/* * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * Copyright (c) 2002-2008 Atheros Communications, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * $FreeBSD$ */ #include "opt_ah.h" #include "ah.h" #include "ah_internal.h" #include "ah_devid.h" #include "ah_eeprom_v14.h" #include "ar5416/ar5416.h" #include "ar5416/ar5416reg.h" #include "ar5416/ar5416phy.h" /* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */ #define EEP_MINOR(_ah) \ (AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK) #define IS_EEP_MINOR_V2(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2) #define IS_EEP_MINOR_V3(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3) /* Additional Time delay to wait after activiting the Base band */ #define BASE_ACTIVATE_DELAY 100 /* 100 usec */ #define PLL_SETTLE_DELAY 300 /* 300 usec */ #define RTC_PLL_SETTLE_DELAY 1000 /* 1 ms */ static void ar5416InitDMA(struct ath_hal *ah); static void ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *); static void ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode); static void ar5416InitQoS(struct ath_hal *ah); static void ar5416InitUserSettings(struct ath_hal *ah); static void ar5416UpdateChainMasks(struct ath_hal *ah, HAL_BOOL is_ht); static void ar5416OverrideIni(struct ath_hal *ah, const struct ieee80211_channel *); #if 0 static HAL_BOOL ar5416ChannelChange(struct ath_hal *, const struct ieee80211_channel *); #endif static void ar5416SetDeltaSlope(struct ath_hal *, const struct ieee80211_channel *); static HAL_BOOL ar5416SetResetPowerOn(struct ath_hal *ah); static HAL_BOOL ar5416SetReset(struct ath_hal *ah, int type); static HAL_BOOL ar5416SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom *pEepData, const struct ieee80211_channel *chan, int16_t *ratesArray, uint16_t cfgCtl, uint16_t AntennaReduction, uint16_t twiceMaxRegulatoryPower, uint16_t powerLimit); static void ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan); static void ar5416MarkPhyInactive(struct ath_hal *ah); static void ar5416SetIFSTiming(struct ath_hal *ah, const struct ieee80211_channel *chan); /* * Places the device in and out of reset and then places sane * values in the registers based on EEPROM config, initialization * vectors (as determined by the mode), and station configuration * * bChannelChange is used to preserve DMA/PCU registers across * a HW Reset during channel change. */ HAL_BOOL ar5416Reset(struct ath_hal *ah, HAL_OPMODE opmode, struct ieee80211_channel *chan, HAL_BOOL bChannelChange, HAL_STATUS *status) { #define N(a) (sizeof (a) / sizeof (a[0])) #define FAIL(_code) do { ecode = _code; goto bad; } while (0) struct ath_hal_5212 *ahp = AH5212(ah); HAL_CHANNEL_INTERNAL *ichan; uint32_t saveDefAntenna, saveLedState; uint32_t macStaId1; uint16_t rfXpdGain[2]; HAL_STATUS ecode; uint32_t powerVal, rssiThrReg; uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow; int i; uint64_t tsf = 0; OS_MARK(ah, AH_MARK_RESET, bChannelChange); /* Bring out of sleep mode */ if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n", __func__); FAIL(HAL_EIO); } /* * Map public channel to private. */ ichan = ath_hal_checkchannel(ah, chan); if (ichan == AH_NULL) FAIL(HAL_EINVAL); switch (opmode) { case HAL_M_STA: case HAL_M_IBSS: case HAL_M_HOSTAP: case HAL_M_MONITOR: break; default: HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n", __func__, opmode); FAIL(HAL_EINVAL); break; } HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1); /* Blank the channel survey statistics */ OS_MEMZERO(&ahp->ah_chansurvey, sizeof(ahp->ah_chansurvey)); /* XXX Turn on fast channel change for 5416 */ /* * Preserve the bmiss rssi threshold and count threshold * across resets */ rssiThrReg = OS_REG_READ(ah, AR_RSSI_THR); /* If reg is zero, first time thru set to default val */ if (rssiThrReg == 0) rssiThrReg = INIT_RSSI_THR; /* * Preserve the antenna on a channel change */ saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA); if (saveDefAntenna == 0) /* XXX magic constants */ saveDefAntenna = 1; /* Save hardware flag before chip reset clears the register */ macStaId1 = OS_REG_READ(ah, AR_STA_ID1) & (AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT); /* Save led state from pci config register */ saveLedState = OS_REG_READ(ah, AR_MAC_LED) & (AR_MAC_LED_ASSOC | AR_MAC_LED_MODE | AR_MAC_LED_BLINK_THRESH_SEL | AR_MAC_LED_BLINK_SLOW); /* For chips on which the RTC reset is done, save TSF before it gets cleared */ if (AR_SREV_HOWL(ah) || (AR_SREV_MERLIN(ah) && ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) || (ah->ah_config.ah_force_full_reset)) tsf = ar5416GetTsf64(ah); /* Mark PHY as inactive; marked active in ar5416InitBB() */ ar5416MarkPhyInactive(ah); if (!ar5416ChipReset(ah, chan)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__); FAIL(HAL_EIO); } /* Restore TSF */ if (tsf) ar5416SetTsf64(ah, tsf); OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__); if (AR_SREV_MERLIN_10_OR_LATER(ah)) OS_REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE); AH5416(ah)->ah_writeIni(ah, chan); if(AR_SREV_KIWI_13_OR_LATER(ah) ) { /* Enable ASYNC FIFO */ OS_REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3, AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL); OS_REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO); OS_REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3, AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET); OS_REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3, AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET); } /* Override ini values (that can be overriden in this fashion) */ ar5416OverrideIni(ah, chan); /* Setup 11n MAC/Phy mode registers */ ar5416Set11nRegs(ah, chan); OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__); /* * Some AR91xx SoC devices frequently fail to accept TSF writes * right after the chip reset. When that happens, write a new * value after the initvals have been applied, with an offset * based on measured time difference */ if (AR_SREV_HOWL(ah) && (ar5416GetTsf64(ah) < tsf)) { tsf += 1500; ar5416SetTsf64(ah, tsf); } HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_DAG_CTRLCCK=0x%x\n", __func__, OS_REG_READ(ah,AR_PHY_DAG_CTRLCCK)); HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_ADC_CTL=0x%x\n", __func__, OS_REG_READ(ah,AR_PHY_ADC_CTL)); /* * Setup ah_tx_chainmask / ah_rx_chainmask before we fiddle * with enabling the TX/RX radio chains. */ ar5416UpdateChainMasks(ah, IEEE80211_IS_CHAN_HT(chan)); /* * This routine swaps the analog chains - it should be done * before any radio register twiddling is done. */ ar5416InitChainMasks(ah); /* Setup the open-loop power calibration if required */ if (ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) { AH5416(ah)->ah_olcInit(ah); AH5416(ah)->ah_olcTempCompensation(ah); } /* Setup the transmit power values. */ if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: error init'ing transmit power\n", __func__); FAIL(HAL_EIO); } /* Write the analog registers */ if (!ahp->ah_rfHal->setRfRegs(ah, chan, IEEE80211_IS_CHAN_2GHZ(chan) ? 2: 1, rfXpdGain)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: ar5212SetRfRegs failed\n", __func__); FAIL(HAL_EIO); } /* Write delta slope for OFDM enabled modes (A, G, Turbo) */ if (IEEE80211_IS_CHAN_OFDM(chan)|| IEEE80211_IS_CHAN_HT(chan)) ar5416SetDeltaSlope(ah, chan); AH5416(ah)->ah_spurMitigate(ah, chan); /* Setup board specific options for EEPROM version 3 */ if (!ah->ah_setBoardValues(ah, chan)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: error setting board options\n", __func__); FAIL(HAL_EIO); } OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__); OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr)); OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4) | macStaId1 | AR_STA_ID1_RTS_USE_DEF | ahp->ah_staId1Defaults ); ar5212SetOperatingMode(ah, opmode); /* Set Venice BSSID mask according to current state */ OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask)); OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4)); /* Restore previous led state */ if (AR_SREV_HOWL(ah)) OS_REG_WRITE(ah, AR_MAC_LED, AR_MAC_LED_ASSOC_ACTIVE | AR_CFG_SCLK_32KHZ); else OS_REG_WRITE(ah, AR_MAC_LED, OS_REG_READ(ah, AR_MAC_LED) | saveLedState); /* Start TSF2 for generic timer 8-15 */ #ifdef NOTYET if (AR_SREV_KIWI(ah)) ar5416StartTsf2(ah); #endif /* Restore previous antenna */ OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna); /* then our BSSID and associate id */ OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid)); OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) | (ahp->ah_assocId & 0x3fff) << AR_BSS_ID1_AID_S); /* Restore bmiss rssi & count thresholds */ OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr); OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */ /* Restore bmiss rssi & count thresholds */ OS_REG_WRITE(ah, AR_RSSI_THR, rssiThrReg); if (!ar5212SetChannel(ah, chan)) FAIL(HAL_EIO); OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__); /* Set 1:1 QCU to DCU mapping for all queues */ for (i = 0; i < AR_NUM_DCU; i++) OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i); ahp->ah_intrTxqs = 0; for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++) ah->ah_resetTxQueue(ah, i); ar5416InitIMR(ah, opmode); ar5416SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1); ar5416InitQoS(ah); /* This may override the AR_DIAG_SW register */ ar5416InitUserSettings(ah); /* XXX this won't work for AR9287! */ if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan)) { ar5416SetIFSTiming(ah, chan); #if 0 /* * AR5413? * Force window_length for 1/2 and 1/4 rate channels, * the ini file sets this to zero otherwise. */ OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_WINLEN, 3); } #endif } if (AR_SREV_KIWI_13_OR_LATER(ah)) { /* * Enable ASYNC FIFO * * If Async FIFO is enabled, the following counters change * as MAC now runs at 117 Mhz instead of 88/44MHz when * async FIFO is disabled. * * Overwrite the delay/timeouts initialized in ProcessIni() * above. */ OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR); OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR); OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR); OS_REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR); OS_REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR); OS_REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768); OS_REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN, AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL); } if (AR_SREV_KIWI_13_OR_LATER(ah)) { /* Enable AGGWEP to accelerate encryption engine */ OS_REG_SET_BIT(ah, AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_ENABLE_AGGWEP); } /* * disable seq number generation in hw */ OS_REG_WRITE(ah, AR_STA_ID1, OS_REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM); ar5416InitDMA(ah); /* * program OBS bus to see MAC interrupts */ OS_REG_WRITE(ah, AR_OBS, 8); /* * Disable the "general" TX/RX mitigation timers. */ OS_REG_WRITE(ah, AR_MIRT, 0); #ifdef AH_AR5416_INTERRUPT_MITIGATION /* * This initialises the RX interrupt mitigation timers. * * The mitigation timers begin at idle and are triggered * upon the RXOK of a single frame (or sub-frame, for A-MPDU.) * Then, the RX mitigation interrupt will fire: * * + 250uS after the last RX'ed frame, or * + 700uS after the first RX'ed frame * * Thus, the LAST field dictates the extra latency * induced by the RX mitigation method and the FIRST * field dictates how long to delay before firing an * RX mitigation interrupt. * * Please note this only seems to be for RXOK frames; * not CRC or PHY error frames. * */ OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 250); OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 700); #endif ar5416InitBB(ah, chan); /* Setup compression registers */ ar5212SetCompRegs(ah); /* XXX not needed? */ /* * 5416 baseband will check the per rate power table * and select the lower of the two */ ackTpcPow = 63; ctsTpcPow = 63; chirpTpcPow = 63; powerVal = SM(ackTpcPow, AR_TPC_ACK) | SM(ctsTpcPow, AR_TPC_CTS) | SM(chirpTpcPow, AR_TPC_CHIRP); OS_REG_WRITE(ah, AR_TPC, powerVal); if (!ar5416InitCal(ah, chan)) FAIL(HAL_ESELFTEST); ar5416RestoreChainMask(ah); AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */ if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan)) chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT; if (AR_SREV_HOWL(ah)) { /* * Enable the MBSSID block-ack fix for HOWL. * This feature is only supported on Howl 1.4, but it is safe to * set bit 22 of STA_ID1 on other Howl revisions (1.1, 1.2, 1.3), * since bit 22 is unused in those Howl revisions. */ unsigned int reg; reg = (OS_REG_READ(ah, AR_STA_ID1) | (1<<22)); OS_REG_WRITE(ah,AR_STA_ID1, reg); ath_hal_printf(ah, "MBSSID Set bit 22 of AR_STA_ID 0x%x\n", reg); } HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__); OS_MARK(ah, AH_MARK_RESET_DONE, 0); return AH_TRUE; bad: OS_MARK(ah, AH_MARK_RESET_DONE, ecode); if (status != AH_NULL) *status = ecode; return AH_FALSE; #undef FAIL #undef N } #if 0 /* * This channel change evaluates whether the selected hardware can * perform a synthesizer-only channel change (no reset). If the * TX is not stopped, or the RFBus cannot be granted in the given * time, the function returns false as a reset is necessary */ HAL_BOOL ar5416ChannelChange(struct ath_hal *ah, const structu ieee80211_channel *chan) { uint32_t ulCount; uint32_t data, synthDelay, qnum; uint16_t rfXpdGain[4]; struct ath_hal_5212 *ahp = AH5212(ah); HAL_CHANNEL_INTERNAL *ichan; /* * Map public channel to private. */ ichan = ath_hal_checkchannel(ah, chan); /* TX must be stopped or RF Bus grant will not work */ for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) { if (ar5212NumTxPending(ah, qnum)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: frames pending on queue %d\n", __func__, qnum); return AH_FALSE; } } /* * Kill last Baseband Rx Frame - Request analog bus grant */ OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST); if (!ath_hal_wait(ah, AR_PHY_RFBUS_GNT, AR_PHY_RFBUS_GRANT_EN, AR_PHY_RFBUS_GRANT_EN)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: could not kill baseband rx\n", __func__); return AH_FALSE; } ar5416Set11nRegs(ah, chan); /* NB: setup 5416-specific regs */ /* Change the synth */ if (!ar5212SetChannel(ah, chan)) return AH_FALSE; /* Setup the transmit power values. */ if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: error init'ing transmit power\n", __func__); return AH_FALSE; } /* * Wait for the frequency synth to settle (synth goes on * via PHY_ACTIVE_EN). Read the phy active delay register. * Value is in 100ns increments. */ data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; if (IS_CHAN_CCK(ichan)) { synthDelay = (4 * data) / 22; } else { synthDelay = data / 10; } OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY); /* Release the RFBus Grant */ OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0); /* Write delta slope for OFDM enabled modes (A, G, Turbo) */ if (IEEE80211_IS_CHAN_OFDM(ichan)|| IEEE80211_IS_CHAN_HT(chan)) { HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3); ar5212SetSpurMitigation(ah, chan); ar5416SetDeltaSlope(ah, chan); } /* XXX spur mitigation for Melin */ if (!IEEE80211_IS_CHAN_DFS(chan)) chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT; ichan->channel_time = 0; ichan->tsf_last = ar5416GetTsf64(ah); ar5212TxEnable(ah, AH_TRUE); return AH_TRUE; } #endif static void ar5416InitDMA(struct ath_hal *ah) { struct ath_hal_5212 *ahp = AH5212(ah); /* * set AHB_MODE not to do cacheline prefetches */ OS_REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN); /* * let mac dma reads be in 128 byte chunks */ OS_REG_WRITE(ah, AR_TXCFG, (OS_REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK) | AR_TXCFG_DMASZ_128B); /* * let mac dma writes be in 128 byte chunks */ /* * XXX If you change this, you must change the headroom * assigned in ah_maxTxTrigLev - see ar5416InitState(). */ OS_REG_WRITE(ah, AR_RXCFG, (OS_REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK) | AR_RXCFG_DMASZ_128B); /* restore TX trigger level */ OS_REG_WRITE(ah, AR_TXCFG, (OS_REG_READ(ah, AR_TXCFG) &~ AR_FTRIG) | SM(ahp->ah_txTrigLev, AR_FTRIG)); /* * Setup receive FIFO threshold to hold off TX activities */ OS_REG_WRITE(ah, AR_RXFIFO_CFG, 0x200); /* * reduce the number of usable entries in PCU TXBUF to avoid * wrap around. */ if (AR_SREV_KITE(ah)) /* * For AR9285 the number of Fifos are reduced to half. * So set the usable tx buf size also to half to * avoid data/delimiter underruns */ OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE); else OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE); } static void ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *chan) { uint32_t synthDelay; /* * Wait for the frequency synth to settle (synth goes on * via AR_PHY_ACTIVE_EN). Read the phy active delay register. * Value is in 100ns increments. */ synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; if (IEEE80211_IS_CHAN_CCK(chan)) { synthDelay = (4 * synthDelay) / 22; } else { synthDelay /= 10; } /* Turn on PLL on 5416 */ HALDEBUG(ah, HAL_DEBUG_RESET, "%s %s channel\n", __func__, IEEE80211_IS_CHAN_5GHZ(chan) ? "5GHz" : "2GHz"); /* Activate the PHY (includes baseband activate and synthesizer on) */ OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN); /* * If the AP starts the calibration before the base band timeout * completes we could get rx_clear false triggering. Add an * extra BASE_ACTIVATE_DELAY usecs to ensure this condition * does not happen. */ if (IEEE80211_IS_CHAN_HALF(chan)) { OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY); } else if (IEEE80211_IS_CHAN_QUARTER(chan)) { OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY); } else { OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY); } } static void ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode) { struct ath_hal_5212 *ahp = AH5212(ah); /* * Setup interrupt handling. Note that ar5212ResetTxQueue * manipulates the secondary IMR's as queues are enabled * and disabled. This is done with RMW ops to insure the * settings we make here are preserved. */ ahp->ah_maskReg = AR_IMR_TXERR | AR_IMR_TXURN | AR_IMR_RXERR | AR_IMR_RXORN | AR_IMR_BCNMISC; #ifdef AH_AR5416_INTERRUPT_MITIGATION ahp->ah_maskReg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; #else ahp->ah_maskReg |= AR_IMR_RXOK; #endif ahp->ah_maskReg |= AR_IMR_TXOK; if (opmode == HAL_M_HOSTAP) ahp->ah_maskReg |= AR_IMR_MIB; OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg); #ifdef ADRIAN_NOTYET /* This is straight from ath9k */ if (! AR_SREV_HOWL(ah)) { OS_REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF); OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT); OS_REG_WRITE(ah, AR_INTR_SYNC_MASK, 0); } #endif /* Enable bus errors that are OR'd to set the HIUERR bit */ #if 0 OS_REG_WRITE(ah, AR_IMR_S2, OS_REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT | AR_IMR_S2_CST); #endif } static void ar5416InitQoS(struct ath_hal *ah) { /* QoS support */ OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa); /* XXX magic */ OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210); /* XXX magic */ /* Turn on NOACK Support for QoS packets */ OS_REG_WRITE(ah, AR_NOACK, SM(2, AR_NOACK_2BIT_VALUE) | SM(5, AR_NOACK_BIT_OFFSET) | SM(0, AR_NOACK_BYTE_OFFSET)); /* * initialize TXOP for all TIDs */ OS_REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL); OS_REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF); OS_REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF); OS_REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF); OS_REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF); } static void ar5416InitUserSettings(struct ath_hal *ah) { struct ath_hal_5212 *ahp = AH5212(ah); /* Restore user-specified settings */ if (ahp->ah_miscMode != 0) OS_REG_WRITE(ah, AR_MISC_MODE, OS_REG_READ(ah, AR_MISC_MODE) | ahp->ah_miscMode); if (ahp->ah_sifstime != (u_int) -1) ar5212SetSifsTime(ah, ahp->ah_sifstime); if (ahp->ah_slottime != (u_int) -1) ar5212SetSlotTime(ah, ahp->ah_slottime); if (ahp->ah_acktimeout != (u_int) -1) ar5212SetAckTimeout(ah, ahp->ah_acktimeout); if (ahp->ah_ctstimeout != (u_int) -1) ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout); if (AH_PRIVATE(ah)->ah_diagreg != 0) OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg); if (AH5416(ah)->ah_globaltxtimeout != (u_int) -1) ar5416SetGlobalTxTimeout(ah, AH5416(ah)->ah_globaltxtimeout); } static void ar5416SetRfMode(struct ath_hal *ah, const struct ieee80211_channel *chan) { uint32_t rfMode; if (chan == AH_NULL) return; /* treat channel B as channel G , no B mode suport in owl */ rfMode = IEEE80211_IS_CHAN_CCK(chan) ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM; if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) { /* phy mode bits for 5GHz channels require Fast Clock */ rfMode |= AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE; } else if (!AR_SREV_MERLIN_10_OR_LATER(ah)) { rfMode |= IEEE80211_IS_CHAN_5GHZ(chan) ? AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ; } OS_REG_WRITE(ah, AR_PHY_MODE, rfMode); } /* * Places the hardware into reset and then pulls it out of reset */ HAL_BOOL ar5416ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan) { OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->ic_freq : 0); /* * Warm reset is optimistic for open-loop TX power control. */ if (AR_SREV_MERLIN(ah) && ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) { if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON)) return AH_FALSE; } else if (ah->ah_config.ah_force_full_reset) { if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON)) return AH_FALSE; } else { if (!ar5416SetResetReg(ah, HAL_RESET_WARM)) return AH_FALSE; } /* Bring out of sleep mode (AGAIN) */ if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) return AH_FALSE; #ifdef notyet ahp->ah_chipFullSleep = AH_FALSE; #endif AH5416(ah)->ah_initPLL(ah, chan); /* * Perform warm reset before the mode/PLL/turbo registers * are changed in order to deactivate the radio. Mode changes * with an active radio can result in corrupted shifts to the * radio device. */ ar5416SetRfMode(ah, chan); return AH_TRUE; } /* * Delta slope coefficient computation. * Required for OFDM operation. */ static void ar5416GetDeltaSlopeValues(struct ath_hal *ah, uint32_t coef_scaled, uint32_t *coef_mantissa, uint32_t *coef_exponent) { #define COEF_SCALE_S 24 uint32_t coef_exp, coef_man; /* * ALGO -> coef_exp = 14-floor(log2(coef)); * floor(log2(x)) is the highest set bit position */ for (coef_exp = 31; coef_exp > 0; coef_exp--) if ((coef_scaled >> coef_exp) & 0x1) break; /* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */ HALASSERT(coef_exp); coef_exp = 14 - (coef_exp - COEF_SCALE_S); /* * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5); * The coefficient is already shifted up for scaling */ coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1)); *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp); *coef_exponent = coef_exp - 16; #undef COEF_SCALE_S } void ar5416SetDeltaSlope(struct ath_hal *ah, const struct ieee80211_channel *chan) { #define INIT_CLOCKMHZSCALED 0x64000000 uint32_t coef_scaled, ds_coef_exp, ds_coef_man; uint32_t clockMhzScaled; CHAN_CENTERS centers; /* half and quarter rate can divide the scaled clock by 2 or 4 respectively */ /* scale for selected channel bandwidth */ clockMhzScaled = INIT_CLOCKMHZSCALED; if (IEEE80211_IS_CHAN_TURBO(chan)) clockMhzScaled <<= 1; else if (IEEE80211_IS_CHAN_HALF(chan)) clockMhzScaled >>= 1; else if (IEEE80211_IS_CHAN_QUARTER(chan)) clockMhzScaled >>= 2; /* * ALGO -> coef = 1e8/fcarrier*fclock/40; * scaled coef to provide precision for this floating calculation */ ar5416GetChannelCenters(ah, chan, ¢ers); coef_scaled = clockMhzScaled / centers.synth_center; ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp); OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3, AR_PHY_TIMING3_DSC_MAN, ds_coef_man); OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3, AR_PHY_TIMING3_DSC_EXP, ds_coef_exp); /* * For Short GI, * scaled coeff is 9/10 that of normal coeff */ coef_scaled = (9 * coef_scaled)/10; ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp); /* for short gi */ OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI, AR_PHY_HALFGI_DSC_MAN, ds_coef_man); OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI, AR_PHY_HALFGI_DSC_EXP, ds_coef_exp); #undef INIT_CLOCKMHZSCALED } /* * Set a limit on the overall output power. Used for dynamic * transmit power control and the like. * * NB: limit is in units of 0.5 dbM. */ HAL_BOOL ar5416SetTxPowerLimit(struct ath_hal *ah, uint32_t limit) { uint16_t dummyXpdGains[2]; AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER); return ah->ah_setTxPower(ah, AH_PRIVATE(ah)->ah_curchan, dummyXpdGains); } HAL_BOOL ar5416GetChipPowerLimits(struct ath_hal *ah, struct ieee80211_channel *chan) { struct ath_hal_5212 *ahp = AH5212(ah); int16_t minPower, maxPower; /* * Get Pier table max and min powers. */ if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) { /* NB: rf code returns 1/4 dBm units, convert */ chan->ic_maxpower = maxPower / 2; chan->ic_minpower = minPower / 2; } else { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: no min/max power for %u/0x%x\n", __func__, chan->ic_freq, chan->ic_flags); chan->ic_maxpower = AR5416_MAX_RATE_POWER; chan->ic_minpower = 0; } HALDEBUG(ah, HAL_DEBUG_RESET, "Chan %d: MaxPow = %d MinPow = %d\n", chan->ic_freq, chan->ic_maxpower, chan->ic_minpower); return AH_TRUE; } /************************************************************** * ar5416WriteTxPowerRateRegisters * * Write the TX power rate registers from the raw values given * in ratesArray[]. * * The CCK and HT40 rate registers are only written if needed. * HT20 and 11g/11a OFDM rate registers are always written. * * The values written are raw values which should be written * to the registers - so it's up to the caller to pre-adjust * them (eg CCK power offset value, or Merlin TX power offset, * etc.) */ void ar5416WriteTxPowerRateRegisters(struct ath_hal *ah, const struct ieee80211_channel *chan, const int16_t ratesArray[]) { #define POW_SM(_r, _s) (((_r) & 0x3f) << (_s)) /* Write the OFDM power per rate set */ OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1, POW_SM(ratesArray[rate18mb], 24) | POW_SM(ratesArray[rate12mb], 16) | POW_SM(ratesArray[rate9mb], 8) | POW_SM(ratesArray[rate6mb], 0) ); OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2, POW_SM(ratesArray[rate54mb], 24) | POW_SM(ratesArray[rate48mb], 16) | POW_SM(ratesArray[rate36mb], 8) | POW_SM(ratesArray[rate24mb], 0) ); if (IEEE80211_IS_CHAN_2GHZ(chan)) { /* Write the CCK power per rate set */ OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3, POW_SM(ratesArray[rate2s], 24) | POW_SM(ratesArray[rate2l], 16) | POW_SM(ratesArray[rateXr], 8) /* XR target power */ | POW_SM(ratesArray[rate1l], 0) ); OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4, POW_SM(ratesArray[rate11s], 24) | POW_SM(ratesArray[rate11l], 16) | POW_SM(ratesArray[rate5_5s], 8) | POW_SM(ratesArray[rate5_5l], 0) ); HALDEBUG(ah, HAL_DEBUG_RESET, "%s AR_PHY_POWER_TX_RATE3=0x%x AR_PHY_POWER_TX_RATE4=0x%x\n", __func__, OS_REG_READ(ah,AR_PHY_POWER_TX_RATE3), OS_REG_READ(ah,AR_PHY_POWER_TX_RATE4)); } /* Write the HT20 power per rate set */ OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE5, POW_SM(ratesArray[rateHt20_3], 24) | POW_SM(ratesArray[rateHt20_2], 16) | POW_SM(ratesArray[rateHt20_1], 8) | POW_SM(ratesArray[rateHt20_0], 0) ); OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE6, POW_SM(ratesArray[rateHt20_7], 24) | POW_SM(ratesArray[rateHt20_6], 16) | POW_SM(ratesArray[rateHt20_5], 8) | POW_SM(ratesArray[rateHt20_4], 0) ); if (IEEE80211_IS_CHAN_HT40(chan)) { /* Write the HT40 power per rate set */ OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE7, POW_SM(ratesArray[rateHt40_3], 24) | POW_SM(ratesArray[rateHt40_2], 16) | POW_SM(ratesArray[rateHt40_1], 8) | POW_SM(ratesArray[rateHt40_0], 0) ); OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE8, POW_SM(ratesArray[rateHt40_7], 24) | POW_SM(ratesArray[rateHt40_6], 16) | POW_SM(ratesArray[rateHt40_5], 8) | POW_SM(ratesArray[rateHt40_4], 0) ); /* Write the Dup/Ext 40 power per rate set */ OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE9, POW_SM(ratesArray[rateExtOfdm], 24) | POW_SM(ratesArray[rateExtCck], 16) | POW_SM(ratesArray[rateDupOfdm], 8) | POW_SM(ratesArray[rateDupCck], 0) ); } } /************************************************************** * ar5416SetTransmitPower * * Set the transmit power in the baseband for the given * operating channel and mode. */ HAL_BOOL ar5416SetTransmitPower(struct ath_hal *ah, const struct ieee80211_channel *chan, uint16_t *rfXpdGain) { #define N(a) (sizeof (a) / sizeof (a[0])) MODAL_EEP_HEADER *pModal; struct ath_hal_5212 *ahp = AH5212(ah); int16_t ratesArray[Ar5416RateSize]; int16_t txPowerIndexOffset = 0; uint8_t ht40PowerIncForPdadc = 2; int i; uint16_t cfgCtl; uint16_t powerLimit; uint16_t twiceAntennaReduction; uint16_t twiceMaxRegulatoryPower; int16_t maxPower; HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom; struct ar5416eeprom *pEepData = &ee->ee_base; HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1); /* Setup info for the actual eeprom */ OS_MEMZERO(ratesArray, sizeof(ratesArray)); cfgCtl = ath_hal_getctl(ah, chan); powerLimit = chan->ic_maxregpower * 2; twiceAntennaReduction = chan->ic_maxantgain; twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit); pModal = &pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)]; HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n", __func__,chan->ic_freq, cfgCtl ); if (IS_EEP_MINOR_V2(ah)) { ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc; } if (!ar5416SetPowerPerRateTable(ah, pEepData, chan, &ratesArray[0],cfgCtl, twiceAntennaReduction, twiceMaxRegulatoryPower, powerLimit)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set tx power per rate table\n", __func__); return AH_FALSE; } if (!AH5416(ah)->ah_setPowerCalTable(ah, pEepData, chan, &txPowerIndexOffset)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n", __func__); return AH_FALSE; } maxPower = AH_MAX(ratesArray[rate6mb], ratesArray[rateHt20_0]); if (IEEE80211_IS_CHAN_2GHZ(chan)) { maxPower = AH_MAX(maxPower, ratesArray[rate1l]); } if (IEEE80211_IS_CHAN_HT40(chan)) { maxPower = AH_MAX(maxPower, ratesArray[rateHt40_0]); } ahp->ah_tx6PowerInHalfDbm = maxPower; AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower; ahp->ah_txPowerIndexOffset = txPowerIndexOffset; /* * txPowerIndexOffset is set by the SetPowerTable() call - * adjust the rate table (0 offset if rates EEPROM not loaded) */ for (i = 0; i < N(ratesArray); i++) { ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]); if (ratesArray[i] > AR5416_MAX_RATE_POWER) ratesArray[i] = AR5416_MAX_RATE_POWER; } #ifdef AH_EEPROM_DUMP /* * Dump the rate array whilst it represents the intended dBm*2 * values versus what's being adjusted before being programmed * in. Keep this in mind if you code up this function and enable * this debugging; the values won't necessarily be what's being * programmed into the hardware. */ ar5416PrintPowerPerRate(ah, ratesArray); #endif /* * Merlin and later have a power offset, so subtract * pwr_table_offset * 2 from each value. The default * power offset is -5 dBm - ie, a register value of 0 * equates to a TX power of -5 dBm. */ if (AR_SREV_MERLIN_20_OR_LATER(ah)) { int8_t pwr_table_offset; (void) ath_hal_eepromGet(ah, AR_EEP_PWR_TABLE_OFFSET, &pwr_table_offset); /* Underflow power gets clamped at raw value 0 */ /* Overflow power gets camped at AR5416_MAX_RATE_POWER */ for (i = 0; i < N(ratesArray); i++) { /* * + pwr_table_offset is in dBm * + ratesArray is in 1/2 dBm */ ratesArray[i] -= (pwr_table_offset * 2); if (ratesArray[i] < 0) ratesArray[i] = 0; else if (ratesArray[i] > AR5416_MAX_RATE_POWER) ratesArray[i] = AR5416_MAX_RATE_POWER; } } /* * Adjust rates for OLC where needed * * The following CCK rates need adjusting when doing 2.4ghz * CCK transmission. * * + rate2s, rate2l, rate1l, rate11s, rate11l, rate5_5s, rate5_5l * + rateExtCck, rateDupCck * * They're adjusted here regardless. The hardware then gets * programmed as needed. 5GHz operation doesn't program in CCK * rates for legacy mode but they seem to be initialised for * HT40 regardless of channel type. */ if (AR_SREV_MERLIN_20_OR_LATER(ah) && ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) { int adj[] = { rate2s, rate2l, rate1l, rate11s, rate11l, rate5_5s, rate5_5l, rateExtCck, rateDupCck }; int cck_ofdm_delta = 2; int i; for (i = 0; i < N(adj); i++) { ratesArray[adj[i]] -= cck_ofdm_delta; if (ratesArray[adj[i]] < 0) ratesArray[adj[i]] = 0; } } /* * Adjust the HT40 power to meet the correct target TX power * for 40MHz mode, based on TX power curves that are established * for 20MHz mode. * * XXX handle overflow/too high power level? */ if (IEEE80211_IS_CHAN_HT40(chan)) { ratesArray[rateHt40_0] += ht40PowerIncForPdadc; ratesArray[rateHt40_1] += ht40PowerIncForPdadc; ratesArray[rateHt40_2] += ht40PowerIncForPdadc; ratesArray[rateHt40_3] += ht40PowerIncForPdadc; ratesArray[rateHt40_4] += ht40PowerIncForPdadc; ratesArray[rateHt40_5] += ht40PowerIncForPdadc; ratesArray[rateHt40_6] += ht40PowerIncForPdadc; ratesArray[rateHt40_7] += ht40PowerIncForPdadc; } /* Write the TX power rate registers */ ar5416WriteTxPowerRateRegisters(ah, chan, ratesArray); /* Write the Power subtraction for dynamic chain changing, for per-packet powertx */ OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB, POW_SM(pModal->pwrDecreaseFor3Chain, 6) | POW_SM(pModal->pwrDecreaseFor2Chain, 0) ); return AH_TRUE; #undef POW_SM #undef N } /* * Exported call to check for a recent gain reading and return * the current state of the thermal calibration gain engine. */ HAL_RFGAIN ar5416GetRfgain(struct ath_hal *ah) { return (HAL_RFGAIN_INACTIVE); } /* * Places all of hardware into reset */ HAL_BOOL ar5416Disable(struct ath_hal *ah) { if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) return AH_FALSE; if (! ar5416SetResetReg(ah, HAL_RESET_COLD)) return AH_FALSE; AH5416(ah)->ah_initPLL(ah, AH_NULL); return (AH_TRUE); } /* * Places the PHY and Radio chips into reset. A full reset * must be called to leave this state. The PCI/MAC/PCU are * not placed into reset as we must receive interrupt to * re-enable the hardware. */ HAL_BOOL ar5416PhyDisable(struct ath_hal *ah) { if (! ar5416SetResetReg(ah, HAL_RESET_WARM)) return AH_FALSE; AH5416(ah)->ah_initPLL(ah, AH_NULL); return (AH_TRUE); } /* * Write the given reset bit mask into the reset register */ HAL_BOOL ar5416SetResetReg(struct ath_hal *ah, uint32_t type) { /* * Set force wake */ OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); switch (type) { case HAL_RESET_POWER_ON: return ar5416SetResetPowerOn(ah); case HAL_RESET_WARM: case HAL_RESET_COLD: return ar5416SetReset(ah, type); default: HALASSERT(AH_FALSE); return AH_FALSE; } } static HAL_BOOL ar5416SetResetPowerOn(struct ath_hal *ah) { /* Power On Reset (Hard Reset) */ /* * Set force wake * * If the MAC was running, previously calling * reset will wake up the MAC but it may go back to sleep * before we can start polling. * Set force wake stops that * This must be called before initiating a hard reset. */ OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); /* * PowerOn reset can be used in open loop power control or failure recovery. * If we do RTC reset while DMA is still running, hardware may corrupt memory. * Therefore, we need to reset AHB first to stop DMA. */ if (! AR_SREV_HOWL(ah)) OS_REG_WRITE(ah, AR_RC, AR_RC_AHB); /* * RTC reset and clear */ OS_REG_WRITE(ah, AR_RTC_RESET, 0); OS_DELAY(20); if (! AR_SREV_HOWL(ah)) OS_REG_WRITE(ah, AR_RC, 0); OS_REG_WRITE(ah, AR_RTC_RESET, 1); /* * Poll till RTC is ON */ if (!ath_hal_wait(ah, AR_RTC_STATUS, AR_RTC_PM_STATUS_M, AR_RTC_STATUS_ON)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC not waking up\n", __func__); return AH_FALSE; } return ar5416SetReset(ah, HAL_RESET_COLD); } static HAL_BOOL ar5416SetReset(struct ath_hal *ah, int type) { uint32_t tmpReg, mask; uint32_t rst_flags; #ifdef AH_SUPPORT_AR9130 /* Because of the AR9130 specific registers */ if (AR_SREV_HOWL(ah)) { HALDEBUG(ah, HAL_DEBUG_ANY, "[ath] HOWL: Fiddling with derived clk!\n"); uint32_t val = OS_REG_READ(ah, AR_RTC_DERIVED_CLK); val &= ~AR_RTC_DERIVED_CLK_PERIOD; val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD); OS_REG_WRITE(ah, AR_RTC_DERIVED_CLK, val); (void) OS_REG_READ(ah, AR_RTC_DERIVED_CLK); } #endif /* AH_SUPPORT_AR9130 */ /* * Force wake */ OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); #ifdef AH_SUPPORT_AR9130 if (AR_SREV_HOWL(ah)) { rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD | AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET; } else { #endif /* AH_SUPPORT_AR9130 */ /* * Reset AHB * * (In case the last interrupt source was a bus timeout.) * XXX TODO: this is not the way to do it! It should be recorded * XXX by the interrupt handler and passed _into_ the * XXX reset path routine so this occurs. */ tmpReg = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE); if (tmpReg & (AR_INTR_SYNC_LOCAL_TIMEOUT|AR_INTR_SYNC_RADM_CPL_TIMEOUT)) { OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0); OS_REG_WRITE(ah, AR_RC, AR_RC_AHB|AR_RC_HOSTIF); } else { OS_REG_WRITE(ah, AR_RC, AR_RC_AHB); } rst_flags = AR_RTC_RC_MAC_WARM; if (type == HAL_RESET_COLD) rst_flags |= AR_RTC_RC_MAC_COLD; #ifdef AH_SUPPORT_AR9130 } #endif /* AH_SUPPORT_AR9130 */ OS_REG_WRITE(ah, AR_RTC_RC, rst_flags); if (AR_SREV_HOWL(ah)) OS_DELAY(10000); else OS_DELAY(100); /* * Clear resets and force wakeup */ OS_REG_WRITE(ah, AR_RTC_RC, 0); if (!ath_hal_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC stuck in MAC reset\n", __func__); return AH_FALSE; } /* Clear AHB reset */ if (! AR_SREV_HOWL(ah)) OS_REG_WRITE(ah, AR_RC, 0); if (AR_SREV_HOWL(ah)) OS_DELAY(50); if (AR_SREV_HOWL(ah)) { uint32_t mask; mask = OS_REG_READ(ah, AR_CFG); if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) { HALDEBUG(ah, HAL_DEBUG_RESET, "CFG Byte Swap Set 0x%x\n", mask); } else { mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB; OS_REG_WRITE(ah, AR_CFG, mask); HALDEBUG(ah, HAL_DEBUG_RESET, "Setting CFG 0x%x\n", OS_REG_READ(ah, AR_CFG)); } } else { if (type == HAL_RESET_COLD) { if (isBigEndian()) { /* * Set CFG, little-endian for descriptor accesses. */ mask = INIT_CONFIG_STATUS | AR_CFG_SWRD; #ifndef AH_NEED_DESC_SWAP mask |= AR_CFG_SWTD; #endif HALDEBUG(ah, HAL_DEBUG_RESET, "%s Applying descriptor swap\n", __func__); OS_REG_WRITE(ah, AR_CFG, mask); } else OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS); } } return AH_TRUE; } void ar5416InitChainMasks(struct ath_hal *ah) { int rx_chainmask = AH5416(ah)->ah_rx_chainmask; /* Flip this for this chainmask regardless of chip */ if (rx_chainmask == 0x5) OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN); /* * Workaround for OWL 1.0 calibration failure; enable multi-chain; * then set true mask after calibration. */ if (IS_5416V1(ah) && (rx_chainmask == 0x5 || rx_chainmask == 0x3)) { OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7); OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7); } else { OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, AH5416(ah)->ah_rx_chainmask); OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, AH5416(ah)->ah_rx_chainmask); } OS_REG_WRITE(ah, AR_SELFGEN_MASK, AH5416(ah)->ah_tx_chainmask); if (AH5416(ah)->ah_tx_chainmask == 0x5) OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN); if (AR_SREV_HOWL(ah)) { OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP, OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001); } } /* * Work-around for Owl 1.0 calibration failure. * * ar5416InitChainMasks sets the RX chainmask to 0x7 if it's Owl 1.0 * due to init calibration failures. ar5416RestoreChainMask restores * these registers to the correct setting. */ void ar5416RestoreChainMask(struct ath_hal *ah) { int rx_chainmask = AH5416(ah)->ah_rx_chainmask; if (IS_5416V1(ah) && (rx_chainmask == 0x5 || rx_chainmask == 0x3)) { OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask); OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask); } } /* * Update the chainmask based on the current channel configuration. * * XXX ath9k checks bluetooth co-existence here * XXX ath9k checks whether the current state is "off-channel". * XXX ath9k sticks the hardware into 1x1 mode for legacy; * we're going to leave multi-RX on for multi-path cancellation. */ static void ar5416UpdateChainMasks(struct ath_hal *ah, HAL_BOOL is_ht) { struct ath_hal_private *ahpriv = AH_PRIVATE(ah); HAL_CAPABILITIES *pCap = &ahpriv->ah_caps; if (is_ht) { AH5416(ah)->ah_tx_chainmask = pCap->halTxChainMask; } else { AH5416(ah)->ah_tx_chainmask = 1; } AH5416(ah)->ah_rx_chainmask = pCap->halRxChainMask; HALDEBUG(ah, HAL_DEBUG_RESET, "TX chainmask: 0x%x; RX chainmask: 0x%x\n", AH5416(ah)->ah_tx_chainmask, AH5416(ah)->ah_rx_chainmask); } void ar5416InitPLL(struct ath_hal *ah, const struct ieee80211_channel *chan) { uint32_t pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2; if (chan != AH_NULL) { if (IEEE80211_IS_CHAN_HALF(chan)) pll |= SM(0x1, AR_RTC_PLL_CLKSEL); else if (IEEE80211_IS_CHAN_QUARTER(chan)) pll |= SM(0x2, AR_RTC_PLL_CLKSEL); if (IEEE80211_IS_CHAN_5GHZ(chan)) pll |= SM(0xa, AR_RTC_PLL_DIV); else pll |= SM(0xb, AR_RTC_PLL_DIV); } else pll |= SM(0xb, AR_RTC_PLL_DIV); OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll); /* TODO: * For multi-band owl, switch between bands by reiniting the PLL. */ OS_DELAY(RTC_PLL_SETTLE_DELAY); OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_SLEEP_DERIVED_CLK); } static void ar5416SetDefGainValues(struct ath_hal *ah, const MODAL_EEP_HEADER *pModal, const struct ar5416eeprom *eep, uint8_t txRxAttenLocal, int regChainOffset, int i) { if (IS_EEP_MINOR_V3(ah)) { txRxAttenLocal = pModal->txRxAttenCh[i]; if (AR_SREV_MERLIN_10_OR_LATER(ah)) { OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[i]); OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[i]); OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, pModal->xatten2Margin[i]); OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[i]); } else { OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, AR_PHY_GAIN_2GHZ_BSW_MARGIN, pModal->bswMargin[i]); OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, AR_PHY_GAIN_2GHZ_BSW_ATTEN, pModal->bswAtten[i]); } } if (AR_SREV_MERLIN_10_OR_LATER(ah)) { OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset, AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal); OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset, AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]); } else { OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset, AR_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal); OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, AR_PHY_GAIN_2GHZ_RXTX_MARGIN, pModal->rxTxMarginCh[i]); } } /* * Get the register chain offset for the given chain. * * Take into account the register chain swapping with AR5416 v2.0. * * XXX make sure that the reg chain swapping is only done for * XXX AR5416 v2.0 or greater, and not later chips? */ int ar5416GetRegChainOffset(struct ath_hal *ah, int i) { int regChainOffset; if (AR_SREV_5416_V20_OR_LATER(ah) && (AH5416(ah)->ah_rx_chainmask == 0x5 || AH5416(ah)->ah_tx_chainmask == 0x5) && (i != 0)) { /* Regs are swapped from chain 2 to 1 for 5416 2_0 with * only chains 0 and 2 populated */ regChainOffset = (i == 1) ? 0x2000 : 0x1000; } else { regChainOffset = i * 0x1000; } return regChainOffset; } /* * Read EEPROM header info and program the device for correct operation * given the channel value. */ HAL_BOOL ar5416SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan) { const HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom; const struct ar5416eeprom *eep = &ee->ee_base; const MODAL_EEP_HEADER *pModal; int i, regChainOffset; uint8_t txRxAttenLocal; /* workaround for eeprom versions <= 14.2 */ HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1); pModal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)]; /* NB: workaround for eeprom versions <= 14.2 */ txRxAttenLocal = IEEE80211_IS_CHAN_2GHZ(chan) ? 23 : 44; OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon); for (i = 0; i < AR5416_MAX_CHAINS; i++) { if (AR_SREV_MERLIN(ah)) { if (i >= 2) break; } regChainOffset = ar5416GetRegChainOffset(ah, i); OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, pModal->antCtrlChain[i]); OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4 + regChainOffset, (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4 + regChainOffset) & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) | SM(pModal->iqCalICh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) | SM(pModal->iqCalQCh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF)); /* * Large signal upgrade, * If 14.3 or later EEPROM, use * txRxAttenLocal = pModal->txRxAttenCh[i] * else txRxAttenLocal is fixed value above. */ if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) ar5416SetDefGainValues(ah, pModal, eep, txRxAttenLocal, regChainOffset, i); } if (AR_SREV_MERLIN_10_OR_LATER(ah)) { if (IEEE80211_IS_CHAN_2GHZ(chan)) { OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_OB, pModal->ob); OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_DB, pModal->db); OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_OB, pModal->ob_ch1); OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_DB, pModal->db_ch1); } else { OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_OB5, pModal->ob); OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_DB5, pModal->db); OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_OB5, pModal->ob_ch1); OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_DB5, pModal->db_ch1); } OS_A_REG_RMW_FIELD(ah, AR_AN_TOP2, AR_AN_TOP2_XPABIAS_LVL, pModal->xpaBiasLvl); OS_A_REG_RMW_FIELD(ah, AR_AN_TOP2, AR_AN_TOP2_LOCALBIAS, !!(pModal->flagBits & AR5416_EEP_FLAG_LOCALBIAS)); OS_A_REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG, !!(pModal->flagBits & AR5416_EEP_FLAG_FORCEXPAON)); } OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->switchSettling); OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize); if (! AR_SREV_MERLIN_10_OR_LATER(ah)) OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_PGA, pModal->pgaDesiredSize); OS_REG_WRITE(ah, AR_PHY_RF_CTL4, SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON)); OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn); if (AR_SREV_MERLIN_10_OR_LATER(ah)) { OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62, pModal->thresh62); OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62); } else { OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62, pModal->thresh62); OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA, AR_PHY_EXT_CCA_THRESH62, pModal->thresh62); } /* Minor Version Specific application */ if (IS_EEP_MINOR_V2(ah)) { OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_DATA_START, pModal->txFrameToDataStart); OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_PA_ON, pModal->txFrameToPaOn); } if (IS_EEP_MINOR_V3(ah) && IEEE80211_IS_CHAN_HT40(chan)) /* Overwrite switch settling with HT40 value */ OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40); if (AR_SREV_MERLIN_20_OR_LATER(ah) && EEP_MINOR(ah) >= AR5416_EEP_MINOR_VER_19) OS_REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL, AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK, pModal->miscBits); if (AR_SREV_MERLIN_20(ah) && EEP_MINOR(ah) >= AR5416_EEP_MINOR_VER_20) { if (IEEE80211_IS_CHAN_2GHZ(chan)) OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, eep->baseEepHeader.dacLpMode); else if (eep->baseEepHeader.dacHiPwrMode_5G) OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0); else OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, eep->baseEepHeader.dacLpMode); OS_DELAY(100); OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP, pModal->miscBits >> 2); OS_REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9, AR_PHY_TX_DESIRED_SCALE_CCK, eep->baseEepHeader.desiredScaleCCK); } return (AH_TRUE); } /* * Helper functions common for AP/CB/XB */ /* * Set the target power array "ratesArray" from the * given set of target powers. * * This is used by the various chipset/EEPROM TX power * setup routines. */ void ar5416SetRatesArrayFromTargetPower(struct ath_hal *ah, const struct ieee80211_channel *chan, int16_t *ratesArray, const CAL_TARGET_POWER_LEG *targetPowerCck, const CAL_TARGET_POWER_LEG *targetPowerCckExt, const CAL_TARGET_POWER_LEG *targetPowerOfdm, const CAL_TARGET_POWER_LEG *targetPowerOfdmExt, const CAL_TARGET_POWER_HT *targetPowerHt20, const CAL_TARGET_POWER_HT *targetPowerHt40) { #define N(a) (sizeof(a)/sizeof(a[0])) int i; /* Blank the rates array, to be consistent */ for (i = 0; i < Ar5416RateSize; i++) ratesArray[i] = 0; /* Set rates Array from collected data */ ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] = ratesArray[rate18mb] = ratesArray[rate24mb] = targetPowerOfdm->tPow2x[0]; ratesArray[rate36mb] = targetPowerOfdm->tPow2x[1]; ratesArray[rate48mb] = targetPowerOfdm->tPow2x[2]; ratesArray[rate54mb] = targetPowerOfdm->tPow2x[3]; ratesArray[rateXr] = targetPowerOfdm->tPow2x[0]; for (i = 0; i < N(targetPowerHt20->tPow2x); i++) { ratesArray[rateHt20_0 + i] = targetPowerHt20->tPow2x[i]; } if (IEEE80211_IS_CHAN_2GHZ(chan)) { ratesArray[rate1l] = targetPowerCck->tPow2x[0]; ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck->tPow2x[1]; ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck->tPow2x[2]; ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck->tPow2x[3]; } if (IEEE80211_IS_CHAN_HT40(chan)) { for (i = 0; i < N(targetPowerHt40->tPow2x); i++) { ratesArray[rateHt40_0 + i] = targetPowerHt40->tPow2x[i]; } ratesArray[rateDupOfdm] = targetPowerHt40->tPow2x[0]; ratesArray[rateDupCck] = targetPowerHt40->tPow2x[0]; ratesArray[rateExtOfdm] = targetPowerOfdmExt->tPow2x[0]; if (IEEE80211_IS_CHAN_2GHZ(chan)) { ratesArray[rateExtCck] = targetPowerCckExt->tPow2x[0]; } } #undef N } /* * ar5416SetPowerPerRateTable * * Sets the transmit power in the baseband for the given * operating channel and mode. */ static HAL_BOOL ar5416SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom *pEepData, const struct ieee80211_channel *chan, int16_t *ratesArray, uint16_t cfgCtl, uint16_t AntennaReduction, uint16_t twiceMaxRegulatoryPower, uint16_t powerLimit) { #define N(a) (sizeof(a)/sizeof(a[0])) /* Local defines to distinguish between extension and control CTL's */ #define EXT_ADDITIVE (0x8000) #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE) #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE) #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE) uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER; int i; int16_t twiceLargestAntenna; CAL_CTL_DATA *rep; CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}}; CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}}; CAL_TARGET_POWER_HT targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}}; int16_t scaledPower, minCtlPower; #define SUB_NUM_CTL_MODES_AT_5G_40 2 /* excluding HT40, EXT-OFDM */ #define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */ static const uint16_t ctlModesFor11a[] = { CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 }; static const uint16_t ctlModesFor11g[] = { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40 }; const uint16_t *pCtlMode; uint16_t numCtlModes, ctlMode, freq; CHAN_CENTERS centers; ar5416GetChannelCenters(ah, chan, ¢ers); /* Compute TxPower reduction due to Antenna Gain */ twiceLargestAntenna = AH_MAX(AH_MAX( pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0], pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]), pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]); #if 0 /* Turn it back on if we need to calculate per chain antenna gain reduction */ /* Use only if the expected gain > 6dbi */ /* Chain 0 is always used */ twiceLargestAntenna = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0]; /* Look at antenna gains of Chains 1 and 2 if the TX mask is set */ if (ahp->ah_tx_chainmask & 0x2) twiceLargestAntenna = AH_MAX(twiceLargestAntenna, pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]); if (ahp->ah_tx_chainmask & 0x4) twiceLargestAntenna = AH_MAX(twiceLargestAntenna, pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]); #endif twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0); /* XXX setup for 5212 use (really used?) */ ath_hal_eepromSet(ah, IEEE80211_IS_CHAN_2GHZ(chan) ? AR_EEP_ANTGAINMAX_2 : AR_EEP_ANTGAINMAX_5, twiceLargestAntenna); /* * scaledPower is the minimum of the user input power level and * the regulatory allowed power level */ scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna); /* Reduce scaled Power by number of chains active to get to per chain tx power level */ /* TODO: better value than these? */ switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) { case 1: break; case 2: scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor2Chain; break; case 3: scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor3Chain; break; default: return AH_FALSE; /* Unsupported number of chains */ } scaledPower = AH_MAX(0, scaledPower); /* Get target powers from EEPROM - our baseline for TX Power */ if (IEEE80211_IS_CHAN_2GHZ(chan)) { /* Setup for CTL modes */ numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */ pCtlMode = ctlModesFor11g; ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck, AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE); ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G, AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE); ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT20, AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE); if (IEEE80211_IS_CHAN_HT40(chan)) { numCtlModes = N(ctlModesFor11g); /* All 2G CTL's */ ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT40, AR5416_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE); /* Get target powers for extension channels */ ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck, AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE); ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G, AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE); } } else { /* Setup for CTL modes */ numCtlModes = N(ctlModesFor11a) - SUB_NUM_CTL_MODES_AT_5G_40; /* CTL_11A, CTL_5GHT20 */ pCtlMode = ctlModesFor11a; ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower5G, AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE); ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower5GHT20, AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE); if (IEEE80211_IS_CHAN_HT40(chan)) { numCtlModes = N(ctlModesFor11a); /* All 5G CTL's */ ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower5GHT40, AR5416_NUM_5G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE); ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower5G, AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE); } } /* * For MIMO, need to apply regulatory caps individually across dynamically * running modes: CCK, OFDM, HT20, HT40 * * The outer loop walks through each possible applicable runtime mode. * The inner loop walks through each ctlIndex entry in EEPROM. * The ctl value is encoded as [7:4] == test group, [3:0] == test mode. * */ for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) { HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) || (pCtlMode[ctlMode] == CTL_2GHT40); if (isHt40CtlMode) { freq = centers.ctl_center; } else if (pCtlMode[ctlMode] & EXT_ADDITIVE) { freq = centers.ext_center; } else { freq = centers.ctl_center; } /* walk through each CTL index stored in EEPROM */ for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) { uint16_t twiceMinEdgePower; /* compare test group from regulatory channel list with test mode from pCtlMode list */ if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) || (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) { rep = &(pEepData->ctlData[i]); twiceMinEdgePower = ar5416GetMaxEdgePower(freq, rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1], IEEE80211_IS_CHAN_2GHZ(chan)); if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) { /* Find the minimum of all CTL edge powers that apply to this channel */ twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower); } else { /* specific */ twiceMaxEdgePower = twiceMinEdgePower; break; } } } minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower); /* Apply ctl mode to correct target power set */ switch(pCtlMode[ctlMode]) { case CTL_11B: for (i = 0; i < N(targetPowerCck.tPow2x); i++) { targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower); } break; case CTL_11A: case CTL_11G: for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) { targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower); } break; case CTL_5GHT20: case CTL_2GHT20: for (i = 0; i < N(targetPowerHt20.tPow2x); i++) { targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower); } break; case CTL_11B_EXT: targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower); break; case CTL_11A_EXT: case CTL_11G_EXT: targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower); break; case CTL_5GHT40: case CTL_2GHT40: for (i = 0; i < N(targetPowerHt40.tPow2x); i++) { targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower); } break; default: return AH_FALSE; break; } } /* end ctl mode checking */ /* Set rates Array from collected data */ ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray, &targetPowerCck, &targetPowerCckExt, &targetPowerOfdm, &targetPowerOfdmExt, &targetPowerHt20, &targetPowerHt40); return AH_TRUE; #undef EXT_ADDITIVE #undef CTL_11A_EXT #undef CTL_11G_EXT #undef CTL_11B_EXT #undef SUB_NUM_CTL_MODES_AT_5G_40 #undef SUB_NUM_CTL_MODES_AT_2G_40 #undef N } /************************************************************************** * fbin2freq * * Get channel value from binary representation held in eeprom * RETURNS: the frequency in MHz */ static uint16_t fbin2freq(uint8_t fbin, HAL_BOOL is2GHz) { /* * Reserved value 0xFF provides an empty definition both as * an fbin and as a frequency - do not convert */ if (fbin == AR5416_BCHAN_UNUSED) { return fbin; } return (uint16_t)((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin)); } /* * ar5416GetMaxEdgePower * * Find the maximum conformance test limit for the given channel and CTL info */ uint16_t ar5416GetMaxEdgePower(uint16_t freq, CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz) { uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER; int i; /* Get the edge power */ for (i = 0; (i < AR5416_NUM_BAND_EDGES) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED) ; i++) { /* * If there's an exact channel match or an inband flag set * on the lower channel use the given rdEdgePower */ if (freq == fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) { twiceMaxEdgePower = MS(pRdEdgesPower[i].tPowerFlag, CAL_CTL_EDGES_POWER); break; } else if ((i > 0) && (freq < fbin2freq(pRdEdgesPower[i].bChannel, is2GHz))) { if (fbin2freq(pRdEdgesPower[i - 1].bChannel, is2GHz) < freq && (pRdEdgesPower[i - 1].tPowerFlag & CAL_CTL_EDGES_FLAG) != 0) { twiceMaxEdgePower = MS(pRdEdgesPower[i - 1].tPowerFlag, CAL_CTL_EDGES_POWER); } /* Leave loop - no more affecting edges possible in this monotonic increasing list */ break; } } HALASSERT(twiceMaxEdgePower > 0); return twiceMaxEdgePower; } /************************************************************** * ar5416GetTargetPowers * * Return the rates of target power for the given target power table * channel, and number of channels */ void ar5416GetTargetPowers(struct ath_hal *ah, const struct ieee80211_channel *chan, CAL_TARGET_POWER_HT *powInfo, uint16_t numChannels, CAL_TARGET_POWER_HT *pNewPower, uint16_t numRates, HAL_BOOL isHt40Target) { uint16_t clo, chi; int i; int matchIndex = -1, lowIndex = -1; uint16_t freq; CHAN_CENTERS centers; ar5416GetChannelCenters(ah, chan, ¢ers); freq = isHt40Target ? centers.synth_center : centers.ctl_center; /* Copy the target powers into the temp channel list */ if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) { matchIndex = 0; } else { for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) { if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) { matchIndex = i; break; } else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) && (freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)))) { lowIndex = i - 1; break; } } if ((matchIndex == -1) && (lowIndex == -1)) { HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))); matchIndex = i - 1; } } if (matchIndex != -1) { OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower)); } else { HALASSERT(lowIndex != -1); /* * Get the lower and upper channels, target powers, * and interpolate between them. */ clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)); chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)); for (i = 0; i < numRates; i++) { pNewPower->tPow2x[i] = (uint8_t)ath_ee_interpolate(freq, clo, chi, powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]); } } } /************************************************************** * ar5416GetTargetPowersLeg * * Return the four rates of target power for the given target power table * channel, and number of channels */ void ar5416GetTargetPowersLeg(struct ath_hal *ah, const struct ieee80211_channel *chan, CAL_TARGET_POWER_LEG *powInfo, uint16_t numChannels, CAL_TARGET_POWER_LEG *pNewPower, uint16_t numRates, HAL_BOOL isExtTarget) { uint16_t clo, chi; int i; int matchIndex = -1, lowIndex = -1; uint16_t freq; CHAN_CENTERS centers; ar5416GetChannelCenters(ah, chan, ¢ers); freq = (isExtTarget) ? centers.ext_center :centers.ctl_center; /* Copy the target powers into the temp channel list */ if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) { matchIndex = 0; } else { for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) { if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) { matchIndex = i; break; } else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) && (freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)))) { lowIndex = i - 1; break; } } if ((matchIndex == -1) && (lowIndex == -1)) { HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))); matchIndex = i - 1; } } if (matchIndex != -1) { OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower)); } else { HALASSERT(lowIndex != -1); /* * Get the lower and upper channels, target powers, * and interpolate between them. */ clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)); chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)); for (i = 0; i < numRates; i++) { pNewPower->tPow2x[i] = (uint8_t)ath_ee_interpolate(freq, clo, chi, powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]); } } } /* * Set the gain boundaries for the given radio chain. * * The gain boundaries tell the hardware at what point in the * PDADC array to "switch over" from one PD gain setting * to another. There's also a gain overlap between two * PDADC array gain curves where there's valid PD values * for 2 gain settings. * * The hardware uses the gain overlap and gain boundaries * to determine which gain curve to use for the given * target TX power. */ void ar5416SetGainBoundariesClosedLoop(struct ath_hal *ah, int i, uint16_t pdGainOverlap_t2, uint16_t gainBoundaries[]) { int regChainOffset; regChainOffset = ar5416GetRegChainOffset(ah, i); HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: chain %d: gainOverlap_t2: %d," " gainBoundaries: %d, %d, %d, %d\n", __func__, i, pdGainOverlap_t2, gainBoundaries[0], gainBoundaries[1], gainBoundaries[2], gainBoundaries[3]); OS_REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset, SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) | SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) | SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) | SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4)); } /* * Get the gain values and the number of gain levels given * in xpdMask. * * The EEPROM xpdMask determines which power detector gain * levels were used during calibration. Each of these mask * bits maps to a fixed gain level in hardware. */ uint16_t ar5416GetXpdGainValues(struct ath_hal *ah, uint16_t xpdMask, uint16_t xpdGainValues[]) { int i; uint16_t numXpdGain = 0; for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) { if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) { if (numXpdGain >= AR5416_NUM_PD_GAINS) { HALASSERT(0); break; } xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i); numXpdGain++; } } return numXpdGain; } /* * Write the detector gain and biases. * * There are four power detector gain levels. The xpdMask in the EEPROM * determines which power detector gain levels have TX power calibration * data associated with them. This function writes the number of * PD gain levels and their values into the hardware. * * This is valid for all TX chains - the calibration data itself however * will likely differ per-chain. */ void ar5416WriteDetectorGainBiases(struct ath_hal *ah, uint16_t numXpdGain, uint16_t xpdGainValues[]) { HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: numXpdGain: %d," " xpdGainValues: %d, %d, %d\n", __func__, numXpdGain, xpdGainValues[0], xpdGainValues[1], xpdGainValues[2]); OS_REG_WRITE(ah, AR_PHY_TPCRG1, (OS_REG_READ(ah, AR_PHY_TPCRG1) & ~(AR_PHY_TPCRG1_NUM_PD_GAIN | AR_PHY_TPCRG1_PD_GAIN_1 | AR_PHY_TPCRG1_PD_GAIN_2 | AR_PHY_TPCRG1_PD_GAIN_3)) | SM(numXpdGain - 1, AR_PHY_TPCRG1_NUM_PD_GAIN) | SM(xpdGainValues[0], AR_PHY_TPCRG1_PD_GAIN_1 ) | SM(xpdGainValues[1], AR_PHY_TPCRG1_PD_GAIN_2) | SM(xpdGainValues[2], AR_PHY_TPCRG1_PD_GAIN_3)); } /* * Write the PDADC array to the given radio chain i. * * The 32 PDADC registers are written without any care about * their contents - so if various chips treat values as "special", * this routine will not care. */ void ar5416WritePdadcValues(struct ath_hal *ah, int i, uint8_t pdadcValues[]) { int regOffset, regChainOffset; int j; int reg32; regChainOffset = ar5416GetRegChainOffset(ah, i); regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset; for (j = 0; j < 32; j++) { reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0) | ((pdadcValues[4*j + 1] & 0xFF) << 8) | ((pdadcValues[4*j + 2] & 0xFF) << 16) | ((pdadcValues[4*j + 3] & 0xFF) << 24) ; OS_REG_WRITE(ah, regOffset, reg32); HALDEBUG(ah, HAL_DEBUG_EEPROM, "PDADC: Chain %d |" " PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d" " Value %3d | PDADC %3d Value %3d |\n", i, 4*j, pdadcValues[4*j], 4*j+1, pdadcValues[4*j + 1], 4*j+2, pdadcValues[4*j + 2], 4*j+3, pdadcValues[4*j + 3]); regOffset += 4; } } /************************************************************** * ar5416SetPowerCalTable * * Pull the PDADC piers from cal data and interpolate them across the given * points as well as from the nearest pier(s) to get a power detector * linear voltage to power level table. */ HAL_BOOL ar5416SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom *pEepData, const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset) { CAL_DATA_PER_FREQ *pRawDataset; uint8_t *pCalBChans = AH_NULL; uint16_t pdGainOverlap_t2; static uint8_t pdadcValues[AR5416_NUM_PDADC_VALUES]; uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK]; uint16_t numPiers, i; int16_t tMinCalPower; uint16_t numXpdGain, xpdMask; uint16_t xpdGainValues[AR5416_NUM_PD_GAINS]; uint32_t regChainOffset; OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues)); xpdMask = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].xpdGain; if (IS_EEP_MINOR_V2(ah)) { pdGainOverlap_t2 = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pdGainOverlap; } else { pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP)); } if (IEEE80211_IS_CHAN_2GHZ(chan)) { pCalBChans = pEepData->calFreqPier2G; numPiers = AR5416_NUM_2G_CAL_PIERS; } else { pCalBChans = pEepData->calFreqPier5G; numPiers = AR5416_NUM_5G_CAL_PIERS; } /* Calculate the value of xpdgains from the xpdGain Mask */ numXpdGain = ar5416GetXpdGainValues(ah, xpdMask, xpdGainValues); /* Write the detector gain biases and their number */ ar5416WriteDetectorGainBiases(ah, numXpdGain, xpdGainValues); for (i = 0; i < AR5416_MAX_CHAINS; i++) { regChainOffset = ar5416GetRegChainOffset(ah, i); if (pEepData->baseEepHeader.txMask & (1 << i)) { if (IEEE80211_IS_CHAN_2GHZ(chan)) { pRawDataset = pEepData->calPierData2G[i]; } else { pRawDataset = pEepData->calPierData5G[i]; } /* Fetch the gain boundaries and the PDADC values */ ar5416GetGainBoundariesAndPdadcs(ah, chan, pRawDataset, pCalBChans, numPiers, pdGainOverlap_t2, &tMinCalPower, gainBoundaries, pdadcValues, numXpdGain); if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) { ar5416SetGainBoundariesClosedLoop(ah, i, pdGainOverlap_t2, gainBoundaries); } /* Write the power values into the baseband power table */ ar5416WritePdadcValues(ah, i, pdadcValues); } } *pTxPowerIndexOffset = 0; return AH_TRUE; } /************************************************************** * ar5416GetGainBoundariesAndPdadcs * * Uses the data points read from EEPROM to reconstruct the pdadc power table * Called by ar5416SetPowerCalTable only. */ void ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah, const struct ieee80211_channel *chan, CAL_DATA_PER_FREQ *pRawDataSet, uint8_t * bChans, uint16_t availPiers, uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries, uint8_t * pPDADCValues, uint16_t numXpdGains) { int i, j, k; int16_t ss; /* potentially -ve index for taking care of pdGainOverlap */ uint16_t idxL, idxR, numPiers; /* Pier indexes */ /* filled out Vpd table for all pdGains (chanL) */ static uint8_t vpdTableL[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB]; /* filled out Vpd table for all pdGains (chanR) */ static uint8_t vpdTableR[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB]; /* filled out Vpd table for all pdGains (interpolated) */ static uint8_t vpdTableI[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB]; uint8_t *pVpdL, *pVpdR, *pPwrL, *pPwrR; uint8_t minPwrT4[AR5416_NUM_PD_GAINS]; uint8_t maxPwrT4[AR5416_NUM_PD_GAINS]; int16_t vpdStep; int16_t tmpVal; uint16_t sizeCurrVpdTable, maxIndex, tgtIndex; HAL_BOOL match; int16_t minDelta = 0; CHAN_CENTERS centers; ar5416GetChannelCenters(ah, chan, ¢ers); /* Trim numPiers for the number of populated channel Piers */ for (numPiers = 0; numPiers < availPiers; numPiers++) { if (bChans[numPiers] == AR5416_BCHAN_UNUSED) { break; } } /* Find pier indexes around the current channel */ match = ath_ee_getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan)), bChans, numPiers, &idxL, &idxR); if (match) { /* Directly fill both vpd tables from the matching index */ for (i = 0; i < numXpdGains; i++) { minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0]; maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4]; ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pRawDataSet[idxL].pwrPdg[i], pRawDataSet[idxL].vpdPdg[i], AR5416_PD_GAIN_ICEPTS, vpdTableI[i]); } } else { for (i = 0; i < numXpdGains; i++) { pVpdL = pRawDataSet[idxL].vpdPdg[i]; pPwrL = pRawDataSet[idxL].pwrPdg[i]; pVpdR = pRawDataSet[idxR].vpdPdg[i]; pPwrR = pRawDataSet[idxR].pwrPdg[i]; /* Start Vpd interpolation from the max of the minimum powers */ minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]); /* End Vpd interpolation from the min of the max powers */ maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]); HALASSERT(maxPwrT4[i] > minPwrT4[i]); /* Fill pier Vpds */ ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL, AR5416_PD_GAIN_ICEPTS, vpdTableL[i]); ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR, AR5416_PD_GAIN_ICEPTS, vpdTableR[i]); /* Interpolate the final vpd */ for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) { vpdTableI[i][j] = (uint8_t)(ath_ee_interpolate((uint16_t)FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan)), bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j])); } } } *pMinCalPower = (int16_t)(minPwrT4[0] / 2); k = 0; /* index for the final table */ for (i = 0; i < numXpdGains; i++) { if (i == (numXpdGains - 1)) { pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2); } else { pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4); } pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]); /* NB: only applies to owl 1.0 */ if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah) ) { /* * fix the gain delta, but get a delta that can be applied to min to * keep the upper power values accurate, don't think max needs to * be adjusted because should not be at that area of the table? */ minDelta = pPdGainBoundaries[0] - 23; pPdGainBoundaries[0] = 23; } else { minDelta = 0; } /* Find starting index for this pdGain */ if (i == 0) { if (AR_SREV_MERLIN_10_OR_LATER(ah)) ss = (int16_t)(0 - (minPwrT4[i] / 2)); else ss = 0; /* for the first pdGain, start from index 0 */ } else { /* need overlap entries extrapolated below. */ ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta); } vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]); vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep); /* *-ve ss indicates need to extrapolate data below for this pdGain */ while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep); pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal); ss++; } sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1); tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2)); maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable; while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { pPDADCValues[k++] = vpdTableI[i][ss++]; } vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]); vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep); /* * for last gain, pdGainBoundary == Pmax_t2, so will * have to extrapolate */ if (tgtIndex >= maxIndex) { /* need to extrapolate above */ while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] + (ss - maxIndex +1) * vpdStep)); pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal); ss++; } } /* extrapolated above */ } /* for all pdGainUsed */ /* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */ while (i < AR5416_PD_GAINS_IN_MASK) { pPdGainBoundaries[i] = pPdGainBoundaries[i-1]; i++; } while (k < AR5416_NUM_PDADC_VALUES) { pPDADCValues[k] = pPDADCValues[k-1]; k++; } return; } /* * The linux ath9k driver and (from what I've been told) the reference * Atheros driver enables the 11n PHY by default whether or not it's * configured. */ static void ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan) { uint32_t phymode; uint32_t enableDacFifo = 0; HAL_HT_MACMODE macmode; /* MAC - 20/40 mode */ if (AR_SREV_KITE_10_OR_LATER(ah)) enableDacFifo = (OS_REG_READ(ah, AR_PHY_TURBO) & AR_PHY_FC_ENABLE_DAC_FIFO); /* Enable 11n HT, 20 MHz */ phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo; /* Configure baseband for dynamic 20/40 operation */ if (IEEE80211_IS_CHAN_HT40(chan)) { phymode |= AR_PHY_FC_DYN2040_EN; /* Configure control (primary) channel at +-10MHz */ if (IEEE80211_IS_CHAN_HT40U(chan)) phymode |= AR_PHY_FC_DYN2040_PRI_CH; #if 0 /* Configure 20/25 spacing */ if (ht->ht_extprotspacing == HAL_HT_EXTPROTSPACING_25) phymode |= AR_PHY_FC_DYN2040_EXT_CH; #endif macmode = HAL_HT_MACMODE_2040; } else macmode = HAL_HT_MACMODE_20; OS_REG_WRITE(ah, AR_PHY_TURBO, phymode); /* Configure MAC for 20/40 operation */ ar5416Set11nMac2040(ah, macmode); /* global transmit timeout (25 TUs default)*/ /* XXX - put this elsewhere??? */ OS_REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S) ; /* carrier sense timeout */ OS_REG_SET_BIT(ah, AR_GTTM, AR_GTTM_CST_USEC); OS_REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S); } void ar5416GetChannelCenters(struct ath_hal *ah, const struct ieee80211_channel *chan, CHAN_CENTERS *centers) { uint16_t freq = ath_hal_gethwchannel(ah, chan); centers->ctl_center = freq; centers->synth_center = freq; /* * In 20/40 phy mode, the center frequency is * "between" the control and extension channels. */ if (IEEE80211_IS_CHAN_HT40U(chan)) { centers->synth_center += HT40_CHANNEL_CENTER_SHIFT; centers->ext_center = centers->synth_center + HT40_CHANNEL_CENTER_SHIFT; } else if (IEEE80211_IS_CHAN_HT40D(chan)) { centers->synth_center -= HT40_CHANNEL_CENTER_SHIFT; centers->ext_center = centers->synth_center - HT40_CHANNEL_CENTER_SHIFT; } else { centers->ext_center = freq; } } /* * Override the INI vals being programmed. */ static void ar5416OverrideIni(struct ath_hal *ah, const struct ieee80211_channel *chan) { uint32_t val; /* * Set the RX_ABORT and RX_DIS and clear if off only after * RXE is set for MAC. This prevents frames with corrupted * descriptor status. */ OS_REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT)); if (AR_SREV_MERLIN_10_OR_LATER(ah)) { val = OS_REG_READ(ah, AR_PCU_MISC_MODE2); val &= (~AR_PCU_MISC_MODE2_ADHOC_MCAST_KEYID_ENABLE); if (!AR_SREV_9271(ah)) val &= ~AR_PCU_MISC_MODE2_HWWAR1; if (AR_SREV_KIWI_10_OR_LATER(ah)) val = val & (~AR_PCU_MISC_MODE2_HWWAR2); OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, val); } /* * Disable RIFS search on some chips to avoid baseband * hang issues. */ if (AR_SREV_HOWL(ah) || AR_SREV_SOWL(ah)) (void) ar5416SetRifsDelay(ah, chan, AH_FALSE); if (!AR_SREV_5416_V20_OR_LATER(ah) || AR_SREV_MERLIN(ah)) return; /* * Disable BB clock gating * Necessary to avoid issues on AR5416 2.0 */ OS_REG_WRITE(ah, 0x9800 + (651 << 2), 0x11); } struct ini { uint32_t *data; /* NB: !const */ int rows, cols; }; /* * Override XPA bias level based on operating frequency. * This is a v14 EEPROM specific thing for the AR9160. */ void ar5416EepromSetAddac(struct ath_hal *ah, const struct ieee80211_channel *chan) { #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt]) MODAL_EEP_HEADER *pModal; HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom; struct ar5416eeprom *eep = &ee->ee_base; uint8_t biaslevel; if (! AR_SREV_SOWL(ah)) return; if (EEP_MINOR(ah) < AR5416_EEP_MINOR_VER_7) return; pModal = &(eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)]); if (pModal->xpaBiasLvl != 0xff) biaslevel = pModal->xpaBiasLvl; else { uint16_t resetFreqBin, freqBin, freqCount = 0; CHAN_CENTERS centers; ar5416GetChannelCenters(ah, chan, ¢ers); resetFreqBin = FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan)); freqBin = XPA_LVL_FREQ(0) & 0xff; biaslevel = (uint8_t) (XPA_LVL_FREQ(0) >> 14); freqCount++; while (freqCount < 3) { if (XPA_LVL_FREQ(freqCount) == 0x0) break; freqBin = XPA_LVL_FREQ(freqCount) & 0xff; if (resetFreqBin >= freqBin) biaslevel = (uint8_t)(XPA_LVL_FREQ(freqCount) >> 14); else break; freqCount++; } } HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: overriding XPA bias level = %d\n", __func__, biaslevel); /* * This is a dirty workaround for the const initval data, * which will upset multiple AR9160's on the same board. * * The HAL should likely just have a private copy of the addac * data per instance. */ if (IEEE80211_IS_CHAN_2GHZ(chan)) HAL_INI_VAL((struct ini *) &AH5416(ah)->ah_ini_addac, 7, 1) = (HAL_INI_VAL(&AH5416(ah)->ah_ini_addac, 7, 1) & (~0x18)) | biaslevel << 3; else HAL_INI_VAL((struct ini *) &AH5416(ah)->ah_ini_addac, 6, 1) = (HAL_INI_VAL(&AH5416(ah)->ah_ini_addac, 6, 1) & (~0xc0)) | biaslevel << 6; #undef XPA_LVL_FREQ } static void ar5416MarkPhyInactive(struct ath_hal *ah) { OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS); } #define AR5416_IFS_SLOT_FULL_RATE_40 0x168 /* 9 us half, 40 MHz core clock (9*40) */ #define AR5416_IFS_SLOT_HALF_RATE_40 0x104 /* 13 us half, 20 MHz core clock (13*20) */ #define AR5416_IFS_SLOT_QUARTER_RATE_40 0xD2 /* 21 us quarter, 10 MHz core clock (21*10) */ #define AR5416_IFS_EIFS_FULL_RATE_40 0xE60 /* (74 + (2 * 9)) * 40MHz core clock */ #define AR5416_IFS_EIFS_HALF_RATE_40 0xDAC /* (149 + (2 * 13)) * 20MHz core clock */ #define AR5416_IFS_EIFS_QUARTER_RATE_40 0xD48 /* (298 + (2 * 21)) * 10MHz core clock */ #define AR5416_IFS_SLOT_FULL_RATE_44 0x18c /* 9 us half, 44 MHz core clock (9*44) */ #define AR5416_IFS_SLOT_HALF_RATE_44 0x11e /* 13 us half, 22 MHz core clock (13*22) */ #define AR5416_IFS_SLOT_QUARTER_RATE_44 0xe7 /* 21 us quarter, 11 MHz core clock (21*11) */ #define AR5416_IFS_EIFS_FULL_RATE_44 0xfd0 /* (74 + (2 * 9)) * 44MHz core clock */ #define AR5416_IFS_EIFS_HALF_RATE_44 0xf0a /* (149 + (2 * 13)) * 22MHz core clock */ #define AR5416_IFS_EIFS_QUARTER_RATE_44 0xe9c /* (298 + (2 * 21)) * 11MHz core clock */ #define AR5416_INIT_USEC_40 40 #define AR5416_HALF_RATE_USEC_40 19 /* ((40 / 2) - 1 ) */ #define AR5416_QUARTER_RATE_USEC_40 9 /* ((40 / 4) - 1 ) */ #define AR5416_INIT_USEC_44 44 #define AR5416_HALF_RATE_USEC_44 21 /* ((44 / 2) - 1 ) */ #define AR5416_QUARTER_RATE_USEC_44 10 /* ((44 / 4) - 1 ) */ /* XXX What should these be for 40/44MHz clocks (and half/quarter) ? */ #define AR5416_RX_NON_FULL_RATE_LATENCY 63 #define AR5416_TX_HALF_RATE_LATENCY 108 #define AR5416_TX_QUARTER_RATE_LATENCY 216 /* * Adjust various register settings based on half/quarter rate clock setting. * This includes: * * + USEC, TX/RX latency, * + IFS params: slot, eifs, misc etc. * * TODO: * * + Verify which other registers need to be tweaked; * + Verify the behaviour of this for 5GHz fast and non-fast clock mode; * + This just plain won't work for long distance links - the coverage class * code isn't aware of the slot/ifs/ACK/RTS timeout values that need to * change; * + Verify whether the 32KHz USEC value needs to be kept for the 802.11n * series chips? * + Calculate/derive values for 2GHz, 5GHz, 5GHz fast clock */ static void ar5416SetIFSTiming(struct ath_hal *ah, const struct ieee80211_channel *chan) { uint32_t txLat, rxLat, usec, slot, refClock, eifs, init_usec; int clk_44 = 0; HALASSERT(IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan)); /* 2GHz and 5GHz fast clock - 44MHz; else 40MHz */ if (IEEE80211_IS_CHAN_2GHZ(chan)) clk_44 = 1; else if (IEEE80211_IS_CHAN_5GHZ(chan) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) clk_44 = 1; /* XXX does this need save/restoring for the 11n chips? */ refClock = OS_REG_READ(ah, AR_USEC) & AR_USEC_USEC32; /* * XXX This really should calculate things, not use * hard coded values! Ew. */ if (IEEE80211_IS_CHAN_HALF(chan)) { if (clk_44) { slot = AR5416_IFS_SLOT_HALF_RATE_44; rxLat = AR5416_RX_NON_FULL_RATE_LATENCY << AR5416_USEC_RX_LAT_S; txLat = AR5416_TX_HALF_RATE_LATENCY << AR5416_USEC_TX_LAT_S; usec = AR5416_HALF_RATE_USEC_44; eifs = AR5416_IFS_EIFS_HALF_RATE_44; init_usec = AR5416_INIT_USEC_44 >> 1; } else { slot = AR5416_IFS_SLOT_HALF_RATE_40; rxLat = AR5416_RX_NON_FULL_RATE_LATENCY << AR5416_USEC_RX_LAT_S; txLat = AR5416_TX_HALF_RATE_LATENCY << AR5416_USEC_TX_LAT_S; usec = AR5416_HALF_RATE_USEC_40; eifs = AR5416_IFS_EIFS_HALF_RATE_40; init_usec = AR5416_INIT_USEC_40 >> 1; } } else { /* quarter rate */ if (clk_44) { slot = AR5416_IFS_SLOT_QUARTER_RATE_44; rxLat = AR5416_RX_NON_FULL_RATE_LATENCY << AR5416_USEC_RX_LAT_S; txLat = AR5416_TX_QUARTER_RATE_LATENCY << AR5416_USEC_TX_LAT_S; usec = AR5416_QUARTER_RATE_USEC_44; eifs = AR5416_IFS_EIFS_QUARTER_RATE_44; init_usec = AR5416_INIT_USEC_44 >> 2; } else { slot = AR5416_IFS_SLOT_QUARTER_RATE_40; rxLat = AR5416_RX_NON_FULL_RATE_LATENCY << AR5416_USEC_RX_LAT_S; txLat = AR5416_TX_QUARTER_RATE_LATENCY << AR5416_USEC_TX_LAT_S; usec = AR5416_QUARTER_RATE_USEC_40; eifs = AR5416_IFS_EIFS_QUARTER_RATE_40; init_usec = AR5416_INIT_USEC_40 >> 2; } } /* XXX verify these! */ OS_REG_WRITE(ah, AR_USEC, (usec | refClock | txLat | rxLat)); OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot); OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs); OS_REG_RMW_FIELD(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_USEC_DURATION, init_usec); }