/*- * Copyright (c) 2003 Nate Lawson (SDG) * Copyright (c) 2001 Michael Smith * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_acpi.h" #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __ia64__ #include #endif #include #include "acpi.h" #include /* * Support for ACPI Processor devices, including ACPI 2.0 throttling * and C[1-3] sleep states. * * TODO: implement scans of all CPUs to be sure all Cx states are * equivalent. */ /* Hooks for the ACPI CA debugging infrastructure */ #define _COMPONENT ACPI_PROCESSOR ACPI_MODULE_NAME("PROCESSOR") struct acpi_cx { struct resource *p_lvlx; /* Register to read to enter state. */ uint32_t type; /* C1-3 (C4 and up treated as C3). */ uint32_t trans_lat; /* Transition latency (usec). */ uint32_t power; /* Power consumed (mW). */ }; #define MAX_CX_STATES 8 struct acpi_cx_stats { int long_slp; /* Count of sleeps >= trans_lat. */ int short_slp; /* Count of sleeps < trans_lat. */ }; struct acpi_cpu_softc { device_t cpu_dev; ACPI_HANDLE cpu_handle; uint32_t acpi_id; /* ACPI processor id */ uint32_t cpu_p_blk; /* ACPI P_BLK location */ uint32_t cpu_p_blk_len; /* P_BLK length (must be 6). */ struct resource *cpu_p_cnt; /* Throttling control register */ struct acpi_cx cpu_cx_states[MAX_CX_STATES]; int cpu_cx_count; /* Number of valid Cx states. */ }; #define CPU_GET_REG(reg, width) \ (bus_space_read_ ## width(rman_get_bustag((reg)), \ rman_get_bushandle((reg)), 0)) #define CPU_SET_REG(reg, width, val) \ (bus_space_write_ ## width(rman_get_bustag((reg)), \ rman_get_bushandle((reg)), 0, (val))) /* * Speeds are stored in counts, from 1 to CPU_MAX_SPEED, and * reported to the user in tenths of a percent. */ static uint32_t cpu_duty_offset; static uint32_t cpu_duty_width; #define CPU_MAX_SPEED (1 << cpu_duty_width) #define CPU_SPEED_PERCENT(x) ((1000 * (x)) / CPU_MAX_SPEED) #define CPU_SPEED_PRINTABLE(x) (CPU_SPEED_PERCENT(x) / 10), \ (CPU_SPEED_PERCENT(x) % 10) #define CPU_P_CNT_THT_EN (1<<4) #define PM_USEC(x) ((x) >> 2) /* ~4 clocks per usec (3.57955 Mhz) */ #define ACPI_CPU_NOTIFY_PERF_STATES 0x80 /* _PSS changed. */ #define ACPI_CPU_NOTIFY_CX_STATES 0x81 /* _CST changed. */ #define CPU_QUIRK_NO_C3 0x0001 /* C3-type states are not usable. */ #define CPU_QUIRK_NO_THROTTLE 0x0002 /* Throttling is not usable. */ #define PCI_VENDOR_INTEL 0x8086 #define PCI_DEVICE_82371AB_3 0x7113 /* PIIX4 chipset for quirks. */ #define PCI_REVISION_A_STEP 0 #define PCI_REVISION_B_STEP 1 #define PCI_REVISION_4E 2 #define PCI_REVISION_4M 3 /* Platform hardware resource information. */ static uint32_t cpu_smi_cmd; /* Value to write to SMI_CMD. */ static uint8_t cpu_pstate_cnt;/* Register to take over throttling. */ static uint8_t cpu_cst_cnt; /* Indicate we are _CST aware. */ static uint32_t cpu_rid; /* Driver-wide resource id. */ static uint32_t cpu_quirks; /* Indicate any hardware bugs. */ /* Runtime state. */ static int cpu_cx_count; /* Number of valid states */ static uint32_t cpu_cx_next; /* State to use for next sleep. */ static uint32_t cpu_non_c3; /* Index of lowest non-C3 state. */ static struct acpi_cx_stats cpu_cx_stats[MAX_CX_STATES]; static int cpu_idle_busy; /* Count of CPUs in acpi_cpu_idle. */ /* Values for sysctl. */ static uint32_t cpu_throttle_state; static uint32_t cpu_throttle_max; static int cpu_cx_lowest; static char cpu_cx_supported[64]; static device_t *cpu_devices; static int cpu_ndevices; static struct acpi_cpu_softc **cpu_softc; static struct sysctl_ctx_list acpi_cpu_sysctl_ctx; static struct sysctl_oid *acpi_cpu_sysctl_tree; static int acpi_cpu_probe(device_t dev); static int acpi_cpu_attach(device_t dev); static int acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id, uint32_t *cpu_id); static int acpi_cpu_shutdown(device_t dev); static int acpi_cpu_throttle_probe(struct acpi_cpu_softc *sc); static int acpi_cpu_cx_probe(struct acpi_cpu_softc *sc); static int acpi_cpu_cx_cst(struct acpi_cpu_softc *sc); static void acpi_cpu_startup(void *arg); static void acpi_cpu_startup_throttling(void); static void acpi_cpu_startup_cx(void); static void acpi_cpu_throttle_set(uint32_t speed); static void acpi_cpu_idle(void); static void acpi_cpu_c1(void); static void acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context); static int acpi_cpu_quirks(struct acpi_cpu_softc *sc); static int acpi_cpu_throttle_sysctl(SYSCTL_HANDLER_ARGS); static int acpi_cpu_history_sysctl(SYSCTL_HANDLER_ARGS); static int acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS); static device_method_t acpi_cpu_methods[] = { /* Device interface */ DEVMETHOD(device_probe, acpi_cpu_probe), DEVMETHOD(device_attach, acpi_cpu_attach), DEVMETHOD(device_shutdown, acpi_cpu_shutdown), {0, 0} }; static driver_t acpi_cpu_driver = { "cpu", acpi_cpu_methods, sizeof(struct acpi_cpu_softc), }; static devclass_t acpi_cpu_devclass; DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0); MODULE_DEPEND(cpu, acpi, 1, 1, 1); static int acpi_cpu_probe(device_t dev) { int acpi_id, cpu_id, cx_count; ACPI_BUFFER buf; ACPI_HANDLE handle; char msg[32]; ACPI_OBJECT *obj; ACPI_STATUS status; if (acpi_disabled("cpu") || acpi_get_type(dev) != ACPI_TYPE_PROCESSOR) return (ENXIO); handle = acpi_get_handle(dev); if (cpu_softc == NULL) cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) * (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO); /* Get our Processor object. */ buf.Pointer = NULL; buf.Length = ACPI_ALLOCATE_BUFFER; status = AcpiEvaluateObject(handle, NULL, NULL, &buf); if (ACPI_FAILURE(status)) { device_printf(dev, "probe failed to get Processor obj - %s\n", AcpiFormatException(status)); return (ENXIO); } obj = (ACPI_OBJECT *)buf.Pointer; if (obj->Type != ACPI_TYPE_PROCESSOR) { device_printf(dev, "Processor object has bad type %d\n", obj->Type); AcpiOsFree(obj); return (ENXIO); } /* * Find the processor associated with our unit. We could use the * ProcId as a key, however, some boxes do not have the same values * in their Processor object as the ProcId values in the MADT. */ acpi_id = obj->Processor.ProcId; AcpiOsFree(obj); if (acpi_pcpu_get_id(device_get_unit(dev), &acpi_id, &cpu_id) != 0) return (ENXIO); /* * Check if we already probed this processor. We scan the bus twice * so it's possible we've already seen this one. */ if (cpu_softc[cpu_id] != NULL) return (ENXIO); /* Get a count of Cx states for our device string. */ cx_count = 0; buf.Pointer = NULL; buf.Length = ACPI_ALLOCATE_BUFFER; status = AcpiEvaluateObject(handle, "_CST", NULL, &buf); if (ACPI_SUCCESS(status)) { obj = (ACPI_OBJECT *)buf.Pointer; if (ACPI_PKG_VALID(obj, 2)) acpi_PkgInt32(obj, 0, &cx_count); AcpiOsFree(obj); } else { if (AcpiGbl_FADT->Plvl2Lat <= 100) cx_count++; if (AcpiGbl_FADT->Plvl3Lat <= 1000) cx_count++; if (cx_count > 0) cx_count++; } if (cx_count > 0) snprintf(msg, sizeof(msg), "ACPI CPU (%d Cx states)", cx_count); else strlcpy(msg, "ACPI CPU", sizeof(msg)); device_set_desc_copy(dev, msg); /* Mark this processor as in-use and save our derived id for attach. */ cpu_softc[cpu_id] = (void *)1; acpi_set_magic(dev, cpu_id); return (0); } static int acpi_cpu_attach(device_t dev) { ACPI_BUFFER buf; ACPI_OBJECT *obj; struct acpi_cpu_softc *sc; struct acpi_softc *acpi_sc; ACPI_STATUS status; int thr_ret, cx_ret; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); ACPI_ASSERTLOCK; sc = device_get_softc(dev); sc->cpu_dev = dev; sc->cpu_handle = acpi_get_handle(dev); cpu_softc[acpi_get_magic(dev)] = sc; buf.Pointer = NULL; buf.Length = ACPI_ALLOCATE_BUFFER; status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf); if (ACPI_FAILURE(status)) { device_printf(dev, "attach failed to get Processor obj - %s\n", AcpiFormatException(status)); return (ENXIO); } obj = (ACPI_OBJECT *)buf.Pointer; sc->cpu_p_blk = obj->Processor.PblkAddress; sc->cpu_p_blk_len = obj->Processor.PblkLength; sc->acpi_id = obj->Processor.ProcId; AcpiOsFree(obj); ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n", device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len)); acpi_sc = acpi_device_get_parent_softc(dev); sysctl_ctx_init(&acpi_cpu_sysctl_ctx); acpi_cpu_sysctl_tree = SYSCTL_ADD_NODE(&acpi_cpu_sysctl_ctx, SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu", CTLFLAG_RD, 0, ""); /* If this is the first device probed, check for quirks. */ if (device_get_unit(dev) == 0) acpi_cpu_quirks(sc); /* * Probe for throttling and Cx state support. * If none of these is present, free up unused resources. */ thr_ret = acpi_cpu_throttle_probe(sc); cx_ret = acpi_cpu_cx_probe(sc); if (thr_ret == 0 || cx_ret == 0) { status = AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY, acpi_cpu_notify, sc); if (device_get_unit(dev) == 0) AcpiOsQueueForExecution(OSD_PRIORITY_LO, acpi_cpu_startup, NULL); } else { sysctl_ctx_free(&acpi_cpu_sysctl_ctx); } return_VALUE (0); } /* * Find the nth present CPU and return its pc_cpuid as well as set the * pc_acpi_id from the most reliable source. */ static int acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id, uint32_t *cpu_id) { struct pcpu *pcpu_data; uint32_t i; KASSERT(acpi_id != NULL, ("Null acpi_id")); KASSERT(cpu_id != NULL, ("Null cpu_id")); for (i = 0; i <= mp_maxid; i++) { if (CPU_ABSENT(i)) continue; pcpu_data = pcpu_find(i); KASSERT(pcpu_data != NULL, ("no pcpu data for %d", i)); if (idx-- == 0) { /* * If pc_acpi_id was not initialized (e.g., a non-APIC UP box) * override it with the value from the ASL. Otherwise, if the * two don't match, prefer the MADT-derived value. Finally, * return the pc_cpuid to reference this processor. */ if (pcpu_data->pc_acpi_id == 0xffffffff) pcpu_data->pc_acpi_id = *acpi_id; else if (pcpu_data->pc_acpi_id != *acpi_id) *acpi_id = pcpu_data->pc_acpi_id; *cpu_id = pcpu_data->pc_cpuid; return (0); } } return (ESRCH); } static int acpi_cpu_shutdown(device_t dev) { ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); /* Disable any entry to the idle function. */ cpu_cx_count = 0; /* Wait for all processors to exit acpi_cpu_idle(). */ smp_rendezvous(NULL, NULL, NULL, NULL); while (cpu_idle_busy > 0) DELAY(1); return_VALUE (0); } static int acpi_cpu_throttle_probe(struct acpi_cpu_softc *sc) { uint32_t duty_end; ACPI_BUFFER buf; ACPI_OBJECT obj; ACPI_GENERIC_ADDRESS gas; ACPI_STATUS status; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); ACPI_ASSERTLOCK; /* Get throttling parameters from the FADT. 0 means not supported. */ if (device_get_unit(sc->cpu_dev) == 0) { cpu_smi_cmd = AcpiGbl_FADT->SmiCmd; cpu_pstate_cnt = AcpiGbl_FADT->PstateCnt; cpu_cst_cnt = AcpiGbl_FADT->CstCnt; cpu_duty_offset = AcpiGbl_FADT->DutyOffset; cpu_duty_width = AcpiGbl_FADT->DutyWidth; } if (cpu_duty_width == 0 || (cpu_quirks & CPU_QUIRK_NO_THROTTLE) != 0) return (ENXIO); /* Validate the duty offset/width. */ duty_end = cpu_duty_offset + cpu_duty_width - 1; if (duty_end > 31) { device_printf(sc->cpu_dev, "CLK_VAL field overflows P_CNT register\n"); return (ENXIO); } if (cpu_duty_offset <= 4 && duty_end >= 4) { device_printf(sc->cpu_dev, "CLK_VAL field overlaps THT_EN bit\n"); return (ENXIO); } /* * If not present, fall back to using the processor's P_BLK to find * the P_CNT register. * * Note that some systems seem to duplicate the P_BLK pointer * across multiple CPUs, so not getting the resource is not fatal. */ buf.Pointer = &obj; buf.Length = sizeof(obj); status = AcpiEvaluateObject(sc->cpu_handle, "_PTC", NULL, &buf); if (ACPI_SUCCESS(status)) { if (obj.Buffer.Length < sizeof(ACPI_GENERIC_ADDRESS) + 3) { device_printf(sc->cpu_dev, "_PTC buffer too small\n"); return (ENXIO); } memcpy(&gas, obj.Buffer.Pointer + 3, sizeof(gas)); sc->cpu_p_cnt = acpi_bus_alloc_gas(sc->cpu_dev, &cpu_rid, &gas); if (sc->cpu_p_cnt != NULL) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_CNT from _PTC\n", device_get_unit(sc->cpu_dev))); } } /* If _PTC not present or other failure, try the P_BLK. */ if (sc->cpu_p_cnt == NULL) { /* * The spec says P_BLK must be 6 bytes long. However, some * systems use it to indicate a fractional set of features * present so we take anything >= 4. */ if (sc->cpu_p_blk_len < 4) return (ENXIO); gas.Address = sc->cpu_p_blk; gas.AddressSpaceId = ACPI_ADR_SPACE_SYSTEM_IO; gas.RegisterBitWidth = 32; sc->cpu_p_cnt = acpi_bus_alloc_gas(sc->cpu_dev, &cpu_rid, &gas); if (sc->cpu_p_cnt != NULL) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_CNT from P_BLK\n", device_get_unit(sc->cpu_dev))); } else { device_printf(sc->cpu_dev, "Failed to attach throttling P_CNT\n"); return (ENXIO); } } cpu_rid++; return (0); } static int acpi_cpu_cx_probe(struct acpi_cpu_softc *sc) { ACPI_GENERIC_ADDRESS gas; struct acpi_cx *cx_ptr; int error; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); /* Bus mastering arbitration control is needed for C3. */ if (AcpiGbl_FADT->V1_Pm2CntBlk == 0 || AcpiGbl_FADT->Pm2CntLen == 0) { cpu_quirks |= CPU_QUIRK_NO_C3; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: No BM control, C3 disabled\n", device_get_unit(sc->cpu_dev))); } /* * First, check for the ACPI 2.0 _CST sleep states object. * If not usable, fall back to the P_BLK's P_LVL2 and P_LVL3. */ sc->cpu_cx_count = 0; error = acpi_cpu_cx_cst(sc); if (error != 0) { cx_ptr = sc->cpu_cx_states; /* C1 has been required since just after ACPI 1.0 */ cx_ptr->type = ACPI_STATE_C1; cx_ptr->trans_lat = 0; cpu_non_c3 = 0; cx_ptr++; sc->cpu_cx_count++; /* * The spec says P_BLK must be 6 bytes long. However, some systems * use it to indicate a fractional set of features present so we * take 5 as C2. Some may also have a value of 7 to indicate * another C3 but most use _CST for this (as required) and having * "only" C1-C3 is not a hardship. */ if (sc->cpu_p_blk_len < 5) goto done; /* Validate and allocate resources for C2 (P_LVL2). */ gas.AddressSpaceId = ACPI_ADR_SPACE_SYSTEM_IO; gas.RegisterBitWidth = 8; if (AcpiGbl_FADT->Plvl2Lat <= 100) { gas.Address = sc->cpu_p_blk + 4; cx_ptr->p_lvlx = acpi_bus_alloc_gas(sc->cpu_dev, &cpu_rid, &gas); if (cx_ptr->p_lvlx != NULL) { cpu_rid++; cx_ptr->type = ACPI_STATE_C2; cx_ptr->trans_lat = AcpiGbl_FADT->Plvl2Lat; cpu_non_c3 = 1; cx_ptr++; sc->cpu_cx_count++; } } if (sc->cpu_p_blk_len < 6) goto done; /* Validate and allocate resources for C3 (P_LVL3). */ if (AcpiGbl_FADT->Plvl3Lat <= 1000 && (cpu_quirks & CPU_QUIRK_NO_C3) == 0) { gas.Address = sc->cpu_p_blk + 5; cx_ptr->p_lvlx = acpi_bus_alloc_gas(sc->cpu_dev, &cpu_rid, &gas); if (cx_ptr->p_lvlx != NULL) { cpu_rid++; cx_ptr->type = ACPI_STATE_C3; cx_ptr->trans_lat = AcpiGbl_FADT->Plvl3Lat; cx_ptr++; sc->cpu_cx_count++; } } } done: /* If no valid registers were found, don't attach. */ if (sc->cpu_cx_count == 0) return (ENXIO); return (0); } /* * Parse a _CST package and set up its Cx states. Since the _CST object * can change dynamically, our notify handler may call this function * to clean up and probe the new _CST package. */ static int acpi_cpu_cx_cst(struct acpi_cpu_softc *sc) { struct acpi_cx *cx_ptr; ACPI_STATUS status; ACPI_BUFFER buf; ACPI_OBJECT *top; ACPI_OBJECT *pkg; uint32_t count; int i; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); buf.Pointer = NULL; buf.Length = ACPI_ALLOCATE_BUFFER; status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf); if (ACPI_FAILURE(status)) return (ENXIO); /* _CST is a package with a count and at least one Cx package. */ top = (ACPI_OBJECT *)buf.Pointer; if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) { device_printf(sc->cpu_dev, "Invalid _CST package\n"); AcpiOsFree(buf.Pointer); return (ENXIO); } if (count != top->Package.Count - 1) { device_printf(sc->cpu_dev, "Invalid _CST state count (%d != %d)\n", count, top->Package.Count - 1); count = top->Package.Count - 1; } if (count > MAX_CX_STATES) { device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count); count = MAX_CX_STATES; } /* Set up all valid states. */ sc->cpu_cx_count = 0; cx_ptr = sc->cpu_cx_states; for (i = 0; i < count; i++) { pkg = &top->Package.Elements[i + 1]; if (!ACPI_PKG_VALID(pkg, 4) || acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 || acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 || acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) { device_printf(sc->cpu_dev, "Skipping invalid Cx state package\n"); continue; } /* Validate the state to see if we should use it. */ switch (cx_ptr->type) { case ACPI_STATE_C1: cpu_non_c3 = i; cx_ptr++; sc->cpu_cx_count++; continue; case ACPI_STATE_C2: if (cx_ptr->trans_lat > 100) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: C2[%d] not available.\n", device_get_unit(sc->cpu_dev), i)); continue; } cpu_non_c3 = i; break; case ACPI_STATE_C3: default: if (cx_ptr->trans_lat > 1000 || (cpu_quirks & CPU_QUIRK_NO_C3) != 0) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: C3[%d] not available.\n", device_get_unit(sc->cpu_dev), i)); continue; } break; } #ifdef notyet /* Free up any previous register. */ if (cx_ptr->p_lvlx != NULL) { bus_release_resource(sc->cpu_dev, 0, 0, cx_ptr->p_lvlx); cx_ptr->p_lvlx = NULL; } #endif /* Allocate the control register for C2 or C3. */ acpi_PkgGas(sc->cpu_dev, pkg, 0, &cpu_rid, &cx_ptr->p_lvlx); if (cx_ptr->p_lvlx != NULL) { cpu_rid++; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: Got C%d - %d latency\n", device_get_unit(sc->cpu_dev), cx_ptr->type, cx_ptr->trans_lat)); cx_ptr++; sc->cpu_cx_count++; } } AcpiOsFree(buf.Pointer); return (0); } /* * Call this *after* all CPUs have been attached. */ static void acpi_cpu_startup(void *arg) { struct acpi_cpu_softc *sc; int count, i; /* Get set of CPU devices */ devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices); /* * Make sure all the processors' Cx counts match. We should probably * also check the contents of each. However, no known systems have * non-matching Cx counts so we'll deal with this later. */ count = MAX_CX_STATES; for (i = 0; i < cpu_ndevices; i++) { sc = device_get_softc(cpu_devices[i]); count = min(sc->cpu_cx_count, count); } cpu_cx_count = count; /* Perform throttling and Cx final initialization. */ sc = device_get_softc(cpu_devices[0]); if (sc->cpu_p_cnt != NULL) acpi_cpu_startup_throttling(); if (cpu_cx_count > 0) acpi_cpu_startup_cx(); } /* * Takes the ACPI lock to avoid fighting anyone over the SMI command * port. */ static void acpi_cpu_startup_throttling() { ACPI_LOCK_DECL; /* Initialise throttling states */ cpu_throttle_max = CPU_MAX_SPEED; cpu_throttle_state = CPU_MAX_SPEED; SYSCTL_ADD_INT(&acpi_cpu_sysctl_ctx, SYSCTL_CHILDREN(acpi_cpu_sysctl_tree), OID_AUTO, "throttle_max", CTLFLAG_RD, &cpu_throttle_max, 0, "maximum CPU speed"); SYSCTL_ADD_PROC(&acpi_cpu_sysctl_ctx, SYSCTL_CHILDREN(acpi_cpu_sysctl_tree), OID_AUTO, "throttle_state", CTLTYPE_INT | CTLFLAG_RW, &cpu_throttle_state, 0, acpi_cpu_throttle_sysctl, "I", "current CPU speed"); /* If ACPI 2.0+, signal platform that we are taking over throttling. */ ACPI_LOCK; if (cpu_pstate_cnt != 0) AcpiOsWritePort(cpu_smi_cmd, cpu_pstate_cnt, 8); /* Set initial speed to maximum. */ acpi_cpu_throttle_set(cpu_throttle_max); ACPI_UNLOCK; printf("acpi_cpu: throttling enabled, %d steps (100%% to %d.%d%%), " "currently %d.%d%%\n", CPU_MAX_SPEED, CPU_SPEED_PRINTABLE(1), CPU_SPEED_PRINTABLE(cpu_throttle_state)); } static void acpi_cpu_startup_cx() { struct acpi_cpu_softc *sc; struct sbuf sb; int i; ACPI_LOCK_DECL; sc = device_get_softc(cpu_devices[0]); sbuf_new(&sb, cpu_cx_supported, sizeof(cpu_cx_supported), SBUF_FIXEDLEN); for (i = 0; i < cpu_cx_count; i++) sbuf_printf(&sb, "C%d/%d ", i + 1, sc->cpu_cx_states[i].trans_lat); sbuf_trim(&sb); sbuf_finish(&sb); SYSCTL_ADD_STRING(&acpi_cpu_sysctl_ctx, SYSCTL_CHILDREN(acpi_cpu_sysctl_tree), OID_AUTO, "cx_supported", CTLFLAG_RD, cpu_cx_supported, 0, "Cx/microsecond values for supported Cx states"); SYSCTL_ADD_PROC(&acpi_cpu_sysctl_ctx, SYSCTL_CHILDREN(acpi_cpu_sysctl_tree), OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW, NULL, 0, acpi_cpu_cx_lowest_sysctl, "A", "lowest Cx sleep state to use"); SYSCTL_ADD_PROC(&acpi_cpu_sysctl_ctx, SYSCTL_CHILDREN(acpi_cpu_sysctl_tree), OID_AUTO, "cx_history", CTLTYPE_STRING | CTLFLAG_RD, NULL, 0, acpi_cpu_history_sysctl, "A", "count of full sleeps for Cx state / short sleeps"); #ifdef notyet /* Signal platform that we can handle _CST notification. */ if (cpu_cst_cnt != 0) { ACPI_LOCK; AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8); ACPI_UNLOCK; } #endif /* Take over idling from cpu_idle_default(). */ cpu_cx_next = cpu_cx_lowest; cpu_idle_hook = acpi_cpu_idle; } /* * Set CPUs to the new state. * * Must be called with the ACPI lock held. */ static void acpi_cpu_throttle_set(uint32_t speed) { struct acpi_cpu_softc *sc; int i; uint32_t p_cnt, clk_val; ACPI_ASSERTLOCK; /* Iterate over processors */ for (i = 0; i < cpu_ndevices; i++) { sc = device_get_softc(cpu_devices[i]); if (sc->cpu_p_cnt == NULL) continue; /* Get the current P_CNT value and disable throttling */ p_cnt = CPU_GET_REG(sc->cpu_p_cnt, 4); p_cnt &= ~CPU_P_CNT_THT_EN; CPU_SET_REG(sc->cpu_p_cnt, 4, p_cnt); /* If we're at maximum speed, that's all */ if (speed < CPU_MAX_SPEED) { /* Mask the old CLK_VAL off and or-in the new value */ clk_val = (CPU_MAX_SPEED - 1) << cpu_duty_offset; p_cnt &= ~clk_val; p_cnt |= (speed << cpu_duty_offset); /* Write the new P_CNT value and then enable throttling */ CPU_SET_REG(sc->cpu_p_cnt, 4, p_cnt); p_cnt |= CPU_P_CNT_THT_EN; CPU_SET_REG(sc->cpu_p_cnt, 4, p_cnt); } ACPI_VPRINT(sc->cpu_dev, acpi_device_get_parent_softc(sc->cpu_dev), "set speed to %d.%d%%\n", CPU_SPEED_PRINTABLE(speed)); } cpu_throttle_state = speed; } /* * Idle the CPU in the lowest state possible. * This function is called with interrupts disabled. */ static void acpi_cpu_idle() { struct acpi_cpu_softc *sc; struct acpi_cx *cx_next; uint32_t start_time, end_time; int bm_active, i, asleep; /* If disabled, return immediately. */ if (cpu_cx_count == 0) { ACPI_ENABLE_IRQS(); return; } /* * Look up our CPU id to get our softc. If it's NULL, we'll use C1 * since there is no ACPI processor object for this CPU. This occurs * for logical CPUs in the HTT case. */ sc = cpu_softc[PCPU_GET(cpuid)]; if (sc == NULL) { acpi_cpu_c1(); return; } /* Record that a CPU is in the idle function. */ atomic_add_int(&cpu_idle_busy, 1); /* * Check for bus master activity. If there was activity, clear * the bit and use the lowest non-C3 state. Note that the USB * driver polling for new devices keeps this bit set all the * time if USB is enabled. */ AcpiGetRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active, ACPI_MTX_DO_NOT_LOCK); if (bm_active != 0) { AcpiSetRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1, ACPI_MTX_DO_NOT_LOCK); cpu_cx_next = min(cpu_cx_next, cpu_non_c3); } /* Perform the actual sleep based on the Cx-specific semantics. */ cx_next = &sc->cpu_cx_states[cpu_cx_next]; switch (cx_next->type) { case ACPI_STATE_C0: panic("acpi_cpu_idle: attempting to sleep in C0"); /* NOTREACHED */ case ACPI_STATE_C1: /* Execute HLT (or equivalent) and wait for an interrupt. */ acpi_cpu_c1(); /* * We can't calculate the time spent in C1 since the place we * wake up is an ISR. Use a constant time of 1 ms. */ start_time = 0; end_time = 1000; break; case ACPI_STATE_C2: /* * Read from P_LVLx to enter C2, checking time spent asleep. * Use the ACPI timer for measuring sleep time. Since we need to * get the time very close to the CPU start/stop clock logic, this * is the only reliable time source. */ AcpiHwLowLevelRead(32, &start_time, &AcpiGbl_FADT->XPmTmrBlk); CPU_GET_REG(cx_next->p_lvlx, 1); /* * Read the end time twice. Since it may take an arbitrary time * to enter the idle state, the first read may be executed before * the processor has stopped. Doing it again provides enough * margin that we are certain to have a correct value. */ AcpiHwLowLevelRead(32, &end_time, &AcpiGbl_FADT->XPmTmrBlk); AcpiHwLowLevelRead(32, &end_time, &AcpiGbl_FADT->XPmTmrBlk); ACPI_ENABLE_IRQS(); break; case ACPI_STATE_C3: default: /* Disable bus master arbitration and enable bus master wakeup. */ AcpiSetRegister(ACPI_BITREG_ARB_DISABLE, 1, ACPI_MTX_DO_NOT_LOCK); AcpiSetRegister(ACPI_BITREG_BUS_MASTER_RLD, 1, ACPI_MTX_DO_NOT_LOCK); /* Read from P_LVLx to enter C3, checking time spent asleep. */ AcpiHwLowLevelRead(32, &start_time, &AcpiGbl_FADT->XPmTmrBlk); CPU_GET_REG(cx_next->p_lvlx, 1); /* Read the end time twice. See comment for C2 above. */ AcpiHwLowLevelRead(32, &end_time, &AcpiGbl_FADT->XPmTmrBlk); AcpiHwLowLevelRead(32, &end_time, &AcpiGbl_FADT->XPmTmrBlk); /* Enable bus master arbitration and disable bus master wakeup. */ AcpiSetRegister(ACPI_BITREG_ARB_DISABLE, 0, ACPI_MTX_DO_NOT_LOCK); AcpiSetRegister(ACPI_BITREG_BUS_MASTER_RLD, 0, ACPI_MTX_DO_NOT_LOCK); ACPI_ENABLE_IRQS(); break; } /* Find the actual time asleep in microseconds, minus overhead. */ end_time = acpi_TimerDelta(end_time, start_time); asleep = PM_USEC(end_time) - cx_next->trans_lat; /* Record statistics */ if (asleep < cx_next->trans_lat) cpu_cx_stats[cpu_cx_next].short_slp++; else cpu_cx_stats[cpu_cx_next].long_slp++; /* * If we slept 100 us or more, use the lowest Cx state. * Otherwise, find the lowest state that has a latency less than * or equal to the length of our last sleep. */ if (asleep >= 100) cpu_cx_next = cpu_cx_lowest; else { for (i = cpu_cx_lowest; i >= 0; i--) { if (sc->cpu_cx_states[i].trans_lat <= asleep) { cpu_cx_next = i; break; } } } /* Decrement reference count checked by acpi_cpu_shutdown(). */ atomic_subtract_int(&cpu_idle_busy, 1); } /* Put the CPU in C1 in a machine-dependant way. */ static void acpi_cpu_c1() { #ifdef __ia64__ ia64_call_pal_static(PAL_HALT_LIGHT, 0, 0, 0); #else __asm __volatile("sti; hlt"); #endif } /* * Re-evaluate the _PSS and _CST objects when we are notified that they * have changed. * * XXX Re-evaluation disabled until locking is done. */ static void acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context) { struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context; switch (notify) { case ACPI_CPU_NOTIFY_PERF_STATES: device_printf(sc->cpu_dev, "Performance states changed\n"); /* acpi_cpu_px_available(sc); */ break; case ACPI_CPU_NOTIFY_CX_STATES: device_printf(sc->cpu_dev, "Cx states changed\n"); /* acpi_cpu_cx_cst(sc); */ break; default: device_printf(sc->cpu_dev, "Unknown notify %#x\n", notify); break; } } static int acpi_cpu_quirks(struct acpi_cpu_softc *sc) { /* * C3 is not supported on multiple CPUs since this would require * flushing all caches which is currently too expensive. */ if (mp_ncpus > 1) cpu_quirks |= CPU_QUIRK_NO_C3; #ifdef notyet /* Look for various quirks of the PIIX4 part. */ acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3); if (acpi_dev != NULL) { switch (pci_get_revid(acpi_dev)) { /* * Disable throttling control on PIIX4 A and B-step. * See specification changes #13 ("Manual Throttle Duty Cycle") * and #14 ("Enabling and Disabling Manual Throttle"), plus * erratum #5 ("STPCLK# Deassertion Time") from the January * 2002 PIIX4 specification update. Note that few (if any) * mobile systems ever used this part. */ case PCI_REVISION_A_STEP: case PCI_REVISION_B_STEP: cpu_quirks |= CPU_QUIRK_NO_THROTTLE; /* FALLTHROUGH */ /* * Disable C3 support for all PIIX4 chipsets. Some of these parts * do not report the BMIDE status to the BM status register and * others have a livelock bug if Type-F DMA is enabled. Linux * works around the BMIDE bug by reading the BM status directly * but we take the simpler approach of disabling C3 for these * parts. * * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA * Livelock") from the January 2002 PIIX4 specification update. * Applies to all PIIX4 models. */ case PCI_REVISION_4E: case PCI_REVISION_4M: cpu_quirks |= CPU_QUIRK_NO_C3; break; default: break; } } #endif return (0); } /* Handle changes in the CPU throttling setting. */ static int acpi_cpu_throttle_sysctl(SYSCTL_HANDLER_ARGS) { uint32_t *argp; uint32_t arg; int error; ACPI_LOCK_DECL; argp = (uint32_t *)oidp->oid_arg1; arg = *argp; error = sysctl_handle_int(oidp, &arg, 0, req); /* Error or no new value */ if (error != 0 || req->newptr == NULL) return (error); if (arg < 1 || arg > cpu_throttle_max) return (EINVAL); /* If throttling changed, notify the BIOS of the new rate. */ ACPI_LOCK; if (*argp != arg) { *argp = arg; acpi_cpu_throttle_set(arg); } ACPI_UNLOCK; return (0); } static int acpi_cpu_history_sysctl(SYSCTL_HANDLER_ARGS) { struct sbuf sb; char buf[128]; int i; sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); for (i = 0; i < cpu_cx_count; i++) { sbuf_printf(&sb, "%u/%u ", cpu_cx_stats[i].long_slp, cpu_cx_stats[i].short_slp); } sbuf_trim(&sb); sbuf_finish(&sb); sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); sbuf_delete(&sb); return (0); } static int acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS) { struct acpi_cpu_softc *sc; char state[8]; int val, error, i; sc = device_get_softc(cpu_devices[0]); snprintf(state, sizeof(state), "C%d", cpu_cx_lowest + 1); error = sysctl_handle_string(oidp, state, sizeof(state), req); if (error != 0 || req->newptr == NULL) return (error); if (strlen(state) < 2 || toupper(state[0]) != 'C') return (EINVAL); val = (int) strtol(state + 1, NULL, 10) - 1; if (val < 0 || val > cpu_cx_count - 1) return (EINVAL); /* Use the new value for the next idle slice. */ cpu_cx_lowest = val; cpu_cx_next = val; /* If not disabling, cache the new lowest non-C3 state. */ cpu_non_c3 = 0; for (i = cpu_cx_lowest; i >= 0; i--) { if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) { cpu_non_c3 = i; break; } } /* Reset the statistics counters. */ memset(cpu_cx_stats, 0, sizeof(cpu_cx_stats)); return (0); }