/* * Copyright 1998 Massachusetts Institute of Technology * * Permission to use, copy, modify, and distribute this software and * its documentation for any purpose and without fee is hereby * granted, provided that both the above copyright notice and this * permission notice appear in all copies, that both the above * copyright notice and this permission notice appear in all * supporting documentation, and that the name of M.I.T. not be used * in advertising or publicity pertaining to distribution of the * software without specific, written prior permission. M.I.T. makes * no representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied * warranty. * * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ /* * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. * Might be extended some day to also handle IEEE 802.1p priority * tagging. This is sort of sneaky in the implementation, since * we need to pretend to be enough of an Ethernet implementation * to make arp work. The way we do this is by telling everyone * that we are an Ethernet, and then catch the packets that * ether_output() left on our output queue when it calls * if_start(), rewrite them for use by the real outgoing interface, * and ask it to send them. */ #include "opt_inet.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #endif #define VLANNAME "vlan" struct vlan_mc_entry { struct ether_addr mc_addr; SLIST_ENTRY(vlan_mc_entry) mc_entries; }; struct ifvlan { struct arpcom ifv_ac; /* make this an interface */ struct ifnet *ifv_p; /* parent inteface of this vlan */ struct ifv_linkmib { int ifvm_parent; int ifvm_encaplen; /* encapsulation length */ int ifvm_mtufudge; /* MTU fudged by this much */ int ifvm_mintu; /* min transmission unit */ u_int16_t ifvm_proto; /* encapsulation ethertype */ u_int16_t ifvm_tag; /* tag to apply on packets leaving if */ } ifv_mib; SLIST_HEAD(__vlan_mchead, vlan_mc_entry) vlan_mc_listhead; LIST_ENTRY(ifvlan) ifv_list; int ifv_flags; }; #define ifv_if ifv_ac.ac_if #define ifv_tag ifv_mib.ifvm_tag #define ifv_encaplen ifv_mib.ifvm_encaplen #define ifv_mtufudge ifv_mib.ifvm_mtufudge #define ifv_mintu ifv_mib.ifvm_mintu #define IFVF_PROMISC 0x01 /* promiscuous mode enabled */ SYSCTL_DECL(_net_link); SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0, "IEEE 802.1Q VLAN"); SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0, "for consistency"); static MALLOC_DEFINE(M_VLAN, VLANNAME, "802.1Q Virtual LAN Interface"); static LIST_HEAD(, ifvlan) ifv_list; /* * Locking: one lock is used to guard both the ifv_list and modification * to vlan data structures. We are rather conservative here; probably * more than necessary. */ static struct mtx ifv_mtx; #define VLAN_LOCK_INIT() mtx_init(&ifv_mtx, VLANNAME, NULL, MTX_DEF) #define VLAN_LOCK_DESTROY() mtx_destroy(&ifv_mtx) #define VLAN_LOCK_ASSERT() mtx_assert(&ifv_mtx, MA_OWNED) #define VLAN_LOCK() mtx_lock(&ifv_mtx) #define VLAN_UNLOCK() mtx_unlock(&ifv_mtx) static int vlan_clone_create(struct if_clone *, int); static void vlan_clone_destroy(struct ifnet *); static void vlan_start(struct ifnet *ifp); static void vlan_ifinit(void *foo); static void vlan_input(struct ifnet *ifp, struct mbuf *m); static int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr); static int vlan_setmulti(struct ifnet *ifp); static int vlan_unconfig(struct ifnet *ifp); static int vlan_config(struct ifvlan *ifv, struct ifnet *p); static void vlan_link_state(struct ifnet *ifp, int link); struct if_clone vlan_cloner = IF_CLONE_INITIALIZER(VLANNAME, vlan_clone_create, vlan_clone_destroy, 0, IF_MAXUNIT); /* * Program our multicast filter. What we're actually doing is * programming the multicast filter of the parent. This has the * side effect of causing the parent interface to receive multicast * traffic that it doesn't really want, which ends up being discarded * later by the upper protocol layers. Unfortunately, there's no way * to avoid this: there really is only one physical interface. */ static int vlan_setmulti(struct ifnet *ifp) { struct ifnet *ifp_p; struct ifmultiaddr *ifma, *rifma = NULL; struct ifvlan *sc; struct vlan_mc_entry *mc = NULL; struct sockaddr_dl sdl; int error; /* Find the parent. */ sc = ifp->if_softc; ifp_p = sc->ifv_p; /* * If we don't have a parent, just remember the membership for * when we do. */ if (ifp_p == NULL) return(0); bzero((char *)&sdl, sizeof sdl); sdl.sdl_len = sizeof sdl; sdl.sdl_family = AF_LINK; sdl.sdl_index = ifp_p->if_index; sdl.sdl_type = IFT_ETHER; sdl.sdl_alen = ETHER_ADDR_LEN; /* First, remove any existing filter entries. */ while(SLIST_FIRST(&sc->vlan_mc_listhead) != NULL) { mc = SLIST_FIRST(&sc->vlan_mc_listhead); bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN); error = if_delmulti(ifp_p, (struct sockaddr *)&sdl); if (error) return(error); SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries); free(mc, M_VLAN); } /* Now program new ones. */ TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_WAITOK); bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), (char *)&mc->mc_addr, ETHER_ADDR_LEN); SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries); bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), LLADDR(&sdl), ETHER_ADDR_LEN); error = if_addmulti(ifp_p, (struct sockaddr *)&sdl, &rifma); if (error) return(error); } return(0); } /* * VLAN support can be loaded as a module. The only place in the * system that's intimately aware of this is ether_input. We hook * into this code through vlan_input_p which is defined there and * set here. Noone else in the system should be aware of this so * we use an explicit reference here. * * NB: Noone should ever need to check if vlan_input_p is null or * not. This is because interfaces have a count of the number * of active vlans (if_nvlans) and this should never be bumped * except by vlan_config--which is in this module so therefore * the module must be loaded and vlan_input_p must be non-NULL. */ extern void (*vlan_input_p)(struct ifnet *, struct mbuf *); /* For MII eyes only... */ extern void (*vlan_link_state_p)(struct ifnet *, int); static int vlan_modevent(module_t mod, int type, void *data) { switch (type) { case MOD_LOAD: LIST_INIT(&ifv_list); VLAN_LOCK_INIT(); vlan_input_p = vlan_input; vlan_link_state_p = vlan_link_state; if_clone_attach(&vlan_cloner); break; case MOD_UNLOAD: if_clone_detach(&vlan_cloner); vlan_input_p = NULL; vlan_link_state_p = NULL; while (!LIST_EMPTY(&ifv_list)) vlan_clone_destroy(&LIST_FIRST(&ifv_list)->ifv_if); VLAN_LOCK_DESTROY(); break; } return 0; } static moduledata_t vlan_mod = { "if_vlan", vlan_modevent, 0 }; DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); MODULE_DEPEND(if_vlan, miibus, 1, 1, 1); static int vlan_clone_create(struct if_clone *ifc, int unit) { struct ifvlan *ifv; struct ifnet *ifp; ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO); ifp = &ifv->ifv_if; SLIST_INIT(&ifv->vlan_mc_listhead); ifp->if_softc = ifv; if_initname(ifp, ifc->ifc_name, unit); /* NB: flags are not set here */ ifp->if_linkmib = &ifv->ifv_mib; ifp->if_linkmiblen = sizeof ifv->ifv_mib; /* NB: mtu is not set here */ ifp->if_init = vlan_ifinit; ifp->if_start = vlan_start; ifp->if_ioctl = vlan_ioctl; ifp->if_snd.ifq_maxlen = ifqmaxlen; ether_ifattach(ifp, ifv->ifv_ac.ac_enaddr); /* Now undo some of the damage... */ ifp->if_baudrate = 0; ifp->if_type = IFT_L2VLAN; ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN; VLAN_LOCK(); LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list); VLAN_UNLOCK(); return (0); } static void vlan_clone_destroy(struct ifnet *ifp) { struct ifvlan *ifv = ifp->if_softc; VLAN_LOCK(); LIST_REMOVE(ifv, ifv_list); vlan_unconfig(ifp); VLAN_UNLOCK(); ether_ifdetach(ifp); free(ifv, M_VLAN); } static void vlan_ifinit(void *foo) { return; } static void vlan_start(struct ifnet *ifp) { struct ifvlan *ifv; struct ifnet *p; struct ether_vlan_header *evl; struct mbuf *m; ifv = ifp->if_softc; p = ifv->ifv_p; ifp->if_flags |= IFF_OACTIVE; for (;;) { IF_DEQUEUE(&ifp->if_snd, m); if (m == 0) break; BPF_MTAP(ifp, m); /* * Do not run parent's if_start() if the parent is not up, * or parent's driver will cause a system crash. */ if ((p->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) { m_freem(m); ifp->if_collisions++; continue; } /* * If underlying interface can do VLAN tag insertion itself, * just pass the packet along. However, we need some way to * tell the interface where the packet came from so that it * knows how to find the VLAN tag to use, so we attach a * packet tag that holds it. */ if (p->if_capenable & IFCAP_VLAN_HWTAGGING) { struct m_tag *mtag = m_tag_alloc(MTAG_VLAN, MTAG_VLAN_TAG, sizeof (u_int), M_NOWAIT); if (mtag == NULL) { ifp->if_oerrors++; m_freem(m); continue; } *(u_int*)(mtag+1) = ifv->ifv_tag; m_tag_prepend(m, mtag); } else { M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT); if (m == NULL) { if_printf(ifp, "unable to prepend VLAN header"); ifp->if_oerrors++; continue; } /* M_PREPEND takes care of m_len, m_pkthdr.len for us */ if (m->m_len < sizeof(*evl)) { m = m_pullup(m, sizeof(*evl)); if (m == NULL) { if_printf(ifp, "cannot pullup VLAN header"); ifp->if_oerrors++; continue; } } /* * Transform the Ethernet header into an Ethernet header * with 802.1Q encapsulation. */ bcopy(mtod(m, char *) + ifv->ifv_encaplen, mtod(m, char *), ETHER_HDR_LEN); evl = mtod(m, struct ether_vlan_header *); evl->evl_proto = evl->evl_encap_proto; evl->evl_encap_proto = htons(ETHERTYPE_VLAN); evl->evl_tag = htons(ifv->ifv_tag); #ifdef DEBUG printf("vlan_start: %*D\n", (int)sizeof *evl, (unsigned char *)evl, ":"); #endif } /* * Send it, precisely as ether_output() would have. * We are already running at splimp. */ if (IF_HANDOFF(&p->if_snd, m, p)) ifp->if_opackets++; else ifp->if_oerrors++; } ifp->if_flags &= ~IFF_OACTIVE; return; } static void vlan_input(struct ifnet *ifp, struct mbuf *m) { struct ether_vlan_header *evl; struct ifvlan *ifv; struct m_tag *mtag; u_int tag; mtag = m_tag_locate(m, MTAG_VLAN, MTAG_VLAN_TAG, NULL); if (mtag != NULL) { /* * Packet is tagged, m contains a normal * Ethernet frame; the tag is stored out-of-band. */ tag = EVL_VLANOFTAG(VLAN_TAG_VALUE(mtag)); m_tag_delete(m, mtag); } else { switch (ifp->if_type) { case IFT_ETHER: if (m->m_len < sizeof (*evl) && (m = m_pullup(m, sizeof (*evl))) == NULL) { if_printf(ifp, "cannot pullup VLAN header\n"); return; } evl = mtod(m, struct ether_vlan_header *); KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN, ("vlan_input: bad encapsulated protocols (%u)", ntohs(evl->evl_encap_proto))); tag = EVL_VLANOFTAG(ntohs(evl->evl_tag)); /* * Restore the original ethertype. We'll remove * the encapsulation after we've found the vlan * interface corresponding to the tag. */ evl->evl_encap_proto = evl->evl_proto; break; default: tag = (u_int) -1; #ifdef DIAGNOSTIC panic("vlan_input: unsupported if type %u", ifp->if_type); #endif break; } } VLAN_LOCK(); LIST_FOREACH(ifv, &ifv_list, ifv_list) if (ifp == ifv->ifv_p && tag == ifv->ifv_tag) break; if (ifv == NULL || (ifv->ifv_if.if_flags & IFF_UP) == 0) { VLAN_UNLOCK(); m_freem(m); ifp->if_noproto++; return; } VLAN_UNLOCK(); /* XXX extend below? */ if (mtag == NULL) { /* * Packet had an in-line encapsulation header; * remove it. The original header has already * been fixed up above. */ bcopy(mtod(m, caddr_t), mtod(m, caddr_t) + ETHER_VLAN_ENCAP_LEN, ETHER_HDR_LEN); m_adj(m, ETHER_VLAN_ENCAP_LEN); } m->m_pkthdr.rcvif = &ifv->ifv_if; ifv->ifv_if.if_ipackets++; /* Pass it back through the parent's input routine. */ (*ifp->if_input)(&ifv->ifv_if, m); } static int vlan_config(struct ifvlan *ifv, struct ifnet *p) { struct ifaddr *ifa1, *ifa2; struct sockaddr_dl *sdl1, *sdl2; VLAN_LOCK_ASSERT(); if (p->if_data.ifi_type != IFT_ETHER) return EPROTONOSUPPORT; if (ifv->ifv_p) return EBUSY; ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN; ifv->ifv_mintu = ETHERMIN; ifv->ifv_flags = 0; /* * If the parent supports the VLAN_MTU capability, * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames, * use it. * First of all, enable Tx/Rx of such extended frames on the * parent if it's disabled and we're the first to attach. */ p->if_nvlans++; if (p->if_nvlans == 1 && (p->if_capabilities & IFCAP_VLAN_MTU) && (p->if_capenable & IFCAP_VLAN_MTU) == 0) { struct ifreq ifr; int error; ifr.ifr_reqcap = p->if_capenable | IFCAP_VLAN_MTU; error = (*p->if_ioctl)(p, SIOCSIFCAP, (caddr_t) &ifr); if (error) { p->if_nvlans--; return (error); } } if (p->if_capenable & IFCAP_VLAN_MTU) { /* * No need to fudge the MTU since the parent can * handle extended frames. */ ifv->ifv_mtufudge = 0; } else { /* * Fudge the MTU by the encapsulation size. This * makes us incompatible with strictly compliant * 802.1Q implementations, but allows us to use * the feature with other NetBSD implementations, * which might still be useful. */ ifv->ifv_mtufudge = ifv->ifv_encaplen; } ifv->ifv_p = p; ifv->ifv_if.if_mtu = p->if_mtu - ifv->ifv_mtufudge; /* * Copy only a selected subset of flags from the parent. * Other flags are none of our business. */ ifv->ifv_if.if_flags = (p->if_flags & (IFF_BROADCAST | IFF_MULTICAST | IFF_SIMPLEX | IFF_POINTOPOINT)); ifv->ifv_if.if_link_state = p->if_link_state; #if 0 /* * Not ready yet. We need notification from the parent * when hw checksumming flags in its if_capenable change. * Flags set in if_capabilities only are useless. */ /* * If the parent interface can do hardware-assisted * VLAN encapsulation, then propagate its hardware- * assisted checksumming flags. */ if (p->if_capabilities & IFCAP_VLAN_HWTAGGING) ifv->ifv_if.if_capabilities |= p->if_capabilities & IFCAP_HWCSUM; #endif /* * Set up our ``Ethernet address'' to reflect the underlying * physical interface's. */ ifa1 = ifaddr_byindex(ifv->ifv_if.if_index); ifa2 = ifaddr_byindex(p->if_index); sdl1 = (struct sockaddr_dl *)ifa1->ifa_addr; sdl2 = (struct sockaddr_dl *)ifa2->ifa_addr; sdl1->sdl_type = IFT_ETHER; sdl1->sdl_alen = ETHER_ADDR_LEN; bcopy(LLADDR(sdl2), LLADDR(sdl1), ETHER_ADDR_LEN); bcopy(LLADDR(sdl2), ifv->ifv_ac.ac_enaddr, ETHER_ADDR_LEN); /* * Configure multicast addresses that may already be * joined on the vlan device. */ (void)vlan_setmulti(&ifv->ifv_if); return 0; } static int vlan_unconfig(struct ifnet *ifp) { struct ifaddr *ifa; struct sockaddr_dl *sdl; struct vlan_mc_entry *mc; struct ifvlan *ifv; struct ifnet *p; int error; VLAN_LOCK_ASSERT(); ifv = ifp->if_softc; p = ifv->ifv_p; if (p) { struct sockaddr_dl sdl; /* * Since the interface is being unconfigured, we need to * empty the list of multicast groups that we may have joined * while we were alive from the parent's list. */ bzero((char *)&sdl, sizeof sdl); sdl.sdl_len = sizeof sdl; sdl.sdl_family = AF_LINK; sdl.sdl_index = p->if_index; sdl.sdl_type = IFT_ETHER; sdl.sdl_alen = ETHER_ADDR_LEN; while(SLIST_FIRST(&ifv->vlan_mc_listhead) != NULL) { mc = SLIST_FIRST(&ifv->vlan_mc_listhead); bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN); error = if_delmulti(p, (struct sockaddr *)&sdl); if (error) return(error); SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries); free(mc, M_VLAN); } p->if_nvlans--; if (p->if_nvlans == 0) { struct ifreq ifr; /* * Try to disable Tx/Rx of VLAN-sized frames. * This may have no effect for some interfaces, * but only the parent driver knows that. */ ifr.ifr_reqcap = p->if_capenable & ~IFCAP_VLAN_MTU; (*p->if_ioctl)(p, SIOCSIFCAP, (caddr_t) &ifr); } } /* Disconnect from parent. */ ifv->ifv_p = NULL; ifv->ifv_if.if_mtu = ETHERMTU; /* XXX why not 0? */ ifv->ifv_flags = 0; ifv->ifv_if.if_link_state = LINK_STATE_UNKNOWN; /* Clear our MAC address. */ ifa = ifaddr_byindex(ifv->ifv_if.if_index); sdl = (struct sockaddr_dl *)ifa->ifa_addr; sdl->sdl_type = IFT_ETHER; sdl->sdl_alen = ETHER_ADDR_LEN; bzero(LLADDR(sdl), ETHER_ADDR_LEN); bzero(ifv->ifv_ac.ac_enaddr, ETHER_ADDR_LEN); return 0; } static int vlan_set_promisc(struct ifnet *ifp) { struct ifvlan *ifv = ifp->if_softc; int error = 0; if ((ifp->if_flags & IFF_PROMISC) != 0) { if ((ifv->ifv_flags & IFVF_PROMISC) == 0) { error = ifpromisc(ifv->ifv_p, 1); if (error == 0) ifv->ifv_flags |= IFVF_PROMISC; } } else { if ((ifv->ifv_flags & IFVF_PROMISC) != 0) { error = ifpromisc(ifv->ifv_p, 0); if (error == 0) ifv->ifv_flags &= ~IFVF_PROMISC; } } return (error); } /* Inform all vlans that their parent has changed link state */ static void vlan_link_state(struct ifnet *ifp, int link) { struct ifvlan *ifv; VLAN_LOCK(); LIST_FOREACH(ifv, &ifv_list, ifv_list) { if (ifv->ifv_p == ifp) { ifv->ifv_if.if_link_state = ifv->ifv_p->if_link_state; rt_ifmsg(&(ifv->ifv_if)); KNOTE(&ifp->if_klist, link); } } VLAN_UNLOCK(); } static int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct ifaddr *ifa; struct ifnet *p; struct ifreq *ifr; struct ifvlan *ifv; struct vlanreq vlr; int error = 0; ifr = (struct ifreq *)data; ifa = (struct ifaddr *)data; ifv = ifp->if_softc; switch (cmd) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: arp_ifinit(&ifv->ifv_if, ifa); break; #endif default: break; } break; case SIOCGIFADDR: { struct sockaddr *sa; sa = (struct sockaddr *) &ifr->ifr_data; bcopy(IFP2AC(ifp)->ac_enaddr, (caddr_t) sa->sa_data, ETHER_ADDR_LEN); } break; case SIOCGIFMEDIA: VLAN_LOCK(); if (ifv->ifv_p != NULL) { error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCGIFMEDIA, data); VLAN_UNLOCK(); /* Limit the result to the parent's current config. */ if (error == 0) { struct ifmediareq *ifmr; ifmr = (struct ifmediareq *) data; if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) { ifmr->ifm_count = 1; error = copyout(&ifmr->ifm_current, ifmr->ifm_ulist, sizeof(int)); } } } else { VLAN_UNLOCK(); error = EINVAL; } break; case SIOCSIFMEDIA: error = EINVAL; break; case SIOCSIFMTU: /* * Set the interface MTU. */ VLAN_LOCK(); if (ifv->ifv_p != NULL) { if (ifr->ifr_mtu > (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) || ifr->ifr_mtu < (ifv->ifv_mintu - ifv->ifv_mtufudge)) error = EINVAL; else ifp->if_mtu = ifr->ifr_mtu; } else error = EINVAL; VLAN_UNLOCK(); break; case SIOCSETVLAN: error = copyin(ifr->ifr_data, &vlr, sizeof vlr); if (error) break; if (vlr.vlr_parent[0] == '\0') { VLAN_LOCK(); vlan_unconfig(ifp); if (ifp->if_flags & IFF_UP) if_down(ifp); ifp->if_flags &= ~IFF_RUNNING; VLAN_UNLOCK(); break; } p = ifunit(vlr.vlr_parent); if (p == 0) { error = ENOENT; break; } /* * Don't let the caller set up a VLAN tag with * anything except VLID bits. */ if (vlr.vlr_tag & ~EVL_VLID_MASK) { error = EINVAL; break; } VLAN_LOCK(); error = vlan_config(ifv, p); if (error) { VLAN_UNLOCK(); break; } ifv->ifv_tag = vlr.vlr_tag; ifp->if_flags |= IFF_RUNNING; VLAN_UNLOCK(); /* Update promiscuous mode, if necessary. */ vlan_set_promisc(ifp); break; case SIOCGETVLAN: bzero(&vlr, sizeof vlr); VLAN_LOCK(); if (ifv->ifv_p) { strlcpy(vlr.vlr_parent, ifv->ifv_p->if_xname, sizeof(vlr.vlr_parent)); vlr.vlr_tag = ifv->ifv_tag; } VLAN_UNLOCK(); error = copyout(&vlr, ifr->ifr_data, sizeof vlr); break; case SIOCSIFFLAGS: /* * For promiscuous mode, we enable promiscuous mode on * the parent if we need promiscuous on the VLAN interface. */ if (ifv->ifv_p != NULL) error = vlan_set_promisc(ifp); break; case SIOCADDMULTI: case SIOCDELMULTI: error = vlan_setmulti(ifp); break; default: error = EINVAL; } return error; }