/*- * Copyright (c) 2007 Attilio Rao * Copyright (c) 2001 Jason Evans * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice(s), this list of conditions and the following disclaimer as * the first lines of this file unmodified other than the possible * addition of one or more copyright notices. * 2. Redistributions in binary form must reproduce the above copyright * notice(s), this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. */ /* * Shared/exclusive locks. This implementation attempts to ensure * deterministic lock granting behavior, so that slocks and xlocks are * interleaved. * * Priority propagation will not generally raise the priority of lock holders, * so should not be relied upon in combination with sx locks. */ #include "opt_ddb.h" #include "opt_kdtrace.h" #include "opt_no_adaptive_sx.h" #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #if defined(SMP) && !defined(NO_ADAPTIVE_SX) #include #endif #ifdef DDB #include #endif #if defined(SMP) && !defined(NO_ADAPTIVE_SX) #define ADAPTIVE_SX #endif CTASSERT(((SX_NOADAPTIVE | SX_RECURSE) & LO_CLASSFLAGS) == (SX_NOADAPTIVE | SX_RECURSE)); /* Handy macros for sleep queues. */ #define SQ_EXCLUSIVE_QUEUE 0 #define SQ_SHARED_QUEUE 1 /* * Variations on DROP_GIANT()/PICKUP_GIANT() for use in this file. We * drop Giant anytime we have to sleep or if we adaptively spin. */ #define GIANT_DECLARE \ int _giantcnt = 0; \ WITNESS_SAVE_DECL(Giant) \ #define GIANT_SAVE() do { \ if (mtx_owned(&Giant)) { \ WITNESS_SAVE(&Giant.lock_object, Giant); \ while (mtx_owned(&Giant)) { \ _giantcnt++; \ mtx_unlock(&Giant); \ } \ } \ } while (0) #define GIANT_RESTORE() do { \ if (_giantcnt > 0) { \ mtx_assert(&Giant, MA_NOTOWNED); \ while (_giantcnt--) \ mtx_lock(&Giant); \ WITNESS_RESTORE(&Giant.lock_object, Giant); \ } \ } while (0) /* * Returns true if an exclusive lock is recursed. It assumes * curthread currently has an exclusive lock. */ #define sx_recurse lock_object.lo_data #define sx_recursed(sx) ((sx)->sx_recurse != 0) static void assert_sx(struct lock_object *lock, int what); #ifdef DDB static void db_show_sx(struct lock_object *lock); #endif static void lock_sx(struct lock_object *lock, int how); #ifdef KDTRACE_HOOKS static int owner_sx(struct lock_object *lock, struct thread **owner); #endif static int unlock_sx(struct lock_object *lock); struct lock_class lock_class_sx = { .lc_name = "sx", .lc_flags = LC_SLEEPLOCK | LC_SLEEPABLE | LC_RECURSABLE | LC_UPGRADABLE, .lc_assert = assert_sx, #ifdef DDB .lc_ddb_show = db_show_sx, #endif .lc_lock = lock_sx, .lc_unlock = unlock_sx, #ifdef KDTRACE_HOOKS .lc_owner = owner_sx, #endif }; #ifndef INVARIANTS #define _sx_assert(sx, what, file, line) #endif #ifdef ADAPTIVE_SX static u_int asx_retries = 10; static u_int asx_loops = 10000; SYSCTL_NODE(_debug, OID_AUTO, sx, CTLFLAG_RD, NULL, "sxlock debugging"); SYSCTL_INT(_debug_sx, OID_AUTO, retries, CTLFLAG_RW, &asx_retries, 0, ""); SYSCTL_INT(_debug_sx, OID_AUTO, loops, CTLFLAG_RW, &asx_loops, 0, ""); #endif void assert_sx(struct lock_object *lock, int what) { sx_assert((struct sx *)lock, what); } void lock_sx(struct lock_object *lock, int how) { struct sx *sx; sx = (struct sx *)lock; if (how) sx_xlock(sx); else sx_slock(sx); } int unlock_sx(struct lock_object *lock) { struct sx *sx; sx = (struct sx *)lock; sx_assert(sx, SA_LOCKED | SA_NOTRECURSED); if (sx_xlocked(sx)) { sx_xunlock(sx); return (1); } else { sx_sunlock(sx); return (0); } } #ifdef KDTRACE_HOOKS int owner_sx(struct lock_object *lock, struct thread **owner) { struct sx *sx = (struct sx *)lock; uintptr_t x = sx->sx_lock; *owner = (struct thread *)SX_OWNER(x); return ((x & SX_LOCK_SHARED) != 0 ? (SX_SHARERS(x) != 0) : (*owner != NULL)); } #endif void sx_sysinit(void *arg) { struct sx_args *sargs = arg; sx_init(sargs->sa_sx, sargs->sa_desc); } void sx_init_flags(struct sx *sx, const char *description, int opts) { int flags; MPASS((opts & ~(SX_QUIET | SX_RECURSE | SX_NOWITNESS | SX_DUPOK | SX_NOPROFILE | SX_NOADAPTIVE)) == 0); flags = LO_RECURSABLE | LO_SLEEPABLE | LO_UPGRADABLE; if (opts & SX_DUPOK) flags |= LO_DUPOK; if (opts & SX_NOPROFILE) flags |= LO_NOPROFILE; if (!(opts & SX_NOWITNESS)) flags |= LO_WITNESS; if (opts & SX_QUIET) flags |= LO_QUIET; flags |= opts & (SX_NOADAPTIVE | SX_RECURSE); sx->sx_lock = SX_LOCK_UNLOCKED; sx->sx_recurse = 0; lock_init(&sx->lock_object, &lock_class_sx, description, NULL, flags); } void sx_destroy(struct sx *sx) { KASSERT(sx->sx_lock == SX_LOCK_UNLOCKED, ("sx lock still held")); KASSERT(sx->sx_recurse == 0, ("sx lock still recursed")); sx->sx_lock = SX_LOCK_DESTROYED; lock_destroy(&sx->lock_object); } int _sx_slock(struct sx *sx, int opts, const char *file, int line) { int error = 0; MPASS(curthread != NULL); KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, ("sx_slock() of destroyed sx @ %s:%d", file, line)); WITNESS_CHECKORDER(&sx->lock_object, LOP_NEWORDER, file, line, NULL); error = __sx_slock(sx, opts, file, line); if (!error) { LOCK_LOG_LOCK("SLOCK", &sx->lock_object, 0, 0, file, line); WITNESS_LOCK(&sx->lock_object, 0, file, line); curthread->td_locks++; } return (error); } int _sx_try_slock(struct sx *sx, const char *file, int line) { uintptr_t x; for (;;) { x = sx->sx_lock; KASSERT(x != SX_LOCK_DESTROYED, ("sx_try_slock() of destroyed sx @ %s:%d", file, line)); if (!(x & SX_LOCK_SHARED)) break; if (atomic_cmpset_acq_ptr(&sx->sx_lock, x, x + SX_ONE_SHARER)) { LOCK_LOG_TRY("SLOCK", &sx->lock_object, 0, 1, file, line); WITNESS_LOCK(&sx->lock_object, LOP_TRYLOCK, file, line); curthread->td_locks++; return (1); } } LOCK_LOG_TRY("SLOCK", &sx->lock_object, 0, 0, file, line); return (0); } int _sx_xlock(struct sx *sx, int opts, const char *file, int line) { int error = 0; MPASS(curthread != NULL); KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, ("sx_xlock() of destroyed sx @ %s:%d", file, line)); WITNESS_CHECKORDER(&sx->lock_object, LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL); error = __sx_xlock(sx, curthread, opts, file, line); if (!error) { LOCK_LOG_LOCK("XLOCK", &sx->lock_object, 0, sx->sx_recurse, file, line); WITNESS_LOCK(&sx->lock_object, LOP_EXCLUSIVE, file, line); curthread->td_locks++; } return (error); } int _sx_try_xlock(struct sx *sx, const char *file, int line) { int rval; MPASS(curthread != NULL); KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, ("sx_try_xlock() of destroyed sx @ %s:%d", file, line)); if (sx_xlocked(sx) && (sx->lock_object.lo_flags & SX_RECURSE) != 0) { sx->sx_recurse++; atomic_set_ptr(&sx->sx_lock, SX_LOCK_RECURSED); rval = 1; } else rval = atomic_cmpset_acq_ptr(&sx->sx_lock, SX_LOCK_UNLOCKED, (uintptr_t)curthread); LOCK_LOG_TRY("XLOCK", &sx->lock_object, 0, rval, file, line); if (rval) { WITNESS_LOCK(&sx->lock_object, LOP_EXCLUSIVE | LOP_TRYLOCK, file, line); curthread->td_locks++; } return (rval); } void _sx_sunlock(struct sx *sx, const char *file, int line) { MPASS(curthread != NULL); KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, ("sx_sunlock() of destroyed sx @ %s:%d", file, line)); _sx_assert(sx, SA_SLOCKED, file, line); curthread->td_locks--; WITNESS_UNLOCK(&sx->lock_object, 0, file, line); LOCK_LOG_LOCK("SUNLOCK", &sx->lock_object, 0, 0, file, line); __sx_sunlock(sx, file, line); LOCKSTAT_PROFILE_RELEASE_LOCK(LS_SX_SUNLOCK_RELEASE, sx); } void _sx_xunlock(struct sx *sx, const char *file, int line) { MPASS(curthread != NULL); KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, ("sx_xunlock() of destroyed sx @ %s:%d", file, line)); _sx_assert(sx, SA_XLOCKED, file, line); curthread->td_locks--; WITNESS_UNLOCK(&sx->lock_object, LOP_EXCLUSIVE, file, line); LOCK_LOG_LOCK("XUNLOCK", &sx->lock_object, 0, sx->sx_recurse, file, line); if (!sx_recursed(sx)) LOCKSTAT_PROFILE_RELEASE_LOCK(LS_SX_XUNLOCK_RELEASE, sx); __sx_xunlock(sx, curthread, file, line); } /* * Try to do a non-blocking upgrade from a shared lock to an exclusive lock. * This will only succeed if this thread holds a single shared lock. * Return 1 if if the upgrade succeed, 0 otherwise. */ int _sx_try_upgrade(struct sx *sx, const char *file, int line) { uintptr_t x; int success; KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, ("sx_try_upgrade() of destroyed sx @ %s:%d", file, line)); _sx_assert(sx, SA_SLOCKED, file, line); /* * Try to switch from one shared lock to an exclusive lock. We need * to maintain the SX_LOCK_EXCLUSIVE_WAITERS flag if set so that * we will wake up the exclusive waiters when we drop the lock. */ x = sx->sx_lock & SX_LOCK_EXCLUSIVE_WAITERS; success = atomic_cmpset_ptr(&sx->sx_lock, SX_SHARERS_LOCK(1) | x, (uintptr_t)curthread | x); LOCK_LOG_TRY("XUPGRADE", &sx->lock_object, 0, success, file, line); if (success) { WITNESS_UPGRADE(&sx->lock_object, LOP_EXCLUSIVE | LOP_TRYLOCK, file, line); LOCKSTAT_RECORD0(LS_SX_TRYUPGRADE_UPGRADE, sx); } return (success); } /* * Downgrade an unrecursed exclusive lock into a single shared lock. */ void _sx_downgrade(struct sx *sx, const char *file, int line) { uintptr_t x; int wakeup_swapper; KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, ("sx_downgrade() of destroyed sx @ %s:%d", file, line)); _sx_assert(sx, SA_XLOCKED | SA_NOTRECURSED, file, line); #ifndef INVARIANTS if (sx_recursed(sx)) panic("downgrade of a recursed lock"); #endif WITNESS_DOWNGRADE(&sx->lock_object, 0, file, line); /* * Try to switch from an exclusive lock with no shared waiters * to one sharer with no shared waiters. If there are * exclusive waiters, we don't need to lock the sleep queue so * long as we preserve the flag. We do one quick try and if * that fails we grab the sleepq lock to keep the flags from * changing and do it the slow way. * * We have to lock the sleep queue if there are shared waiters * so we can wake them up. */ x = sx->sx_lock; if (!(x & SX_LOCK_SHARED_WAITERS) && atomic_cmpset_rel_ptr(&sx->sx_lock, x, SX_SHARERS_LOCK(1) | (x & SX_LOCK_EXCLUSIVE_WAITERS))) { LOCK_LOG_LOCK("XDOWNGRADE", &sx->lock_object, 0, 0, file, line); return; } /* * Lock the sleep queue so we can read the waiters bits * without any races and wakeup any shared waiters. */ sleepq_lock(&sx->lock_object); /* * Preserve SX_LOCK_EXCLUSIVE_WAITERS while downgraded to a single * shared lock. If there are any shared waiters, wake them up. */ wakeup_swapper = 0; x = sx->sx_lock; atomic_store_rel_ptr(&sx->sx_lock, SX_SHARERS_LOCK(1) | (x & SX_LOCK_EXCLUSIVE_WAITERS)); if (x & SX_LOCK_SHARED_WAITERS) wakeup_swapper = sleepq_broadcast(&sx->lock_object, SLEEPQ_SX, 0, SQ_SHARED_QUEUE); sleepq_release(&sx->lock_object); LOCK_LOG_LOCK("XDOWNGRADE", &sx->lock_object, 0, 0, file, line); LOCKSTAT_RECORD0(LS_SX_DOWNGRADE_DOWNGRADE, sx); if (wakeup_swapper) kick_proc0(); } /* * This function represents the so-called 'hard case' for sx_xlock * operation. All 'easy case' failures are redirected to this. Note * that ideally this would be a static function, but it needs to be * accessible from at least sx.h. */ int _sx_xlock_hard(struct sx *sx, uintptr_t tid, int opts, const char *file, int line) { GIANT_DECLARE; #ifdef ADAPTIVE_SX volatile struct thread *owner; u_int i, spintries = 0; #endif uintptr_t x; #ifdef LOCK_PROFILING uint64_t waittime = 0; int contested = 0; #endif int error = 0; #ifdef KDTRACE_HOOKS uint64_t spin_cnt = 0; uint64_t sleep_cnt = 0; int64_t sleep_time = 0; #endif /* If we already hold an exclusive lock, then recurse. */ if (sx_xlocked(sx)) { KASSERT((sx->lock_object.lo_flags & SX_RECURSE) != 0, ("_sx_xlock_hard: recursed on non-recursive sx %s @ %s:%d\n", sx->lock_object.lo_name, file, line)); sx->sx_recurse++; atomic_set_ptr(&sx->sx_lock, SX_LOCK_RECURSED); if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p recursing", __func__, sx); return (0); } if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR5(KTR_LOCK, "%s: %s contested (lock=%p) at %s:%d", __func__, sx->lock_object.lo_name, (void *)sx->sx_lock, file, line); while (!atomic_cmpset_acq_ptr(&sx->sx_lock, SX_LOCK_UNLOCKED, tid)) { #ifdef KDTRACE_HOOKS spin_cnt++; #endif lock_profile_obtain_lock_failed(&sx->lock_object, &contested, &waittime); #ifdef ADAPTIVE_SX /* * If the lock is write locked and the owner is * running on another CPU, spin until the owner stops * running or the state of the lock changes. */ x = sx->sx_lock; if ((sx->lock_object.lo_flags & SX_NOADAPTIVE) != 0) { if ((x & SX_LOCK_SHARED) == 0) { x = SX_OWNER(x); owner = (struct thread *)x; if (TD_IS_RUNNING(owner)) { if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR3(KTR_LOCK, "%s: spinning on %p held by %p", __func__, sx, owner); GIANT_SAVE(); while (SX_OWNER(sx->sx_lock) == x && TD_IS_RUNNING(owner)) { cpu_spinwait(); #ifdef KDTRACE_HOOKS spin_cnt++; #endif } continue; } } else if (SX_SHARERS(x) && spintries < asx_retries) { spintries++; for (i = 0; i < asx_loops; i++) { if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR4(KTR_LOCK, "%s: shared spinning on %p with %u and %u", __func__, sx, spintries, i); GIANT_SAVE(); x = sx->sx_lock; if ((x & SX_LOCK_SHARED) == 0 || SX_SHARERS(x) == 0) break; cpu_spinwait(); #ifdef KDTRACE_HOOKS spin_cnt++; #endif } if (i != asx_loops) continue; } } #endif sleepq_lock(&sx->lock_object); x = sx->sx_lock; /* * If the lock was released while spinning on the * sleep queue chain lock, try again. */ if (x == SX_LOCK_UNLOCKED) { sleepq_release(&sx->lock_object); continue; } #ifdef ADAPTIVE_SX /* * The current lock owner might have started executing * on another CPU (or the lock could have changed * owners) while we were waiting on the sleep queue * chain lock. If so, drop the sleep queue lock and try * again. */ if (!(x & SX_LOCK_SHARED) && (sx->lock_object.lo_flags & SX_NOADAPTIVE) == 0) { owner = (struct thread *)SX_OWNER(x); if (TD_IS_RUNNING(owner)) { sleepq_release(&sx->lock_object); continue; } } #endif /* * If an exclusive lock was released with both shared * and exclusive waiters and a shared waiter hasn't * woken up and acquired the lock yet, sx_lock will be * set to SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS. * If we see that value, try to acquire it once. Note * that we have to preserve SX_LOCK_EXCLUSIVE_WAITERS * as there are other exclusive waiters still. If we * fail, restart the loop. */ if (x == (SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS)) { if (atomic_cmpset_acq_ptr(&sx->sx_lock, SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS, tid | SX_LOCK_EXCLUSIVE_WAITERS)) { sleepq_release(&sx->lock_object); CTR2(KTR_LOCK, "%s: %p claimed by new writer", __func__, sx); break; } sleepq_release(&sx->lock_object); continue; } /* * Try to set the SX_LOCK_EXCLUSIVE_WAITERS. If we fail, * than loop back and retry. */ if (!(x & SX_LOCK_EXCLUSIVE_WAITERS)) { if (!atomic_cmpset_ptr(&sx->sx_lock, x, x | SX_LOCK_EXCLUSIVE_WAITERS)) { sleepq_release(&sx->lock_object); continue; } if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p set excl waiters flag", __func__, sx); } /* * Since we have been unable to acquire the exclusive * lock and the exclusive waiters flag is set, we have * to sleep. */ if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p blocking on sleep queue", __func__, sx); #ifdef KDTRACE_HOOKS sleep_time -= lockstat_nsecs(); #endif GIANT_SAVE(); sleepq_add(&sx->lock_object, NULL, sx->lock_object.lo_name, SLEEPQ_SX | ((opts & SX_INTERRUPTIBLE) ? SLEEPQ_INTERRUPTIBLE : 0), SQ_EXCLUSIVE_QUEUE); if (!(opts & SX_INTERRUPTIBLE)) sleepq_wait(&sx->lock_object, 0); else error = sleepq_wait_sig(&sx->lock_object, 0); #ifdef KDTRACE_HOOKS sleep_time += lockstat_nsecs(); sleep_cnt++; #endif if (error) { if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR2(KTR_LOCK, "%s: interruptible sleep by %p suspended by signal", __func__, sx); break; } if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p resuming from sleep queue", __func__, sx); } GIANT_RESTORE(); if (!error) LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(LS_SX_XLOCK_ACQUIRE, sx, contested, waittime, file, line); #ifdef KDTRACE_HOOKS if (sleep_time) LOCKSTAT_RECORD1(LS_SX_XLOCK_BLOCK, sx, sleep_time); if (spin_cnt > sleep_cnt) LOCKSTAT_RECORD1(LS_SX_XLOCK_SPIN, sx, (spin_cnt - sleep_cnt)); #endif return (error); } /* * This function represents the so-called 'hard case' for sx_xunlock * operation. All 'easy case' failures are redirected to this. Note * that ideally this would be a static function, but it needs to be * accessible from at least sx.h. */ void _sx_xunlock_hard(struct sx *sx, uintptr_t tid, const char *file, int line) { uintptr_t x; int queue, wakeup_swapper; MPASS(!(sx->sx_lock & SX_LOCK_SHARED)); /* If the lock is recursed, then unrecurse one level. */ if (sx_xlocked(sx) && sx_recursed(sx)) { if ((--sx->sx_recurse) == 0) atomic_clear_ptr(&sx->sx_lock, SX_LOCK_RECURSED); if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p unrecursing", __func__, sx); return; } MPASS(sx->sx_lock & (SX_LOCK_SHARED_WAITERS | SX_LOCK_EXCLUSIVE_WAITERS)); if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p contested", __func__, sx); sleepq_lock(&sx->lock_object); x = SX_LOCK_UNLOCKED; /* * The wake up algorithm here is quite simple and probably not * ideal. It gives precedence to shared waiters if they are * present. For this condition, we have to preserve the * state of the exclusive waiters flag. */ if (sx->sx_lock & SX_LOCK_SHARED_WAITERS) { queue = SQ_SHARED_QUEUE; x |= (sx->sx_lock & SX_LOCK_EXCLUSIVE_WAITERS); } else queue = SQ_EXCLUSIVE_QUEUE; /* Wake up all the waiters for the specific queue. */ if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR3(KTR_LOCK, "%s: %p waking up all threads on %s queue", __func__, sx, queue == SQ_SHARED_QUEUE ? "shared" : "exclusive"); atomic_store_rel_ptr(&sx->sx_lock, x); wakeup_swapper = sleepq_broadcast(&sx->lock_object, SLEEPQ_SX, 0, queue); sleepq_release(&sx->lock_object); if (wakeup_swapper) kick_proc0(); } /* * This function represents the so-called 'hard case' for sx_slock * operation. All 'easy case' failures are redirected to this. Note * that ideally this would be a static function, but it needs to be * accessible from at least sx.h. */ int _sx_slock_hard(struct sx *sx, int opts, const char *file, int line) { GIANT_DECLARE; #ifdef ADAPTIVE_SX volatile struct thread *owner; #endif #ifdef LOCK_PROFILING uint64_t waittime = 0; int contested = 0; #endif uintptr_t x; int error = 0; #ifdef KDTRACE_HOOKS uint64_t spin_cnt = 0; uint64_t sleep_cnt = 0; int64_t sleep_time = 0; #endif /* * As with rwlocks, we don't make any attempt to try to block * shared locks once there is an exclusive waiter. */ for (;;) { #ifdef KDTRACE_HOOKS spin_cnt++; #endif x = sx->sx_lock; /* * If no other thread has an exclusive lock then try to bump up * the count of sharers. Since we have to preserve the state * of SX_LOCK_EXCLUSIVE_WAITERS, if we fail to acquire the * shared lock loop back and retry. */ if (x & SX_LOCK_SHARED) { MPASS(!(x & SX_LOCK_SHARED_WAITERS)); if (atomic_cmpset_acq_ptr(&sx->sx_lock, x, x + SX_ONE_SHARER)) { if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR4(KTR_LOCK, "%s: %p succeed %p -> %p", __func__, sx, (void *)x, (void *)(x + SX_ONE_SHARER)); break; } continue; } lock_profile_obtain_lock_failed(&sx->lock_object, &contested, &waittime); #ifdef ADAPTIVE_SX /* * If the owner is running on another CPU, spin until * the owner stops running or the state of the lock * changes. */ if ((sx->lock_object.lo_flags & SX_NOADAPTIVE) == 0) { x = SX_OWNER(x); owner = (struct thread *)x; if (TD_IS_RUNNING(owner)) { if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR3(KTR_LOCK, "%s: spinning on %p held by %p", __func__, sx, owner); GIANT_SAVE(); while (SX_OWNER(sx->sx_lock) == x && TD_IS_RUNNING(owner)) { #ifdef KDTRACE_HOOKS spin_cnt++; #endif cpu_spinwait(); } continue; } } #endif /* * Some other thread already has an exclusive lock, so * start the process of blocking. */ sleepq_lock(&sx->lock_object); x = sx->sx_lock; /* * The lock could have been released while we spun. * In this case loop back and retry. */ if (x & SX_LOCK_SHARED) { sleepq_release(&sx->lock_object); continue; } #ifdef ADAPTIVE_SX /* * If the owner is running on another CPU, spin until * the owner stops running or the state of the lock * changes. */ if (!(x & SX_LOCK_SHARED) && (sx->lock_object.lo_flags & SX_NOADAPTIVE) == 0) { owner = (struct thread *)SX_OWNER(x); if (TD_IS_RUNNING(owner)) { sleepq_release(&sx->lock_object); continue; } } #endif /* * Try to set the SX_LOCK_SHARED_WAITERS flag. If we * fail to set it drop the sleep queue lock and loop * back. */ if (!(x & SX_LOCK_SHARED_WAITERS)) { if (!atomic_cmpset_ptr(&sx->sx_lock, x, x | SX_LOCK_SHARED_WAITERS)) { sleepq_release(&sx->lock_object); continue; } if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p set shared waiters flag", __func__, sx); } /* * Since we have been unable to acquire the shared lock, * we have to sleep. */ if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p blocking on sleep queue", __func__, sx); #ifdef KDTRACE_HOOKS sleep_time -= lockstat_nsecs(); #endif GIANT_SAVE(); sleepq_add(&sx->lock_object, NULL, sx->lock_object.lo_name, SLEEPQ_SX | ((opts & SX_INTERRUPTIBLE) ? SLEEPQ_INTERRUPTIBLE : 0), SQ_SHARED_QUEUE); if (!(opts & SX_INTERRUPTIBLE)) sleepq_wait(&sx->lock_object, 0); else error = sleepq_wait_sig(&sx->lock_object, 0); #ifdef KDTRACE_HOOKS sleep_time += lockstat_nsecs(); sleep_cnt++; #endif if (error) { if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR2(KTR_LOCK, "%s: interruptible sleep by %p suspended by signal", __func__, sx); break; } if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p resuming from sleep queue", __func__, sx); } if (error == 0) LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(LS_SX_SLOCK_ACQUIRE, sx, contested, waittime, file, line); #ifdef KDTRACE_HOOKS if (sleep_time) LOCKSTAT_RECORD1(LS_SX_XLOCK_BLOCK, sx, sleep_time); if (spin_cnt > sleep_cnt) LOCKSTAT_RECORD1(LS_SX_XLOCK_SPIN, sx, (spin_cnt - sleep_cnt)); #endif GIANT_RESTORE(); return (error); } /* * This function represents the so-called 'hard case' for sx_sunlock * operation. All 'easy case' failures are redirected to this. Note * that ideally this would be a static function, but it needs to be * accessible from at least sx.h. */ void _sx_sunlock_hard(struct sx *sx, const char *file, int line) { uintptr_t x; int wakeup_swapper; for (;;) { x = sx->sx_lock; /* * We should never have sharers while at least one thread * holds a shared lock. */ KASSERT(!(x & SX_LOCK_SHARED_WAITERS), ("%s: waiting sharers", __func__)); /* * See if there is more than one shared lock held. If * so, just drop one and return. */ if (SX_SHARERS(x) > 1) { if (atomic_cmpset_ptr(&sx->sx_lock, x, x - SX_ONE_SHARER)) { if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR4(KTR_LOCK, "%s: %p succeeded %p -> %p", __func__, sx, (void *)x, (void *)(x - SX_ONE_SHARER)); break; } continue; } /* * If there aren't any waiters for an exclusive lock, * then try to drop it quickly. */ if (!(x & SX_LOCK_EXCLUSIVE_WAITERS)) { MPASS(x == SX_SHARERS_LOCK(1)); if (atomic_cmpset_ptr(&sx->sx_lock, SX_SHARERS_LOCK(1), SX_LOCK_UNLOCKED)) { if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p last succeeded", __func__, sx); break; } continue; } /* * At this point, there should just be one sharer with * exclusive waiters. */ MPASS(x == (SX_SHARERS_LOCK(1) | SX_LOCK_EXCLUSIVE_WAITERS)); sleepq_lock(&sx->lock_object); /* * Wake up semantic here is quite simple: * Just wake up all the exclusive waiters. * Note that the state of the lock could have changed, * so if it fails loop back and retry. */ if (!atomic_cmpset_ptr(&sx->sx_lock, SX_SHARERS_LOCK(1) | SX_LOCK_EXCLUSIVE_WAITERS, SX_LOCK_UNLOCKED)) { sleepq_release(&sx->lock_object); continue; } if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p waking up all thread on" "exclusive queue", __func__, sx); wakeup_swapper = sleepq_broadcast(&sx->lock_object, SLEEPQ_SX, 0, SQ_EXCLUSIVE_QUEUE); sleepq_release(&sx->lock_object); if (wakeup_swapper) kick_proc0(); break; } } #ifdef INVARIANT_SUPPORT #ifndef INVARIANTS #undef _sx_assert #endif /* * In the non-WITNESS case, sx_assert() can only detect that at least * *some* thread owns an slock, but it cannot guarantee that *this* * thread owns an slock. */ void _sx_assert(struct sx *sx, int what, const char *file, int line) { #ifndef WITNESS int slocked = 0; #endif if (panicstr != NULL) return; switch (what) { case SA_SLOCKED: case SA_SLOCKED | SA_NOTRECURSED: case SA_SLOCKED | SA_RECURSED: #ifndef WITNESS slocked = 1; /* FALLTHROUGH */ #endif case SA_LOCKED: case SA_LOCKED | SA_NOTRECURSED: case SA_LOCKED | SA_RECURSED: #ifdef WITNESS witness_assert(&sx->lock_object, what, file, line); #else /* * If some other thread has an exclusive lock or we * have one and are asserting a shared lock, fail. * Also, if no one has a lock at all, fail. */ if (sx->sx_lock == SX_LOCK_UNLOCKED || (!(sx->sx_lock & SX_LOCK_SHARED) && (slocked || sx_xholder(sx) != curthread))) panic("Lock %s not %slocked @ %s:%d\n", sx->lock_object.lo_name, slocked ? "share " : "", file, line); if (!(sx->sx_lock & SX_LOCK_SHARED)) { if (sx_recursed(sx)) { if (what & SA_NOTRECURSED) panic("Lock %s recursed @ %s:%d\n", sx->lock_object.lo_name, file, line); } else if (what & SA_RECURSED) panic("Lock %s not recursed @ %s:%d\n", sx->lock_object.lo_name, file, line); } #endif break; case SA_XLOCKED: case SA_XLOCKED | SA_NOTRECURSED: case SA_XLOCKED | SA_RECURSED: if (sx_xholder(sx) != curthread) panic("Lock %s not exclusively locked @ %s:%d\n", sx->lock_object.lo_name, file, line); if (sx_recursed(sx)) { if (what & SA_NOTRECURSED) panic("Lock %s recursed @ %s:%d\n", sx->lock_object.lo_name, file, line); } else if (what & SA_RECURSED) panic("Lock %s not recursed @ %s:%d\n", sx->lock_object.lo_name, file, line); break; case SA_UNLOCKED: #ifdef WITNESS witness_assert(&sx->lock_object, what, file, line); #else /* * If we hold an exclusve lock fail. We can't * reliably check to see if we hold a shared lock or * not. */ if (sx_xholder(sx) == curthread) panic("Lock %s exclusively locked @ %s:%d\n", sx->lock_object.lo_name, file, line); #endif break; default: panic("Unknown sx lock assertion: %d @ %s:%d", what, file, line); } } #endif /* INVARIANT_SUPPORT */ #ifdef DDB static void db_show_sx(struct lock_object *lock) { struct thread *td; struct sx *sx; sx = (struct sx *)lock; db_printf(" state: "); if (sx->sx_lock == SX_LOCK_UNLOCKED) db_printf("UNLOCKED\n"); else if (sx->sx_lock == SX_LOCK_DESTROYED) { db_printf("DESTROYED\n"); return; } else if (sx->sx_lock & SX_LOCK_SHARED) db_printf("SLOCK: %ju\n", (uintmax_t)SX_SHARERS(sx->sx_lock)); else { td = sx_xholder(sx); db_printf("XLOCK: %p (tid %d, pid %d, \"%s\")\n", td, td->td_tid, td->td_proc->p_pid, td->td_name); if (sx_recursed(sx)) db_printf(" recursed: %d\n", sx->sx_recurse); } db_printf(" waiters: "); switch(sx->sx_lock & (SX_LOCK_SHARED_WAITERS | SX_LOCK_EXCLUSIVE_WAITERS)) { case SX_LOCK_SHARED_WAITERS: db_printf("shared\n"); break; case SX_LOCK_EXCLUSIVE_WAITERS: db_printf("exclusive\n"); break; case SX_LOCK_SHARED_WAITERS | SX_LOCK_EXCLUSIVE_WAITERS: db_printf("exclusive and shared\n"); break; default: db_printf("none\n"); } } /* * Check to see if a thread that is blocked on a sleep queue is actually * blocked on an sx lock. If so, output some details and return true. * If the lock has an exclusive owner, return that in *ownerp. */ int sx_chain(struct thread *td, struct thread **ownerp) { struct sx *sx; /* * Check to see if this thread is blocked on an sx lock. * First, we check the lock class. If that is ok, then we * compare the lock name against the wait message. */ sx = td->td_wchan; if (LOCK_CLASS(&sx->lock_object) != &lock_class_sx || sx->lock_object.lo_name != td->td_wmesg) return (0); /* We think we have an sx lock, so output some details. */ db_printf("blocked on sx \"%s\" ", td->td_wmesg); *ownerp = sx_xholder(sx); if (sx->sx_lock & SX_LOCK_SHARED) db_printf("SLOCK (count %ju)\n", (uintmax_t)SX_SHARERS(sx->sx_lock)); else db_printf("XLOCK\n"); return (1); } #endif