/*- * Copyright (c) 1997, 1998 * Nan Yang Computer Services Limited. All rights reserved. * * This software is distributed under the so-called ``Berkeley * License'': * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Nan Yang Computer * Services Limited. * 4. Neither the name of the Company nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * This software is provided ``as is'', and any express or implied * warranties, including, but not limited to, the implied warranties of * merchantability and fitness for a particular purpose are disclaimed. * In no event shall the company or contributors be liable for any * direct, indirect, incidental, special, exemplary, or consequential * damages (including, but not limited to, procurement of substitute * goods or services; loss of use, data, or profits; or business * interruption) however caused and on any theory of liability, whether * in contract, strict liability, or tort (including negligence or * otherwise) arising in any way out of the use of this software, even if * advised of the possibility of such damage. * * $Id: vinumrequest.c,v 1.22 1999/01/17 06:15:46 grog Exp grog $ */ #define REALLYKERNEL #include "opt_vinum.h" #include #include #include #include enum requeststatus bre(struct request *rq, int plexno, daddr_t * diskstart, daddr_t diskend); enum requeststatus bre5(struct request *rq, int plexno, daddr_t * diskstart, daddr_t diskend); enum requeststatus build_read_request(struct request *rq, int volplexno); enum requeststatus build_write_request(struct request *rq); enum requeststatus build_rq_buffer(struct rqelement *rqe, struct plex *plex); void freerq(struct request *rq); void free_rqg(struct rqgroup *rqg); int find_alternate_sd(struct request *rq); int check_range_covered(struct request *); void complete_rqe(struct buf *bp); void complete_raid5_write(struct rqelement *); int abortrequest(struct request *rq, int error); void sdio_done(struct buf *bp); int vinum_bounds_check(struct buf *bp, struct volume *vol); caddr_t allocdatabuf(struct rqelement *rqe); void freedatabuf(struct rqelement *rqe); #ifdef VINUMDEBUG struct rqinfo rqinfo[RQINFO_SIZE]; struct rqinfo *rqip = rqinfo; void logrq(enum rqinfo_type type, union rqinfou info, struct buf *ubp) { int s = splhigh(); microtime(&rqip->timestamp); /* when did this happen? */ rqip->type = type; rqip->bp = ubp; /* user buffer */ switch (type) { case loginfo_user_bp: case loginfo_user_bpl: bcopy(info.bp, &rqip->info.b, sizeof(struct buf)); break; case loginfo_iodone: case loginfo_rqe: case loginfo_raid5_data: case loginfo_raid5_parity: bcopy(info.rqe, &rqip->info.rqe, sizeof(struct rqelement)); break; case loginfo_unused: break; } rqip++; if (rqip >= &rqinfo[RQINFO_SIZE]) /* wrap around */ rqip = rqinfo; splx(s); } #endif void vinumstrategy(struct buf *bp) { int volno; struct volume *vol = NULL; struct devcode *device = (struct devcode *) &bp->b_dev; /* decode device number */ switch (device->type) { case VINUM_SD_TYPE: case VINUM_RAWSD_TYPE: sdio(bp); return; /* * In fact, vinum doesn't handle drives: they're * handled directly by the disk drivers */ case VINUM_DRIVE_TYPE: default: bp->b_error = EIO; /* I/O error */ bp->b_flags |= B_ERROR; biodone(bp); return; case VINUM_VOLUME_TYPE: /* volume I/O */ volno = Volno(bp->b_dev); vol = &VOL[volno]; if (vol->state != volume_up) { /* can't access this volume */ bp->b_error = EIO; /* I/O error */ bp->b_flags |= B_ERROR; biodone(bp); return; } if (vinum_bounds_check(bp, vol) <= 0) { /* don't like them bounds */ biodone(bp); /* have nothing to do with this */ return; } /* FALLTHROUGH */ /* * Plex I/O is pretty much the same as volume I/O * for a single plex. Indicate this by passing a NULL * pointer (set above) for the volume */ case VINUM_PLEX_TYPE: case VINUM_RAWPLEX_TYPE: bp->b_resid = bp->b_bcount; /* transfer everything */ vinumstart(bp, 0); return; } } /* * Start a transfer. Return -1 on error, * 0 if OK, 1 if we need to retry. * Parameter reviveok is set when doing * transfers for revives: it allows transfers to * be started immediately when a revive is in * progress. During revive, normal transfers * are queued if they share address space with * a currently active revive operation. */ int vinumstart(struct buf *bp, int reviveok) { int plexno; int maxplex; /* maximum number of plexes to handle */ struct volume *vol; struct request *rq; /* build up our request here */ enum requeststatus status; #if VINUMDEBUG if (debug & DEBUG_LASTREQS) logrq(loginfo_user_bp, bp, bp); #endif /* * XXX In these routines, we're assuming that * we will always be called with bp->b_bcount * which is a multiple of the sector size. This * is a reasonable assumption, since we are only * called from system routines. Should we check * anyway? */ if ((bp->b_bcount % DEV_BSIZE) != 0) { /* bad length */ bp->b_error = EINVAL; /* invalid size */ bp->b_flags |= B_ERROR; biodone(bp); return -1; } rq = (struct request *) Malloc(sizeof(struct request)); /* allocate a request struct */ if (rq == NULL) { /* can't do it */ bp->b_error = ENOMEM; /* can't get memory */ bp->b_flags |= B_ERROR; biodone(bp); return -1; } bzero(rq, sizeof(struct request)); /* * Note the volume ID. This can be NULL, which * the request building functions use as an * indication for single plex I/O */ rq->bp = bp; /* and the user buffer struct */ if (DEVTYPE(bp->b_dev) == VINUM_VOLUME_TYPE) { /* it's a volume, */ rq->volplex.volno = Volno(bp->b_dev); /* get the volume number */ vol = &VOL[rq->volplex.volno]; /* and point to it */ vol->active++; /* one more active request */ maxplex = vol->plexes; /* consider all its plexes */ } else { vol = NULL; /* no volume */ rq->volplex.plexno = Plexno(bp->b_dev); /* point to the plex */ rq->isplex = 1; /* note that it's a plex */ maxplex = 1; /* just the one plex */ } if (bp->b_flags & B_READ) { /* * This is a read request. Decide * which plex to read from. * * There's a potential race condition here, * since we're not locked, and we could end * up multiply incrementing the round-robin * counter. This doesn't have any serious * effects, however. */ if (vol != NULL) { vol->reads++; vol->bytes_read += bp->b_bcount; plexno = vol->preferred_plex; /* get the plex to use */ if (plexno < 0) { /* round robin */ plexno = vol->last_plex_read; vol->last_plex_read++; if (vol->last_plex_read == vol->plexes) /* got the the end? */ vol->last_plex_read = 0; /* wrap around */ } status = build_read_request(rq, plexno); /* build a request */ } else { daddr_t diskaddr = bp->b_blkno; /* start offset of transfer */ status = bre(rq, /* build a request list */ rq->volplex.plexno, &diskaddr, diskaddr + (bp->b_bcount / DEV_BSIZE)); } if ((status > REQUEST_RECOVERED) /* can't satisfy it */ ||(bp->b_flags & B_DONE)) { /* XXX shouldn't get this without bad status */ if (status == REQUEST_DOWN) { /* not enough subdisks */ bp->b_error = EIO; /* I/O error */ bp->b_flags |= B_ERROR; } biodone(bp); freerq(rq); return -1; } { /* XXX */ int result; int s = splhigh(); result = launch_requests(rq, reviveok); /* now start the requests if we can */ splx(s); return result; } } else /* * This is a write operation. We write to all * plexes. If this is a RAID 5 plex, we must also * update the parity stripe. */ { if (vol != NULL) { vol->writes++; vol->bytes_written += bp->b_bcount; status = build_write_request(rq); /* Not all the subdisks are up */ } else { /* plex I/O */ daddr_t diskstart; diskstart = bp->b_blkno; /* start offset of transfer */ status = bre(rq, Plexno(bp->b_dev), &diskstart, bp->b_blkno + (bp->b_bcount / DEV_BSIZE)); /* build requests for the plex */ } if ((status > REQUEST_RECOVERED) /* can't satisfy it */ ||(bp->b_flags & B_DONE)) { /* XXX shouldn't get this without bad status */ if (status == REQUEST_DOWN) { /* not enough subdisks */ bp->b_error = EIO; /* I/O error */ bp->b_flags |= B_ERROR; } if ((bp->b_flags & B_DONE) == 0) biodone(bp); freerq(rq); return -1; } return launch_requests(rq, reviveok); /* now start the requests if we can */ } } /* * Call the low-level strategy routines to * perform the requests in a struct request */ int launch_requests(struct request *rq, int reviveok) { struct rqgroup *rqg; int rqno; /* loop index */ struct rqelement *rqe; /* current element */ int s; /* * First find out whether we're reviving, and the * request contains a conflict. If so, we hang * the request off plex->waitlist of the first * plex we find which is reviving */ if ((rq->flags & XFR_REVIVECONFLICT) /* possible revive conflict */ &&(!reviveok)) { /* and we don't want to do it now, */ struct sd *sd; struct request *waitlist; /* point to the waitlist */ sd = &SD[rq->sdno]; if (sd->waitlist != NULL) { /* something there already, */ waitlist = sd->waitlist; while (waitlist->next != NULL) /* find the end */ waitlist = waitlist->next; waitlist->next = rq; /* hook our request there */ } else sd->waitlist = rq; /* hook our request at the front */ #if VINUMDEBUG if (debug & DEBUG_REVIVECONFLICT) log(LOG_DEBUG, "Revive conflict sd %d: %x\n%s dev 0x%x, offset 0x%x, length %ld\n", rq->sdno, (u_int) rq, rq->bp->b_flags & B_READ ? "Read" : "Write", rq->bp->b_dev, rq->bp->b_blkno, rq->bp->b_bcount); /* XXX */ #endif return 0; /* and get out of here */ } rq->active = 0; /* nothing yet */ /* XXX This is probably due to a bug */ if (rq->rqg == NULL) { /* no request */ log(LOG_ERR, "vinum: null rqg"); abortrequest(rq, EINVAL); return -1; } #if VINUMDEBUG if (debug & DEBUG_ADDRESSES) log(LOG_DEBUG, "Request: %x\n%s dev 0x%x, offset 0x%x, length %ld\n", (u_int) rq, rq->bp->b_flags & B_READ ? "Read" : "Write", rq->bp->b_dev, rq->bp->b_blkno, rq->bp->b_bcount); /* XXX */ vinum_conf.lastrq = (int) rq; vinum_conf.lastbuf = rq->bp; if (debug & DEBUG_LASTREQS) logrq(loginfo_user_bpl, rq->bp, rq->bp); #endif for (rqg = rq->rqg; rqg != NULL; rqg = rqg->next) { /* through the whole request chain */ rqg->active = rqg->count; /* they're all active */ rq->active++; /* one more active request group */ for (rqno = 0; rqno < rqg->count; rqno++) { rqe = &rqg->rqe[rqno]; if (rqe->flags & XFR_BAD_SUBDISK) /* this subdisk is bad, */ rqg->active--; /* one less active request */ else { if ((rqe->b.b_flags & B_READ) == 0) rqe->b.b_vp->v_numoutput++; /* one more output going */ rqe->b.b_flags |= B_ORDERED; /* XXX chase SCSI driver */ #if VINUMDEBUG if (debug & DEBUG_ADDRESSES) log(LOG_DEBUG, " %s dev 0x%x, sd %d, offset 0x%x, devoffset 0x%x, length %ld\n", rqe->b.b_flags & B_READ ? "Read" : "Write", rqe->b.b_dev, rqe->sdno, (u_int) (rqe->b.b_blkno - SD[rqe->sdno].driveoffset), rqe->b.b_blkno, rqe->b.b_bcount); /* XXX */ if (debug & DEBUG_NUMOUTPUT) log(LOG_DEBUG, " vinumstart sd %d numoutput %ld\n", rqe->sdno, rqe->b.b_vp->v_numoutput); if (debug & DEBUG_LASTREQS) logrq(loginfo_rqe, rqe, rq->bp); #endif /* fire off the request */ s = splbio(); (*bdevsw[major(rqe->b.b_dev)]->d_strategy) (&rqe->b); splx(s); } /* XXX Do we need caching? Think about this more */ } } return 0; } /* * define the low-level requests needed to perform a * high-level I/O operation for a specific plex 'plexno'. * * Return 0 if all subdisks involved in the request are up, 1 if some * subdisks are not up, and -1 if the request is at least partially * outside the bounds of the subdisks. * * Modify the pointer *diskstart to point to the end address. On * read, return on the first bad subdisk, so that the caller * (build_read_request) can try alternatives. * * On entry to this routine, the rqg structures are not assigned. The * assignment is performed by expandrq(). Strictly speaking, the * elements rqe->sdno of all entries should be set to -1, since 0 * (from bzero) is a valid subdisk number. We avoid this problem by * initializing the ones we use, and not looking at the others (index * >= rqg->requests). */ enum requeststatus bre(struct request *rq, int plexno, daddr_t * diskaddr, daddr_t diskend) { int sdno; struct sd *sd; struct rqgroup *rqg; struct buf *bp; /* user's bp */ struct plex *plex; enum requeststatus status; /* return value */ daddr_t plexoffset; /* offset of transfer in plex */ daddr_t stripebase; /* base address of stripe (1st subdisk) */ daddr_t stripeoffset; /* offset in stripe */ daddr_t blockoffset; /* offset in stripe on subdisk */ struct rqelement *rqe; /* point to this request information */ daddr_t diskstart = *diskaddr; /* remember where this transfer starts */ bp = rq->bp; /* buffer pointer */ status = REQUEST_OK; /* return value: OK until proven otherwise */ plex = &PLEX[plexno]; /* point to the plex */ switch (plex->organization) { case plex_concat: for (sdno = 0; sdno < plex->subdisks; sdno++) { sd = &SD[plex->sdnos[sdno]]; if ((*diskaddr < (sd->plexoffset + sd->sectors)) /* The request starts before the end of this */ &&(diskend > sd->plexoffset)) { /* subdisk and ends after the start of this sd */ if (sd->state != sd_up) { enum requeststatus s; s = checksdstate(sd, rq, *diskaddr, diskend); /* do we need to change state? */ if (s) return s; /* XXX get this right */ } rqg = allocrqg(rq, 1); /* space for the request */ if (rqg == NULL) { /* malloc failed */ bp->b_flags |= B_ERROR; bp->b_error = ENOMEM; biodone(bp); return REQUEST_ENOMEM; } rqg->plexno = plexno; rqe = &rqg->rqe[0]; /* point to the element */ rqe->rqg = rqg; /* group */ rqe->sdno = sd->sdno; /* put in the subdisk number */ plexoffset = max(sd->plexoffset, *diskaddr); /* start offset in plex */ rqe->sdoffset = plexoffset - sd->plexoffset; /* start offset in subdisk */ rqe->useroffset = plexoffset - diskstart; /* start offset in user buffer */ rqe->dataoffset = 0; rqe->datalen = min(diskend - *diskaddr, /* number of sectors to transfer in this sd */ sd->sectors - rqe->sdoffset); rqe->groupoffset = 0; /* no groups for concatenated plexes */ rqe->grouplen = 0; rqe->buflen = rqe->datalen; /* buffer length is data buffer length */ rqe->flags = 0; rqe->driveno = sd->driveno; *diskaddr += rqe->datalen; /* bump the address */ if (build_rq_buffer(rqe, plex)) { /* build the buffer */ deallocrqg(rqg); bp->b_flags |= B_ERROR; bp->b_error = ENOMEM; biodone(bp); return REQUEST_ENOMEM; /* can't do it */ } } if (*diskaddr > diskend) /* we're finished, */ break; /* get out of here */ } break; case plex_striped: { while (*diskaddr < diskend) { /* until we get it all sorted out */ /* * The offset of the start address from * the start of the stripe */ stripeoffset = *diskaddr % (plex->stripesize * plex->subdisks); /* * The plex-relative address of the * start of the stripe */ stripebase = *diskaddr - stripeoffset; /* * The number of the subdisk in which * the start is located */ sdno = stripeoffset / plex->stripesize; /* * The offset from the beginning of the stripe * on this subdisk */ blockoffset = stripeoffset % plex->stripesize; sd = &SD[plex->sdnos[sdno]]; /* the subdisk in question */ if (sd->state != sd_up) { enum requeststatus s; s = checksdstate(sd, rq, *diskaddr, diskend); /* do we need to change state? */ if (s) /* give up? */ return s; /* yup */ } rqg = allocrqg(rq, 1); /* space for the request */ if (rqg == NULL) { /* malloc failed */ bp->b_flags |= B_ERROR; bp->b_error = ENOMEM; biodone(bp); return REQUEST_ENOMEM; } rqg->plexno = plexno; rqe = &rqg->rqe[0]; /* point to the element */ rqe->rqg = rqg; rqe->sdoffset = stripebase / plex->subdisks + blockoffset; /* start offset in this subdisk */ rqe->useroffset = *diskaddr - diskstart; /* The offset of the start in the user buffer */ rqe->dataoffset = 0; rqe->datalen = min(diskend - *diskaddr, /* the amount remaining to transfer */ plex->stripesize - blockoffset); /* and the amount left in this stripe */ rqe->groupoffset = 0; /* no groups for striped plexes */ rqe->grouplen = 0; rqe->buflen = rqe->datalen; /* buffer length is data buffer length */ rqe->flags = 0; rqe->sdno = sd->sdno; /* put in the subdisk number */ rqe->driveno = sd->driveno; if (rqe->sdoffset >= sd->sectors) { /* starts beyond the end of the subdisk? */ deallocrqg(rqg); return REQUEST_EOF; } else if (rqe->sdoffset + rqe->datalen > sd->sectors) /* ends beyond the end of the subdisk? */ rqe->datalen = sd->sectors - rqe->sdoffset; /* yes, truncate */ if (build_rq_buffer(rqe, plex)) { /* build the buffer */ deallocrqg(rqg); bp->b_flags |= B_ERROR; bp->b_error = ENOMEM; biodone(bp); return REQUEST_ENOMEM; /* can't do it */ } *diskaddr += rqe->datalen; /* look at the remainder */ if (*diskaddr < diskend) { /* didn't finish the request on this stripe */ plex->multiblock++; /* count another one */ if (sdno == plex->subdisks - 1) /* last subdisk, */ plex->multistripe++; /* another stripe as well */ } } } break; default: log(LOG_ERR, "vinum: invalid plex type %d in bre", plex->organization); } return status; } /* * Build up a request structure for reading volumes. * This function is not needed for plex reads, since there's * no recovery if a plex read can't be satisified. */ enum requeststatus build_read_request(struct request *rq, /* request */ int plexindex) { /* index in the volume's plex table */ struct buf *bp; daddr_t startaddr; /* offset of previous part of transfer */ daddr_t diskaddr; /* offset of current part of transfer */ daddr_t diskend; /* and end offset of transfer */ int plexno; /* plex index in vinum_conf */ struct rqgroup *rqg; /* point to the request we're working on */ struct volume *vol; /* volume in question */ off_t oldstart; /* note where we started */ int recovered = 0; /* set if we recover a read */ enum requeststatus status = REQUEST_OK; bp = rq->bp; /* buffer pointer */ diskaddr = bp->b_blkno; /* start offset of transfer */ diskend = diskaddr + (bp->b_bcount / DEV_BSIZE); /* and end offset of transfer */ rqg = &rq->rqg[plexindex]; /* plex request */ vol = &VOL[rq->volplex.volno]; /* point to volume */ while (diskaddr < diskend) { /* build up request components */ startaddr = diskaddr; status = bre(rq, vol->plex[plexindex], &diskaddr, diskend); /* build up a request */ switch (status) { case REQUEST_OK: continue; case REQUEST_RECOVERED: recovered = 1; break; case REQUEST_EOF: case REQUEST_ENOMEM: return status; /* * if we get here, we have either had a failure or * a RAID 5 recovery. We don't want to use the * recovery, because it's expensive, so first we * check if we have alternatives */ case REQUEST_DOWN: /* can't access the plex */ if (vol != NULL) { /* and this is volume I/O */ /* * Try to satisfy the request * from another plex */ for (plexno = 0; plexno < vol->plexes; plexno++) { diskaddr = startaddr; /* start at the beginning again */ oldstart = startaddr; /* and note where that was */ if (plexno != plexindex) { /* don't try this plex again */ bre(rq, vol->plex[plexno], &diskaddr, diskend); /* try a request */ if (diskaddr > oldstart) { /* we satisfied another part */ recovered = 1; /* we recovered from the problem */ status = REQUEST_OK; /* don't complain about it */ break; } } if (plexno == (vol->plexes - 1)) /* couldn't satisfy the request */ return REQUEST_DOWN; /* failed */ } } else return REQUEST_DOWN; /* bad luck */ } if (recovered) vol->recovered_reads += recovered; /* adjust our recovery count */ } return status; } /* * Build up a request structure for writes. * Return 0 if all subdisks involved in the request are up, 1 if some * subdisks are not up, and -1 if the request is at least partially * outside the bounds of the subdisks. */ enum requeststatus build_write_request(struct request *rq) { /* request */ struct buf *bp; daddr_t diskstart; /* offset of current part of transfer */ daddr_t diskend; /* and end offset of transfer */ int plexno; /* plex index in vinum_conf */ struct volume *vol; /* volume in question */ enum requeststatus status; bp = rq->bp; /* buffer pointer */ vol = &VOL[rq->volplex.volno]; /* point to volume */ diskend = bp->b_blkno + (bp->b_bcount / DEV_BSIZE); /* end offset of transfer */ status = REQUEST_DOWN; /* assume the worst */ for (plexno = 0; plexno < vol->plexes; plexno++) { diskstart = bp->b_blkno; /* start offset of transfer */ /* * Build requests for the plex. * We take the best possible result here (min, * not max): we're happy if we can write at all */ status = min(status, bre(rq, vol->plex[plexno], &diskstart, diskend)); } return status; } /* Fill in the struct buf part of a request element. */ enum requeststatus build_rq_buffer(struct rqelement *rqe, struct plex *plex) { struct sd *sd; /* point to subdisk */ struct volume *vol; struct buf *bp; struct buf *ubp; /* user (high level) buffer header */ vol = &VOL[rqe->rqg->rq->volplex.volno]; sd = &SD[rqe->sdno]; /* point to subdisk */ bp = &rqe->b; ubp = rqe->rqg->rq->bp; /* pointer to user buffer header */ /* Initialize the buf struct */ bzero(&rqe->b, sizeof(struct buf)); bp->b_proc = ubp->b_proc; /* process pointer */ bp->b_flags = ubp->b_flags & (B_NOCACHE | B_READ | B_ASYNC); /* copy these flags from user bp */ bp->b_flags |= B_CALL | B_BUSY; /* inform us when it's done */ /* * XXX Should we check for reviving plexes here, and * set B_ORDERED if so? */ bp->b_iodone = complete_rqe; /* by calling us here */ bp->b_dev = DRIVE[rqe->driveno].dev; /* drive device */ bp->b_blkno = rqe->sdoffset + sd->driveoffset; /* start address */ bp->b_bcount = rqe->buflen << DEV_BSHIFT; /* number of bytes to transfer */ bp->b_resid = bp->b_bcount; /* and it's still all waiting */ bp->b_bufsize = bp->b_bcount; /* and buffer size */ bp->b_vp = DRIVE[rqe->driveno].vp; /* drive vnode */ bp->b_rcred = FSCRED; /* we have the file system credentials */ bp->b_wcred = FSCRED; /* we have the file system credentials */ if (rqe->flags & XFR_MALLOCED) { /* this operation requires a malloced buffer */ bp->b_data = Malloc(bp->b_bcount); /* get a buffer to put it in */ if (bp->b_data == NULL) { /* failed */ Debugger("XXX"); abortrequest(rqe->rqg->rq, ENOMEM); return REQUEST_ENOMEM; /* no memory */ } } else /* * Point directly to user buffer data. This means * that we don't need to do anything when we have * finished the transfer */ bp->b_data = ubp->b_data + rqe->useroffset * DEV_BSIZE; return 0; } /* * Abort a request: free resources and complete the * user request with the specified error */ int abortrequest(struct request *rq, int error) { struct buf *bp = rq->bp; /* user buffer */ bp->b_flags |= B_ERROR; bp->b_error = error; freerq(rq); /* free everything we're doing */ biodone(bp); return error; /* and give up */ } /* * Check that our transfer will cover the * complete address space of the user request. * * Return 1 if it can, otherwise 0 */ int check_range_covered(struct request *rq) { /* XXX */ return 1; } /* Perform I/O on a subdisk */ void sdio(struct buf *bp) { int s; /* spl */ struct sd *sd; struct sdbuf *sbp; daddr_t endoffset; struct drive *drive; sd = &SD[Sdno(bp->b_dev)]; /* point to the subdisk */ drive = &DRIVE[sd->driveno]; if (drive->state != drive_up) { /* XXX until we get the states fixed */ if (bp->b_flags & B_WRITE) /* writing, */ set_sd_state(Sdno(bp->b_dev), sd_stale, setstate_force); else set_sd_state(Sdno(bp->b_dev), sd_crashed, setstate_force); bp->b_flags |= B_ERROR; bp->b_error = EIO; biodone(bp); return; } if (sd->state < sd_empty) { /* nothing to talk to, */ bp->b_flags |= B_ERROR; bp->b_flags = EIO; if (bp->b_flags & B_BUSY) /* XXX why isn't this always the case? */ biodone(bp); return; } /* Get a buffer */ sbp = (struct sdbuf *) Malloc(sizeof(struct sdbuf)); if (sbp == NULL) { bp->b_flags |= B_ERROR; bp->b_error = ENOMEM; biodone(bp); return; } bcopy(bp, &sbp->b, sizeof(struct buf)); /* start with the user's buffer */ sbp->b.b_flags |= B_CALL; /* tell us when it's done */ sbp->b.b_iodone = sdio_done; /* here */ sbp->b.b_dev = DRIVE[sd->driveno].dev; /* device */ sbp->b.b_vp = DRIVE[sd->driveno].vp; /* vnode */ sbp->b.b_blkno += sd->driveoffset; sbp->bp = bp; /* note the address of the original header */ sbp->sdno = sd->sdno; /* note for statistics */ sbp->driveno = sd->driveno; endoffset = bp->b_blkno + sbp->b.b_bcount / DEV_BSIZE; /* final sector offset */ if (endoffset > sd->sectors) { /* beyond the end */ sbp->b.b_bcount -= (endoffset - sd->sectors) * DEV_BSIZE; /* trim */ if (sbp->b.b_bcount <= 0) { /* nothing to transfer */ bp->b_resid = bp->b_bcount; /* nothing transferred */ /* * XXX Grrr. This doesn't seem to work. Return * an error after all */ bp->b_flags |= B_ERROR; bp->b_error = ENOSPC; biodone(bp); Free(sbp); return; } } if ((sbp->b.b_flags & B_READ) == 0) /* write */ sbp->b.b_vp->v_numoutput++; /* one more output going */ #if VINUMDEBUG if (debug & DEBUG_ADDRESSES) log(LOG_DEBUG, " %s dev 0x%x, sd %d, offset 0x%x, devoffset 0x%x, length %ld\n", sbp->b.b_flags & B_READ ? "Read" : "Write", sbp->b.b_dev, sbp->sdno, (u_int) (sbp->b.b_blkno - SD[sbp->sdno].driveoffset), (int) sbp->b.b_blkno, sbp->b.b_bcount); /* XXX */ if (debug & DEBUG_NUMOUTPUT) log(LOG_DEBUG, " vinumstart sd %d numoutput %ld\n", sbp->sdno, sbp->b.b_vp->v_numoutput); #endif s = splbio(); (*bdevsw[major(sbp->b.b_dev)]->d_strategy) (&sbp->b); splx(s); } /* * Simplified version of bounds_check_with_label * Determine the size of the transfer, and make sure it is * within the boundaries of the partition. Adjust transfer * if needed, and signal errors or early completion. * * Volumes are simpler than disk slices: they only contain * one component (though we call them a, b and c to make * system utilities happy), and they always take up the * complete space of the "partition". * * I'm still not happy with this: why should the label be * protected? If it weren't so damned difficult to write * one in the first pleace (because it's protected), it wouldn't * be a problem. */ int vinum_bounds_check(struct buf *bp, struct volume *vol) { int maxsize = vol->size; /* size of the partition (sectors) */ int size = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT; /* size of this request (sectors) */ /* Would this transfer overwrite the disk label? */ if (bp->b_blkno <= LABELSECTOR /* starts before or at the label */ #if LABELSECTOR != 0 && bp->b_blkno + size > LABELSECTOR /* and finishes after */ #endif && (!(vol->flags & VF_RAW)) /* and it's not raw */ &&major(bp->b_dev) == BDEV_MAJOR /* and it's the block device */ && (bp->b_flags & B_READ) == 0 /* and it's a write */ && (!vol->flags & (VF_WLABEL | VF_LABELLING))) { /* and we're not allowed to write the label */ bp->b_error = EROFS; /* read-only */ bp->b_flags |= B_ERROR; return -1; } if (size == 0) /* no transfer specified, */ return 0; /* treat as EOF */ /* beyond partition? */ if (bp->b_blkno < 0 /* negative start */ || bp->b_blkno + size > maxsize) { /* or goes beyond the end of the partition */ /* if exactly at end of disk, return an EOF */ if (bp->b_blkno == maxsize) { bp->b_resid = bp->b_bcount; return 0; } /* or truncate if part of it fits */ size = maxsize - bp->b_blkno; if (size <= 0) { /* nothing to transfer */ bp->b_error = EINVAL; bp->b_flags |= B_ERROR; return -1; } bp->b_bcount = size << DEV_BSHIFT; } bp->b_pblkno = bp->b_blkno; return 1; } /* * Allocate a request group and hook * it in in the list for rq */ struct rqgroup * allocrqg(struct request *rq, int elements) { struct rqgroup *rqg; /* the one we're going to allocate */ int size = sizeof(struct rqgroup) + elements * sizeof(struct rqelement); rqg = (struct rqgroup *) Malloc(size); if (rqg != NULL) { /* malloc OK, */ if (rq->rqg) /* we already have requests */ rq->lrqg->next = rqg; /* hang it off the end */ else /* first request */ rq->rqg = rqg; /* at the start */ rq->lrqg = rqg; /* this one is the last in the list */ bzero(rqg, size); /* no old junk */ rqg->rq = rq; /* point back to the parent request */ rqg->count = elements; /* number of requests in the group */ } return rqg; } /* * Deallocate a request group out of a chain. We do * this by linear search: the chain is short, this * almost never happens, and currently it can only * happen to the first member of the chain. */ void deallocrqg(struct rqgroup *rqg) { struct rqgroup *rqgc = rqg->rq->rqg; /* point to the request chain */ if (rqg->rq->rqg == rqg) /* we're first in line */ rqg->rq->rqg = rqg->next; /* unhook ourselves */ else { while (rqgc->next != rqg) /* find the group */ rqgc = rqgc->next; rqgc->next = rqg->next; } Free(rqgc); } /* Character device interface */ int vinumread(dev_t dev, struct uio *uio, int ioflag) { return (physio(vinumstrategy, NULL, dev, 1, minphys, uio)); } int vinumwrite(dev_t dev, struct uio *uio, int ioflag) { return (physio(vinumstrategy, NULL, dev, 0, minphys, uio)); }