually been * allocated. */ static int vge_detach(dev) device_t dev; { struct vge_softc *sc; struct ifnet *ifp; int i; sc = device_get_softc(dev); KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized")); ifp = &sc->arpcom.ac_if; /* These should only be active if attach succeeded */ if (device_is_attached(dev)) { vge_stop(sc); /* * Force off the IFF_UP flag here, in case someone * still had a BPF descriptor attached to this * interface. If they do, ether_ifattach() will cause * the BPF code to try and clear the promisc mode * flag, which will bubble down to vge_ioctl(), * which will try to call vge_init() again. This will * turn the NIC back on and restart the MII ticker, * which will panic the system when the kernel tries * to invoke the vge_tick() function that isn't there * anymore. */ ifp->if_flags &= ~IFF_UP; ether_ifdetach(ifp); } if (sc->vge_miibus) device_delete_child(dev, sc->vge_miibus); bus_generic_detach(dev); if (sc->vge_intrhand) bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand); if (sc->vge_irq) bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vge_irq); if (sc->vge_res) bus_release_resource(dev, SYS_RES_MEMORY, VGE_PCI_LOMEM, sc->vge_res); /* Unload and free the RX DMA ring memory and map */ if (sc->vge_ldata.vge_rx_list_tag) { bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag, sc->vge_ldata.vge_rx_list_map); bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag, sc->vge_ldata.vge_rx_list, sc->vge_ldata.vge_rx_list_map); bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag); } /* Unload and free the TX DMA ring memory and map */ if (sc->vge_ldata.vge_tx_list_tag) { bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag, sc->vge_ldata.vge_tx_list_map); bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag, sc->vge_ldata.vge_tx_list, sc->vge_ldata.vge_tx_list_map); bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag); } /* Destroy all the RX and TX buffer maps */ if (sc->vge_ldata.vge_mtag) { for (i = 0; i < VGE_TX_DESC_CNT; i++) bus_dmamap_destroy(sc->vge_ldata.vge_mtag, sc->vge_ldata.vge_tx_dmamap[i]); for (i = 0; i < VGE_RX_DESC_CNT; i++) bus_dmamap_destroy(sc->vge_ldata.vge_mtag, sc->vge_ldata.vge_rx_dmamap[i]); bus_dma_tag_destroy(sc->vge_ldata.vge_mtag); } if (sc->vge_parent_tag) bus_dma_tag_destroy(sc->vge_parent_tag); mtx_destroy(&sc->vge_mtx); return (0); } static int vge_newbuf(sc, idx, m) struct vge_softc *sc; int idx; struct mbuf *m; { struct vge_dmaload_arg arg; struct mbuf *n = NULL; int i, error; if (m == NULL) { n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (n == NULL) return (ENOBUFS); m = n; } else m->m_data = m->m_ext.ext_buf; #ifdef VGE_FIXUP_RX /* * This is part of an evil trick to deal with non-x86 platforms. * The VIA chip requires RX buffers to be aligned on 32-bit * boundaries, but that will hose non-x86 machines. To get around * this, we leave some empty space at the start of each buffer * and for non-x86 hosts, we copy the buffer back two bytes * to achieve word alignment. This is slightly more efficient * than allocating a new buffer, copying the contents, and * discarding the old buffer. */ m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN; m_adj(m, VGE_ETHER_ALIGN); #else m->m_len = m->m_pkthdr.len = MCLBYTES; #endif arg.sc = sc; arg.vge_idx = idx; arg.vge_maxsegs = 1; arg.vge_flags = 0; error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, sc->vge_ldata.vge_rx_dmamap[idx], m, vge_dma_map_rx_desc, &arg, BUS_DMA_NOWAIT); if (error || arg.vge_maxsegs != 1) { if (n != NULL) m_freem(n); return (ENOMEM); } /* * Note: the manual fails to document the fact that for * proper opration, the driver needs to replentish the RX * DMA ring 4 descriptors at a time (rather than one at a * time, like most chips). We can allocate the new buffers * but we should not set the OWN bits until we're ready * to hand back 4 of them in one shot. */ #define VGE_RXCHUNK 4 sc->vge_rx_consumed++; if (sc->vge_rx_consumed == VGE_RXCHUNK) { for (i = idx; i != idx - sc->vge_rx_consumed; i--) sc->vge_ldata.vge_rx_list[i].vge_sts |= htole32(VGE_RDSTS_OWN); sc->vge_rx_consumed = 0; } sc->vge_ldata.vge_rx_mbuf[idx] = m; bus_dmamap_sync(sc->vge_ldata.vge_mtag, sc->vge_ldata.vge_rx_dmamap[idx], BUS_DMASYNC_PREREAD); return (0); } static int vge_tx_list_init(sc) struct vge_softc *sc; { bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ); bzero ((char *)&sc->vge_ldata.vge_tx_mbuf, (VGE_TX_DESC_CNT * sizeof(struct mbuf *))); bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag, sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE); sc->vge_ldata.vge_tx_prodidx = 0; sc->vge_ldata.vge_tx_considx = 0; sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT; return (0); } static int vge_rx_list_init(sc) struct vge_softc *sc; { int i; bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ); bzero ((char *)&sc->vge_ldata.vge_rx_mbuf, (VGE_RX_DESC_CNT * sizeof(struct mbuf *))); sc->vge_rx_consumed = 0; for (i = 0; i < VGE_RX_DESC_CNT; i++) { if (vge_newbuf(sc, i, NULL) == ENOBUFS) return (ENOBUFS); } /* Flush the RX descriptors */ bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag, sc->vge_ldata.vge_rx_list_map, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); sc->vge_ldata.vge_rx_prodidx = 0; sc->vge_rx_consumed = 0; sc->vge_head = sc->vge_tail = NULL; return (0); } #ifdef VGE_FIXUP_RX static __inline void vge_fixup_rx(m) struct mbuf *m; { int i; uint16_t *src, *dst; src = mtod(m, uint16_t *); dst = src - 1; for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++) *dst++ = *src++; m->m_data -= ETHER_ALIGN; return; } #endif /* * RX handler. We support the reception of jumbo frames that have * been fragmented across multiple 2K mbuf cluster buffers. */ static void vge_rxeof(sc) struct vge_softc *sc; { struct mbuf *m; struct ifnet *ifp; int i, total_len; int lim = 0; struct vge_rx_desc *cur_rx; u_int32_t rxstat, rxctl; VGE_LOCK_ASSERT(sc); ifp = &sc->arpcom.ac_if; i = sc->vge_ldata.vge_rx_prodidx; /* Invalidate the descriptor memory */ bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag, sc->vge_ldata.vge_rx_list_map, BUS_DMASYNC_POSTREAD); while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) { #ifdef DEVICE_POLLING if (ifp->if_flags & IFF_POLLING) { if (sc->rxcycles <= 0) break; sc->rxcycles--; } #endif /* DEVICE_POLLING */ cur_rx = &sc->vge_ldata.vge_rx_list[i]; m = sc->vge_ldata.vge_rx_mbuf[i]; total_len = VGE_RXBYTES(cur_rx); rxstat = le32toh(cur_rx->vge_sts); rxctl = le32toh(cur_rx->vge_ctl); /* Invalidate the RX mbuf and unload its map */ bus_dmamap_sync(sc->vge_ldata.vge_mtag, sc->vge_ldata.vge_rx_dmamap[i], BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->vge_ldata.vge_mtag, sc->vge_ldata.vge_rx_dmamap[i]); /* * If the 'start of frame' bit is set, this indicates * either the first fragment in a multi-fragment receive, * or an intermediate fragment. Either way, we want to * accumulate the buffers. */ if (rxstat & VGE_RXPKT_SOF) { m->m_len = MCLBYTES - VGE_ETHER_ALIGN; if (sc->vge_head == NULL) sc->vge_head = sc->vge_tail = m; else { m->m_flags &= ~M_PKTHDR; sc->vge_tail->m_next = m; sc->vge_tail = m; } vge_newbuf(sc, i, NULL); VGE_RX_DESC_INC(i); continue; } /* * Bad/error frames will have the RXOK bit cleared. * However, there's one error case we want to allow: * if a VLAN tagged frame arrives and the chip can't * match it against the CAM filter, it considers this * a 'VLAN CAM filter miss' and clears the 'RXOK' bit. * We don't want to drop the frame though: our VLAN * filtering is done in software. */ if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM) && !(rxstat & VGE_RDSTS_CSUMERR)) { ifp->if_ierrors++; /* * If this is part of a multi-fragment packet, * discard all the pieces. */ if (sc->vge_head != NULL) { m_freem(sc->vge_head); sc->vge_head = sc->vge_tail = NULL; } vge_newbuf(sc, i, m); VGE_RX_DESC_INC(i); continue; } /* * If allocating a replacement mbuf fails, * reload the current one. */ if (vge_newbuf(sc, i, NULL)) { ifp->if_ierrors++; if (sc->vge_head != NULL) { m_freem(sc->vge_head); sc->vge_head = sc->vge_tail = NULL; } vge_newbuf(sc, i, m); VGE_RX_DESC_INC(i); continue; } VGE_RX_DESC_INC(i); if (sc->vge_head != NULL) { m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN); /* * Special case: if there's 4 bytes or less * in this buffer, the mbuf can be discarded: * the last 4 bytes is the CRC, which we don't * care about anyway. */ if (m->m_len <= ETHER_CRC_LEN) { sc->vge_tail->m_len -= (ETHER_CRC_LEN - m->m_len); m_freem(m); } else { m->m_len -= ETHER_CRC_LEN; m->m_flags &= ~M_PKTHDR; sc->vge_tail->m_next = m; } m = sc->vge_head; sc->vge_head = sc->vge_tail = NULL; m->m_pkthdr.len = total_len - ETHER_CRC_LEN; } else m->m_pkthdr.len = m->m_len = (total_len - ETHER_CRC_LEN); #ifdef VGE_FIXUP_RX vge_fixup_rx(m); #endif ifp->if_ipackets++; m->m_pkthdr.rcvif = ifp; /* Do RX checksumming if enabled */ if (ifp->if_capenable & IFCAP_RXCSUM) { /* Check IP header checksum */ if (rxctl & VGE_RDCTL_IPPKT) m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; if (rxctl & VGE_RDCTL_IPCSUMOK) m->m_pkthdr.csum_flags |= CSUM_IP_VALID; /* Check TCP/UDP checksum */ if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) && rxctl & VGE_RDCTL_PROTOCSUMOK) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID|CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } } if (rxstat & VGE_RDSTS_VTAG) VLAN_INPUT_TAG(ifp, m, ntohs((rxctl & VGE_RDCTL_VLANID)), continue); VGE_UNLOCK(sc); (*ifp->if_input)(ifp, m); VGE_LOCK(sc); lim++; if (lim == VGE_RX_DESC_CNT) break; } /* Flush the RX DMA ring */ bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag, sc->vge_ldata.vge_rx_list_map, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); sc->vge_ldata.vge_rx_prodidx = i; CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim); return; } static void vge_txeof(sc) struct vge_softc *sc; { struct ifnet *ifp; u_int32_t txstat; int idx; ifp = &sc->arpcom.ac_if; idx = sc->vge_ldata.vge_tx_considx; /* Invalidate the TX descriptor list */ bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag, sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_POSTREAD); while (idx != sc->vge_ldata.vge_tx_prodidx) { txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts); if (txstat & VGE_TDSTS_OWN) break; m_freem(sc->vge_ldata.vge_tx_mbuf[idx]); sc->vge_ldata.vge_tx_mbuf[idx] = NULL; bus_dmamap_unload(sc->vge_ldata.vge_mtag, sc->vge_ldata.vge_tx_dmamap[idx]); if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL)) ifp->if_collisions++; if (txstat & VGE_TDSTS_TXERR) ifp->if_oerrors++; else ifp->if_opackets++; sc->vge_ldata.vge_tx_free++; VGE_TX_DESC_INC(idx); } /* No changes made to the TX ring, so no flush needed */ if (idx != sc->vge_ldata.vge_tx_considx) { sc->vge_ldata.vge_tx_considx = idx; ifp->if_flags &= ~IFF_OACTIVE; ifp->if_timer = 0; } /* * If not all descriptors have been released reaped yet, * reload the timer so that we will eventually get another * interrupt that will cause us to re-enter this routine. * This is done in case the transmitter has gone idle. */ if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) { CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE); } return; } static void vge_tick(xsc) void *xsc; { struct vge_softc *sc; struct ifnet *ifp; struct mii_data *mii; sc = xsc; ifp = &sc->arpcom.ac_if; VGE_LOCK(sc); mii = device_get_softc(sc->vge_miibus); mii_tick(mii); if (sc->vge_link) { if (!(mii->mii_media_status & IFM_ACTIVE)) { sc->vge_link = 0; if_link_state_change(&sc->arpcom.ac_if, LINK_STATE_DOWN); } } else { if (mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { sc->vge_link = 1; if_link_state_change(&sc->arpcom.ac_if, LINK_STATE_UP); #if __FreeBSD_version < 502114 if (ifp->if_snd.ifq_head != NULL) #else if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) #endif taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask); } } VGE_UNLOCK(sc); return; } #ifdef DEVICE_POLLING static void vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count) { struct vge_softc *sc = ifp->if_softc; VGE_LOCK(sc); #ifdef IFCAP_POLLING if (!(ifp->if_capenable & IFCAP_POLLING)) { ether_poll_deregister(ifp); cmd = POLL_DEREGISTER; } #endif if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */ CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS); CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF); CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK); goto done; } sc->rxcycles = count; vge_rxeof(sc); vge_txeof(sc); #if __FreeBSD_version < 502114 if (ifp->if_snd.ifq_head != NULL) #else if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) #endif taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask); if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */ u_int32_t status; status = CSR_READ_4(sc, VGE_ISR); if (status == 0xFFFFFFFF) goto done; if (status) CSR_WRITE_4(sc, VGE_ISR, status); /* * XXX check behaviour on receiver stalls. */ if (status & VGE_ISR_TXDMA_STALL || status & VGE_ISR_RXDMA_STALL) vge_init(sc); if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) { vge_rxeof(sc); ifp->if_ierrors++; CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN); CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK); } } done: VGE_UNLOCK(sc); } #endif /* DEVICE_POLLING */ static void vge_intr(arg) void *arg; { struct vge_softc *sc; struct ifnet *ifp; u_int32_t status; sc = arg; if (sc->suspended) { return; } VGE_LOCK(sc); ifp = &sc->arpcom.ac_if; if (!(ifp->if_flags & IFF_UP)) { VGE_UNLOCK(sc); return; } #ifdef DEVICE_POLLING if (ifp->if_flags & IFF_POLLING) goto done; if ( #ifdef IFCAP_POLLING (ifp->if_capenable & IFCAP_POLLING) && #endif ether_poll_register(vge_poll, ifp)) { /* ok, disable interrupts */ CSR_WRITE_4(sc, VGE_IMR, 0); CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK); vge_poll(ifp, 0, 1); goto done; } #endif /* DEVICE_POLLING */ /* Disable interrupts */ CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK); for (;;) { status = CSR_READ_4(sc, VGE_ISR); /* If the card has gone away the read returns 0xffff. */ if (status == 0xFFFFFFFF) break; if (status) CSR_WRITE_4(sc, VGE_ISR, status); if ((status & VGE_INTRS) == 0) break; if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO)) vge_rxeof(sc); if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) { vge_rxeof(sc); CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN); CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK); } if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0)) vge_txeof(sc); if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) vge_init(sc); if (status & VGE_ISR_LINKSTS) vge_tick(sc); } /* Re-enable interrupts */ CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK); #ifdef DEVICE_POLLING done: #endif VGE_UNLOCK(sc); #if __FreeBSD_version < 502114 if (ifp->if_snd.ifq_head != NULL) #else if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) #endif taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask); return; } static int vge_encap(sc, m_head, idx) struct vge_softc *sc; struct mbuf *m_head; int idx; { struct mbuf *m_new = NULL; struct vge_dmaload_arg arg; bus_dmamap_t map; int error; struct m_tag *mtag; if (sc->vge_ldata.vge_tx_free <= 2) return (EFBIG); arg.vge_flags = 0; if (m_head->m_pkthdr.csum_flags & CSUM_IP) arg.vge_flags |= VGE_TDCTL_IPCSUM; if (m_head->m_pkthdr.csum_flags & CSUM_TCP) arg.vge_flags |= VGE_TDCTL_TCPCSUM; if (m_head->m_pkthdr.csum_flags & CSUM_UDP) arg.vge_flags |= VGE_TDCTL_UDPCSUM; arg.sc = sc; arg.vge_idx = idx; arg.vge_m0 = m_head; arg.vge_maxsegs = VGE_TX_FRAGS; map = sc->vge_ldata.vge_tx_dmamap[idx]; error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map, m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT); if (error && error != EFBIG) { printf("vge%d: can't map mbuf (error %d)\n", sc->vge_unit, error); return (ENOBUFS); } /* Too many segments to map, coalesce into a single mbuf */ if (error || arg.vge_maxsegs == 0) { m_new = m_defrag(m_head, M_DONTWAIT); if (m_new == NULL) return (1); else m_head = m_new; arg.sc = sc; arg.vge_m0 = m_head; arg.vge_idx = idx; arg.vge_maxsegs = 1; error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map, m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT); if (error) { printf("vge%d: can't map mbuf (error %d)\n", sc->vge_unit, error); return (EFBIG); } } sc->vge_ldata.vge_tx_mbuf[idx] = m_head; sc->vge_ldata.vge_tx_free--; /* * Set up hardware VLAN tagging. */ mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m_head); if (mtag != NULL) sc->vge_ldata.vge_tx_list[idx].vge_ctl |= htole32(htons(VLAN_TAG_VALUE(mtag)) | VGE_TDCTL_VTAG); sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN); return (0); } static void vge_tx_task(arg, npending) void *arg; int npending; { struct ifnet *ifp; ifp = arg; vge_start(ifp); return; } /* * Main transmit routine. */ static void vge_start(ifp) struct ifnet *ifp; { struct vge_softc *sc; struct mbuf *m_head = NULL; int idx, pidx = 0; sc = ifp->if_softc; VGE_LOCK(sc); if (!sc->vge_link || ifp->if_flags & IFF_OACTIVE) { VGE_UNLOCK(sc); return; } #if __FreeBSD_version < 502114 if (ifp->if_snd.ifq_head == NULL) { #else if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { #endif VGE_UNLOCK(sc); return; } idx = sc->vge_ldata.vge_tx_prodidx; pidx = idx - 1; if (pidx < 0) pidx = VGE_TX_DESC_CNT - 1; while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) { #if __FreeBSD_version < 502114 IF_DEQUEUE(&ifp->if_snd, m_head); #else IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); #endif if (m_head == NULL) break; if (vge_encap(sc, m_head, idx)) { #if __FreeBSD_version >= 502114 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); #else IF_PREPEND(&ifp->if_snd, m_head); #endif ifp->if_flags |= IFF_OACTIVE; break; } sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |= htole16(VGE_TXDESC_Q); pidx = idx; VGE_TX_DESC_INC(idx); /* * If there's a BPF listener, bounce a copy of this frame * to him. */ BPF_MTAP(ifp, m_head); } if (idx == sc->vge_ldata.vge_tx_prodidx) { VGE_UNLOCK(sc); return; } /* Flush the TX descriptors */ bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag, sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); /* Issue a transmit command. */ CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0); sc->vge_ldata.vge_tx_prodidx = idx; /* * Use the countdown timer for interrupt moderation. * 'TX done' interrupts are disabled. Instead, we reset the * countdown timer, which will begin counting until it hits * the value in the SSTIMER register, and then trigger an * interrupt. Each time we set the TIMER0_ENABLE bit, the * the timer count is reloaded. Only when the transmitter * is idle will the timer hit 0 and an interrupt fire. */ CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE); VGE_UNLOCK(sc); /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; return; } static void vge_init(xsc) void *xsc; { struct vge_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; struct mii_data *mii; int i; VGE_LOCK(sc); mii = device_get_softc(sc->vge_miibus); /* * Cancel pending I/O and free all RX/TX buffers. */ vge_stop(sc); vge_reset(sc); /* * Initialize the RX and TX descriptors and mbufs. */ vge_rx_list_init(sc); vge_tx_list_init(sc); /* Set our station address */ for (i = 0; i < ETHER_ADDR_LEN; i++) CSR_WRITE_1(sc, VGE_PAR0 + i, sc->arpcom.ac_enaddr[i]); /* * Set receive FIFO threshold. Also allow transmission and * reception of VLAN tagged frames. */ CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT); CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2); /* Set DMA burst length */ CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN); CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128); CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK); /* Set collision backoff algorithm */ CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM| VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT); CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET); /* Disable LPSEL field in priority resolution */ CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS); /* * Load the addresses of the DMA queues into the chip. * Note that we only use one transmit queue. */ CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0, VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr)); CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1); CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr)); CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1); CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT); /* Enable and wake up the RX descriptor queue */ CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN); CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK); /* Enable the TX descriptor queue */ CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0); /* Set up the receive filter -- allow large frames for VLANs. */ CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT); /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) { CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC); } /* Set capture broadcast bit to capture broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) { CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST); } /* Set multicast bit to capture multicast frames. */ if (ifp->if_flags & IFF_MULTICAST) { CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST); } /* Init the cam filter. */ vge_cam_clear(sc); /* Init the multicast filter. */ vge_setmulti(sc); /* Enable flow control */ CSR_WRITE_1(sc, VGE_CRS2, 0x8B); /* Enable jumbo frame reception (if desired) */ /* Start the MAC. */ CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP); CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL); CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START); /* * Configure one-shot timer for microsecond * resulution and load it for 500 usecs. */ CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES); CSR_WRITE_2(sc, VGE_SSTIMER, 400); /* * Configure interrupt moderation for receive. Enable * the holdoff counter and load it, and set the RX * suppression count to the number of descriptors we * want to allow before triggering an interrupt. * The holdoff timer is in units of 20 usecs. */ #ifdef notyet CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE); /* Select the interrupt holdoff timer page. */ CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF); CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */ /* Enable use of the holdoff timer. */ CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF); CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD); /* Select the RX suppression threshold page. */ CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR); CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */ /* Restore the page select bits. */ CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR); #endif #ifdef DEVICE_POLLING /* * Disable interrupts if we are polling. */ if (ifp->if_flags & IFF_POLLING) { CSR_WRITE_4(sc, VGE_IMR, 0); CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK); } else /* otherwise ... */ #endif /* DEVICE_POLLING */ { /* * Enable interrupts. */ CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS); CSR_WRITE_4(sc, VGE_ISR, 0); CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK); } mii_mediachg(mii); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; sc->vge_if_flags = 0; sc->vge_link = 0; VGE_UNLOCK(sc); return; } /* * Set media options. */ static int vge_ifmedia_upd(ifp) struct ifnet *ifp; { struct vge_softc *sc; struct mii_data *mii; sc = ifp->if_softc; mii = device_get_softc(sc->vge_miibus); mii_mediachg(mii); return (0); } /* * Report current media status. */ static void vge_ifmedia_sts(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct vge_softc *sc; struct mii_data *mii; sc = ifp->if_softc; mii = device_get_softc(sc->vge_miibus); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; return; } static void vge_miibus_statchg(dev) device_t dev; { struct vge_softc *sc; struct mii_data *mii; struct ifmedia_entry *ife; sc = device_get_softc(dev); mii = device_get_softc(sc->vge_miibus); ife = mii->mii_media.ifm_cur; /* * If the user manually selects a media mode, we need to turn * on the forced MAC mode bit in the DIAGCTL register. If the * user happens to choose a full duplex mode, we also need to * set the 'force full duplex' bit. This applies only to * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC * mode is disabled, and in 1000baseT mode, full duplex is * always implied, so we turn on the forced mode bit but leave * the FDX bit cleared. */ switch (IFM_SUBTYPE(ife->ifm_media)) { case IFM_AUTO: CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); break; case IFM_1000_T: CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); break; case IFM_100_TX: case IFM_10_T: CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) { CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); } else { CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); } break; default: device_printf(dev, "unknown media type: %x\n", IFM_SUBTYPE(ife->ifm_media)); break; } return; } static int vge_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { struct vge_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct mii_data *mii; int error = 0; switch (command) { case SIOCSIFMTU: if (ifr->ifr_mtu > VGE_JUMBO_MTU) error = EINVAL; ifp->if_mtu = ifr->ifr_mtu; break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->vge_if_flags & IFF_PROMISC)) { CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC); vge_setmulti(sc); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->vge_if_flags & IFF_PROMISC) { CSR_CLRBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC); vge_setmulti(sc); } else vge_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) vge_stop(sc); } sc->vge_if_flags = ifp->if_flags; break; case SIOCADDMULTI: case SIOCDELMULTI: vge_setmulti(sc); break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = device_get_softc(sc->vge_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; case SIOCSIFCAP: #ifdef IFCAP_POLLING ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_POLLING); #else ifp->if_capenable &= ~(IFCAP_HWCSUM); #endif ifp->if_capenable |= #ifdef IFCAP_POLLING ifr->ifr_reqcap & (IFCAP_HWCSUM | IFCAP_POLLING); #else ifr->ifr_reqcap & (IFCAP_HWCSUM); #endif if (ifp->if_capenable & IFCAP_TXCSUM) ifp->if_hwassist = VGE_CSUM_FEATURES; else ifp->if_hwassist = 0; if (ifp->if_flags & IFF_RUNNING) vge_init(sc); break; default: error = ether_ioctl(ifp, command, data); break; } return (error); } static void vge_watchdog(ifp) struct ifnet *ifp; { struct vge_softc *sc; sc = ifp->if_softc; VGE_LOCK(sc); printf("vge%d: watchdog timeout\n", sc->vge_unit); ifp->if_oerrors++; vge_txeof(sc); vge_rxeof(sc); vge_init(sc); VGE_UNLOCK(sc); return; } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void vge_stop(sc) struct vge_softc *sc; { register int i; struct ifnet *ifp; VGE_LOCK(sc); ifp = &sc->arpcom.ac_if; ifp->if_timer = 0; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); #ifdef DEVICE_POLLING ether_poll_deregister(ifp); #endif /* DEVICE_POLLING */ CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK); CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP); CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF); CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF); CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF); CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0); if (sc->vge_head != NULL) { m_freem(sc->vge_head); sc->vge_head = sc->vge_tail = NULL; } /* Free the TX list buffers. */ for (i = 0; i < VGE_TX_DESC_CNT; i++) { if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) { bus_dmamap_unload(sc->vge_ldata.vge_mtag, sc->vge_ldata.vge_tx_dmamap[i]); m_freem(sc->vge_ldata.vge_tx_mbuf[i]); sc->vge_ldata.vge_tx_mbuf[i] = NULL; } } /* Free the RX list buffers. */ for (i = 0; i < VGE_RX_DESC_CNT; i++) { if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) { bus_dmamap_unload(sc->vge_ldata.vge_mtag, sc->vge_ldata.vge_rx_dmamap[i]); m_freem(sc->vge_ldata.vge_rx_mbuf[i]); sc->vge_ldata.vge_rx_mbuf[i] = NULL; } } VGE_UNLOCK(sc); return; } /* * Device suspend routine. Stop the interface and save some PCI * settings in case the BIOS doesn't restore them properly on * resume. */ static int vge_suspend(dev) device_t dev; { struct vge_softc *sc; int i; sc = device_get_softc(dev); vge_stop(sc); for (i = 0; i < 5; i++) sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4); sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4); sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1); sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1); sc->suspended = 1; return (0); } /* * Device resume routine. Restore some PCI settings in case the BIOS * doesn't, re-enable busmastering, and restart the interface if * appropriate. */ static int vge_resume(dev) device_t dev; { struct vge_softc *sc; struct ifnet *ifp; int i; sc = device_get_softc(dev); ifp = &sc->arpcom.ac_if; /* better way to do this? */ for (i = 0; i < 5; i++) pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4); pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4); pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1); pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1); pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1); /* reenable busmastering */ pci_enable_busmaster(dev); pci_enable_io(dev, SYS_RES_MEMORY); /* reinitialize interface if necessary */ if (ifp->if_flags & IFF_UP) vge_init(sc); sc->suspended = 0; return (0); } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static void vge_shutdown(dev) device_t dev; { struct vge_softc *sc; sc = device_get_softc(dev); vge_stop(sc); }