/*- * Copyright (c) 1980, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)if.c 8.5 (Berkeley) 1/9/95 * $FreeBSD$ */ #include "opt_compat.h" #include "opt_inet6.h" #include "opt_inet.h" #include "opt_mac.h" #include "opt_carp.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(INET) || defined(INET6) /*XXX*/ #include #include #ifdef INET6 #include #include #endif #endif #ifdef INET #include #include #endif #ifdef DEV_CARP #include #endif #include #ifndef VIMAGE #ifndef VIMAGE_GLOBALS struct vnet_net vnet_net_0; #endif #endif static int slowtimo_started; SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers"); SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management"); /* Log link state change events */ static int log_link_state_change = 1; SYSCTL_INT(_net_link, OID_AUTO, log_link_state_change, CTLFLAG_RW, &log_link_state_change, 0, "log interface link state change events"); void (*bstp_linkstate_p)(struct ifnet *ifp, int state); void (*ng_ether_link_state_p)(struct ifnet *ifp, int state); void (*lagg_linkstate_p)(struct ifnet *ifp, int state); struct mbuf *(*tbr_dequeue_ptr)(struct ifaltq *, int) = NULL; /* * XXX: Style; these should be sorted alphabetically, and unprototyped * static functions should be prototyped. Currently they are sorted by * declaration order. */ static void if_attachdomain(void *); static void if_attachdomain1(struct ifnet *); static int ifconf(u_long, caddr_t); static void if_freemulti(struct ifmultiaddr *); static void if_grow(void); static void if_init(void *); static void if_check(void *); static void if_qflush(struct ifnet *); static void if_route(struct ifnet *, int flag, int fam); static int if_setflag(struct ifnet *, int, int, int *, int); static void if_slowtimo(void *); static int if_transmit(struct ifnet *ifp, struct mbuf *m); static void if_unroute(struct ifnet *, int flag, int fam); static void link_rtrequest(int, struct rtentry *, struct rt_addrinfo *); static int if_rtdel(struct radix_node *, void *); static int ifhwioctl(u_long, struct ifnet *, caddr_t, struct thread *); static int if_delmulti_locked(struct ifnet *, struct ifmultiaddr *, int); static void if_start_deferred(void *context, int pending); static void do_link_state_change(void *, int); static int if_getgroup(struct ifgroupreq *, struct ifnet *); static int if_getgroupmembers(struct ifgroupreq *); #ifdef INET6 /* * XXX: declare here to avoid to include many inet6 related files.. * should be more generalized? */ extern void nd6_setmtu(struct ifnet *); #endif #ifdef VIMAGE_GLOBALS struct ifnethead ifnet; /* depend on static init XXX */ struct ifgrouphead ifg_head; int if_index; static int if_indexlim; /* Table of ifnet/cdev by index. Locked with ifnet_lock. */ static struct ifindex_entry *ifindex_table; static struct knlist ifklist; #endif int ifqmaxlen = IFQ_MAXLEN; struct rwlock ifnet_lock; static if_com_alloc_t *if_com_alloc[256]; static if_com_free_t *if_com_free[256]; static void filt_netdetach(struct knote *kn); static int filt_netdev(struct knote *kn, long hint); static struct filterops netdev_filtops = { 1, NULL, filt_netdetach, filt_netdev }; #ifndef VIMAGE_GLOBALS static struct vnet_symmap vnet_net_symmap[] = { VNET_SYMMAP(net, ifnet), VNET_SYMMAP(net, rt_tables), VNET_SYMMAP(net, rtstat), VNET_SYMMAP(net, rttrash), VNET_SYMMAP_END }; VNET_MOD_DECLARE(NET, net, vnet_net_iattach, vnet_net_idetach, NONE, vnet_net_symmap) #endif /* * System initialization */ SYSINIT(interfaces, SI_SUB_INIT_IF, SI_ORDER_FIRST, if_init, NULL); SYSINIT(interface_check, SI_SUB_PROTO_IF, SI_ORDER_FIRST, if_check, NULL); MALLOC_DEFINE(M_IFNET, "ifnet", "interface internals"); MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); static struct ifnet * ifnet_byindex_locked(u_short idx) { INIT_VNET_NET(curvnet); struct ifnet *ifp; ifp = V_ifindex_table[idx].ife_ifnet; return (ifp); } struct ifnet * ifnet_byindex(u_short idx) { struct ifnet *ifp; IFNET_RLOCK(); ifp = ifnet_byindex_locked(idx); IFNET_RUNLOCK(); return (ifp); } static void ifnet_setbyindex(u_short idx, struct ifnet *ifp) { INIT_VNET_NET(curvnet); IFNET_WLOCK_ASSERT(); V_ifindex_table[idx].ife_ifnet = ifp; } struct ifaddr * ifaddr_byindex(u_short idx) { struct ifaddr *ifa; IFNET_RLOCK(); ifa = ifnet_byindex_locked(idx)->if_addr; IFNET_RUNLOCK(); return (ifa); } struct cdev * ifdev_byindex(u_short idx) { INIT_VNET_NET(curvnet); struct cdev *cdev; IFNET_RLOCK(); cdev = V_ifindex_table[idx].ife_dev; IFNET_RUNLOCK(); return (cdev); } static void ifdev_setbyindex(u_short idx, struct cdev *cdev) { INIT_VNET_NET(curvnet); IFNET_WLOCK(); V_ifindex_table[idx].ife_dev = cdev; IFNET_WUNLOCK(); } static d_open_t netopen; static d_close_t netclose; static d_ioctl_t netioctl; static d_kqfilter_t netkqfilter; static struct cdevsw net_cdevsw = { .d_version = D_VERSION, .d_flags = D_NEEDGIANT, .d_open = netopen, .d_close = netclose, .d_ioctl = netioctl, .d_name = "net", .d_kqfilter = netkqfilter, }; static int netopen(struct cdev *dev, int flag, int mode, struct thread *td) { return (0); } static int netclose(struct cdev *dev, int flags, int fmt, struct thread *td) { return (0); } static int netioctl(struct cdev *dev, u_long cmd, caddr_t data, int flag, struct thread *td) { struct ifnet *ifp; int error, idx; /* only support interface specific ioctls */ if (IOCGROUP(cmd) != 'i') return (EOPNOTSUPP); idx = dev2unit(dev); if (idx == 0) { /* * special network device, not interface. */ if (cmd == SIOCGIFCONF) return (ifconf(cmd, data)); /* XXX remove cmd */ #ifdef __amd64__ if (cmd == SIOCGIFCONF32) return (ifconf(cmd, data)); /* XXX remove cmd */ #endif return (EOPNOTSUPP); } ifp = ifnet_byindex(idx); if (ifp == NULL) return (ENXIO); error = ifhwioctl(cmd, ifp, data, td); if (error == ENOIOCTL) error = EOPNOTSUPP; return (error); } static int netkqfilter(struct cdev *dev, struct knote *kn) { INIT_VNET_NET(curvnet); struct knlist *klist; struct ifnet *ifp; int idx; switch (kn->kn_filter) { case EVFILT_NETDEV: kn->kn_fop = &netdev_filtops; break; default: return (EINVAL); } idx = dev2unit(dev); if (idx == 0) { klist = &V_ifklist; } else { ifp = ifnet_byindex(idx); if (ifp == NULL) return (1); klist = &ifp->if_klist; } kn->kn_hook = (caddr_t)klist; knlist_add(klist, kn, 0); return (0); } static void filt_netdetach(struct knote *kn) { struct knlist *klist = (struct knlist *)kn->kn_hook; knlist_remove(klist, kn, 0); } static int filt_netdev(struct knote *kn, long hint) { struct knlist *klist = (struct knlist *)kn->kn_hook; /* * Currently NOTE_EXIT is abused to indicate device detach. */ if (hint == NOTE_EXIT) { kn->kn_data = NOTE_LINKINV; kn->kn_flags |= (EV_EOF | EV_ONESHOT); knlist_remove_inevent(klist, kn); return (1); } if (hint != 0) kn->kn_data = hint; /* current status */ if (kn->kn_sfflags & hint) kn->kn_fflags |= hint; return (kn->kn_fflags != 0); } /* * Network interface utility routines. * * Routines with ifa_ifwith* names take sockaddr *'s as * parameters. */ /* ARGSUSED*/ static void if_init(void *dummy __unused) { INIT_VNET_NET(curvnet); #ifndef VIMAGE_GLOBALS vnet_mod_register(&vnet_net_modinfo); #endif V_if_index = 0; V_ifindex_table = NULL; V_if_indexlim = 8; IFNET_LOCK_INIT(); TAILQ_INIT(&V_ifnet); TAILQ_INIT(&V_ifg_head); knlist_init(&V_ifklist, NULL, NULL, NULL, NULL); if_grow(); /* create initial table */ ifdev_setbyindex(0, make_dev(&net_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, "network")); if_clone_init(); } static void if_grow(void) { INIT_VNET_NET(curvnet); u_int n; struct ifindex_entry *e; V_if_indexlim <<= 1; n = V_if_indexlim * sizeof(*e); e = malloc(n, M_IFNET, M_WAITOK | M_ZERO); if (V_ifindex_table != NULL) { memcpy((caddr_t)e, (caddr_t)V_ifindex_table, n/2); free((caddr_t)V_ifindex_table, M_IFNET); } V_ifindex_table = e; } static void if_check(void *dummy __unused) { /* * If at least one interface added during boot uses * if_watchdog then start the timer. */ if (slowtimo_started) if_slowtimo(0); } /* * Allocate a struct ifnet and an index for an interface. A layer 2 * common structure will also be allocated if an allocation routine is * registered for the passed type. */ struct ifnet* if_alloc(u_char type) { INIT_VNET_NET(curvnet); struct ifnet *ifp; ifp = malloc(sizeof(struct ifnet), M_IFNET, M_WAITOK|M_ZERO); /* * Try to find an empty slot below if_index. If we fail, take * the next slot. * * XXX: should be locked! */ for (ifp->if_index = 1; ifp->if_index <= V_if_index; ifp->if_index++) { if (ifnet_byindex(ifp->if_index) == NULL) break; } /* Catch if_index overflow. */ if (ifp->if_index < 1) { free(ifp, M_IFNET); return (NULL); } if (ifp->if_index > V_if_index) V_if_index = ifp->if_index; if (V_if_index >= V_if_indexlim) if_grow(); ifp->if_type = type; if (if_com_alloc[type] != NULL) { ifp->if_l2com = if_com_alloc[type](type, ifp); if (ifp->if_l2com == NULL) { free(ifp, M_IFNET); return (NULL); } } IFNET_WLOCK(); ifnet_setbyindex(ifp->if_index, ifp); IFNET_WUNLOCK(); IF_ADDR_LOCK_INIT(ifp); return (ifp); } /* * Free the struct ifnet, the associated index, and the layer 2 common * structure if needed. All the work is done in if_free_type(). * * Do not add code to this function! Add it to if_free_type(). */ void if_free(struct ifnet *ifp) { if_free_type(ifp, ifp->if_type); } /* * Do the actual work of freeing a struct ifnet, associated index, and * layer 2 common structure. This version should only be called by * intefaces that switch their type after calling if_alloc(). */ void if_free_type(struct ifnet *ifp, u_char type) { INIT_VNET_NET(curvnet); /* ifp->if_vnet can be NULL here ! */ if (ifp != ifnet_byindex(ifp->if_index)) { if_printf(ifp, "%s: value was not if_alloced, skipping\n", __func__); return; } IFNET_WLOCK(); ifnet_setbyindex(ifp->if_index, NULL); /* XXX: should be locked with if_findindex() */ while (V_if_index > 0 && ifnet_byindex_locked(V_if_index) == NULL) V_if_index--; IFNET_WUNLOCK(); if (if_com_free[type] != NULL) if_com_free[type](ifp->if_l2com, type); IF_ADDR_LOCK_DESTROY(ifp); free(ifp, M_IFNET); }; void ifq_attach(struct ifaltq *ifq, struct ifnet *ifp) { mtx_init(&ifq->ifq_mtx, ifp->if_xname, "if send queue", MTX_DEF); if (ifq->ifq_maxlen == 0) ifq->ifq_maxlen = ifqmaxlen; ifq->altq_type = 0; ifq->altq_disc = NULL; ifq->altq_flags &= ALTQF_CANTCHANGE; ifq->altq_tbr = NULL; ifq->altq_ifp = ifp; } void ifq_detach(struct ifaltq *ifq) { mtx_destroy(&ifq->ifq_mtx); } /* * Perform generic interface initalization tasks and attach the interface * to the list of "active" interfaces. * * XXX: * - The decision to return void and thus require this function to * succeed is questionable. * - We do more initialization here then is probably a good idea. * Some of this should probably move to if_alloc(). * - We should probably do more sanity checking. For instance we don't * do anything to insure if_xname is unique or non-empty. */ void if_attach(struct ifnet *ifp) { INIT_VNET_NET(curvnet); unsigned socksize, ifasize; int namelen, masklen; struct sockaddr_dl *sdl; struct ifaddr *ifa; if (ifp->if_index == 0 || ifp != ifnet_byindex(ifp->if_index)) panic ("%s: BUG: if_attach called without if_alloc'd input()\n", ifp->if_xname); TASK_INIT(&ifp->if_starttask, 0, if_start_deferred, ifp); TASK_INIT(&ifp->if_linktask, 0, do_link_state_change, ifp); IF_AFDATA_LOCK_INIT(ifp); ifp->if_afdata_initialized = 0; TAILQ_INIT(&ifp->if_addrhead); TAILQ_INIT(&ifp->if_prefixhead); TAILQ_INIT(&ifp->if_multiaddrs); TAILQ_INIT(&ifp->if_groups); if_addgroup(ifp, IFG_ALL); knlist_init(&ifp->if_klist, NULL, NULL, NULL, NULL); getmicrotime(&ifp->if_lastchange); ifp->if_data.ifi_epoch = time_uptime; ifp->if_data.ifi_datalen = sizeof(struct if_data); ifp->if_transmit = if_transmit; ifp->if_qflush = if_qflush; #ifdef MAC mac_ifnet_init(ifp); mac_ifnet_create(ifp); #endif ifdev_setbyindex(ifp->if_index, make_dev(&net_cdevsw, ifp->if_index, UID_ROOT, GID_WHEEL, 0600, "%s/%s", net_cdevsw.d_name, ifp->if_xname)); make_dev_alias(ifdev_byindex(ifp->if_index), "%s%d", net_cdevsw.d_name, ifp->if_index); ifq_attach(&ifp->if_snd, ifp); /* * create a Link Level name for this device */ namelen = strlen(ifp->if_xname); /* * Always save enough space for any possiable name so we can do * a rename in place later. */ masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + IFNAMSIZ; socksize = masklen + ifp->if_addrlen; if (socksize < sizeof(*sdl)) socksize = sizeof(*sdl); socksize = roundup2(socksize, sizeof(long)); ifasize = sizeof(*ifa) + 2 * socksize; ifa = malloc(ifasize, M_IFADDR, M_WAITOK | M_ZERO); IFA_LOCK_INIT(ifa); sdl = (struct sockaddr_dl *)(ifa + 1); sdl->sdl_len = socksize; sdl->sdl_family = AF_LINK; bcopy(ifp->if_xname, sdl->sdl_data, namelen); sdl->sdl_nlen = namelen; sdl->sdl_index = ifp->if_index; sdl->sdl_type = ifp->if_type; ifp->if_addr = ifa; ifa->ifa_ifp = ifp; ifa->ifa_rtrequest = link_rtrequest; ifa->ifa_addr = (struct sockaddr *)sdl; sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl); ifa->ifa_netmask = (struct sockaddr *)sdl; sdl->sdl_len = masklen; while (namelen != 0) sdl->sdl_data[--namelen] = 0xff; ifa->ifa_refcnt = 1; TAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link); ifp->if_broadcastaddr = NULL; /* reliably crash if used uninitialized */ IFNET_WLOCK(); TAILQ_INSERT_TAIL(&V_ifnet, ifp, if_link); IFNET_WUNLOCK(); if (domain_init_status >= 2) if_attachdomain1(ifp); EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL); /* Announce the interface. */ rt_ifannouncemsg(ifp, IFAN_ARRIVAL); if (ifp->if_watchdog != NULL) { if_printf(ifp, "WARNING: using obsoleted if_watchdog interface\n"); /* * Note that we need if_slowtimo(). If this happens after * boot, then call if_slowtimo() directly. */ if (atomic_cmpset_int(&slowtimo_started, 0, 1) && !cold) if_slowtimo(0); } if (ifp->if_flags & IFF_NEEDSGIANT) if_printf(ifp, "WARNING: using obsoleted IFF_NEEDSGIANT flag\n"); } static void if_attachdomain(void *dummy) { INIT_VNET_NET(curvnet); struct ifnet *ifp; int s; s = splnet(); TAILQ_FOREACH(ifp, &V_ifnet, if_link) if_attachdomain1(ifp); splx(s); } SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_SECOND, if_attachdomain, NULL); static void if_attachdomain1(struct ifnet *ifp) { struct domain *dp; int s; s = splnet(); /* * Since dp->dom_ifattach calls malloc() with M_WAITOK, we * cannot lock ifp->if_afdata initialization, entirely. */ if (IF_AFDATA_TRYLOCK(ifp) == 0) { splx(s); return; } if (ifp->if_afdata_initialized >= domain_init_status) { IF_AFDATA_UNLOCK(ifp); splx(s); printf("if_attachdomain called more than once on %s\n", ifp->if_xname); return; } ifp->if_afdata_initialized = domain_init_status; IF_AFDATA_UNLOCK(ifp); /* address family dependent data region */ bzero(ifp->if_afdata, sizeof(ifp->if_afdata)); for (dp = domains; dp; dp = dp->dom_next) { if (dp->dom_ifattach) ifp->if_afdata[dp->dom_family] = (*dp->dom_ifattach)(ifp); } splx(s); } /* * Remove any unicast or broadcast network addresses from an interface. */ void if_purgeaddrs(struct ifnet *ifp) { struct ifaddr *ifa, *next; TAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) { if (ifa->ifa_addr->sa_family == AF_LINK) continue; #ifdef INET /* XXX: Ugly!! ad hoc just for INET */ if (ifa->ifa_addr->sa_family == AF_INET) { struct ifaliasreq ifr; bzero(&ifr, sizeof(ifr)); ifr.ifra_addr = *ifa->ifa_addr; if (ifa->ifa_dstaddr) ifr.ifra_broadaddr = *ifa->ifa_dstaddr; if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp, NULL) == 0) continue; } #endif /* INET */ #ifdef INET6 if (ifa->ifa_addr->sa_family == AF_INET6) { in6_purgeaddr(ifa); /* ifp_addrhead is already updated */ continue; } #endif /* INET6 */ TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link); IFAFREE(ifa); } } /* * Remove any multicast network addresses from an interface. */ void if_purgemaddrs(struct ifnet *ifp) { struct ifmultiaddr *ifma; struct ifmultiaddr *next; IF_ADDR_LOCK(ifp); TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) if_delmulti_locked(ifp, ifma, 1); IF_ADDR_UNLOCK(ifp); } /* * Detach an interface, removing it from the * list of "active" interfaces. * * XXXRW: There are some significant questions about event ordering, and * how to prevent things from starting to use the interface during detach. */ void if_detach(struct ifnet *ifp) { INIT_VNET_NET(ifp->if_vnet); struct ifaddr *ifa; struct radix_node_head *rnh; int s, i, j; struct domain *dp; struct ifnet *iter; int found = 0; IFNET_WLOCK(); TAILQ_FOREACH(iter, &V_ifnet, if_link) if (iter == ifp) { TAILQ_REMOVE(&V_ifnet, ifp, if_link); found = 1; break; } IFNET_WUNLOCK(); if (!found) return; /* * Remove/wait for pending events. */ taskqueue_drain(taskqueue_swi, &ifp->if_linktask); /* * Remove routes and flush queues. */ s = splnet(); if_down(ifp); #ifdef ALTQ if (ALTQ_IS_ENABLED(&ifp->if_snd)) altq_disable(&ifp->if_snd); if (ALTQ_IS_ATTACHED(&ifp->if_snd)) altq_detach(&ifp->if_snd); #endif if_purgeaddrs(ifp); #ifdef INET in_ifdetach(ifp); #endif #ifdef INET6 /* * Remove all IPv6 kernel structs related to ifp. This should be done * before removing routing entries below, since IPv6 interface direct * routes are expected to be removed by the IPv6-specific kernel API. * Otherwise, the kernel will detect some inconsistency and bark it. */ in6_ifdetach(ifp); #endif if_purgemaddrs(ifp); /* * Remove link ifaddr pointer and maybe decrement if_index. * Clean up all addresses. */ ifp->if_addr = NULL; destroy_dev(ifdev_byindex(ifp->if_index)); ifdev_setbyindex(ifp->if_index, NULL); /* We can now free link ifaddr. */ if (!TAILQ_EMPTY(&ifp->if_addrhead)) { ifa = TAILQ_FIRST(&ifp->if_addrhead); TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link); IFAFREE(ifa); } /* * Delete all remaining routes using this interface * Unfortuneatly the only way to do this is to slog through * the entire routing table looking for routes which point * to this interface...oh well... */ for (i = 1; i <= AF_MAX; i++) { for (j = 0; j < rt_numfibs; j++) { if ((rnh = V_rt_tables[j][i]) == NULL) continue; RADIX_NODE_HEAD_LOCK(rnh); (void) rnh->rnh_walktree(rnh, if_rtdel, ifp); RADIX_NODE_HEAD_UNLOCK(rnh); } } /* Announce that the interface is gone. */ rt_ifannouncemsg(ifp, IFAN_DEPARTURE); EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL); IF_AFDATA_LOCK(ifp); for (dp = domains; dp; dp = dp->dom_next) { if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) (*dp->dom_ifdetach)(ifp, ifp->if_afdata[dp->dom_family]); } IF_AFDATA_UNLOCK(ifp); #ifdef MAC mac_ifnet_destroy(ifp); #endif /* MAC */ KNOTE_UNLOCKED(&ifp->if_klist, NOTE_EXIT); knlist_clear(&ifp->if_klist, 0); knlist_destroy(&ifp->if_klist); ifq_detach(&ifp->if_snd); IF_AFDATA_DESTROY(ifp); splx(s); } /* * Add a group to an interface */ int if_addgroup(struct ifnet *ifp, const char *groupname) { INIT_VNET_NET(ifp->if_vnet); struct ifg_list *ifgl; struct ifg_group *ifg = NULL; struct ifg_member *ifgm; if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' && groupname[strlen(groupname) - 1] <= '9') return (EINVAL); IFNET_WLOCK(); TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) { IFNET_WUNLOCK(); return (EEXIST); } if ((ifgl = (struct ifg_list *)malloc(sizeof(struct ifg_list), M_TEMP, M_NOWAIT)) == NULL) { IFNET_WUNLOCK(); return (ENOMEM); } if ((ifgm = (struct ifg_member *)malloc(sizeof(struct ifg_member), M_TEMP, M_NOWAIT)) == NULL) { free(ifgl, M_TEMP); IFNET_WUNLOCK(); return (ENOMEM); } TAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) if (!strcmp(ifg->ifg_group, groupname)) break; if (ifg == NULL) { if ((ifg = (struct ifg_group *)malloc(sizeof(struct ifg_group), M_TEMP, M_NOWAIT)) == NULL) { free(ifgl, M_TEMP); free(ifgm, M_TEMP); IFNET_WUNLOCK(); return (ENOMEM); } strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group)); ifg->ifg_refcnt = 0; TAILQ_INIT(&ifg->ifg_members); EVENTHANDLER_INVOKE(group_attach_event, ifg); TAILQ_INSERT_TAIL(&V_ifg_head, ifg, ifg_next); } ifg->ifg_refcnt++; ifgl->ifgl_group = ifg; ifgm->ifgm_ifp = ifp; IF_ADDR_LOCK(ifp); TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next); TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next); IF_ADDR_UNLOCK(ifp); IFNET_WUNLOCK(); EVENTHANDLER_INVOKE(group_change_event, groupname); return (0); } /* * Remove a group from an interface */ int if_delgroup(struct ifnet *ifp, const char *groupname) { INIT_VNET_NET(ifp->if_vnet); struct ifg_list *ifgl; struct ifg_member *ifgm; IFNET_WLOCK(); TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) break; if (ifgl == NULL) { IFNET_WUNLOCK(); return (ENOENT); } IF_ADDR_LOCK(ifp); TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next); IF_ADDR_UNLOCK(ifp); TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) if (ifgm->ifgm_ifp == ifp) break; if (ifgm != NULL) { TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next); free(ifgm, M_TEMP); } if (--ifgl->ifgl_group->ifg_refcnt == 0) { TAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_next); EVENTHANDLER_INVOKE(group_detach_event, ifgl->ifgl_group); free(ifgl->ifgl_group, M_TEMP); } IFNET_WUNLOCK(); free(ifgl, M_TEMP); EVENTHANDLER_INVOKE(group_change_event, groupname); return (0); } /* * Stores all groups from an interface in memory pointed * to by data */ static int if_getgroup(struct ifgroupreq *data, struct ifnet *ifp) { int len, error; struct ifg_list *ifgl; struct ifg_req ifgrq, *ifgp; struct ifgroupreq *ifgr = data; if (ifgr->ifgr_len == 0) { IF_ADDR_LOCK(ifp); TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) ifgr->ifgr_len += sizeof(struct ifg_req); IF_ADDR_UNLOCK(ifp); return (0); } len = ifgr->ifgr_len; ifgp = ifgr->ifgr_groups; /* XXX: wire */ IF_ADDR_LOCK(ifp); TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) { if (len < sizeof(ifgrq)) { IF_ADDR_UNLOCK(ifp); return (EINVAL); } bzero(&ifgrq, sizeof ifgrq); strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group, sizeof(ifgrq.ifgrq_group)); if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) { IF_ADDR_UNLOCK(ifp); return (error); } len -= sizeof(ifgrq); ifgp++; } IF_ADDR_UNLOCK(ifp); return (0); } /* * Stores all members of a group in memory pointed to by data */ static int if_getgroupmembers(struct ifgroupreq *data) { INIT_VNET_NET(curvnet); struct ifgroupreq *ifgr = data; struct ifg_group *ifg; struct ifg_member *ifgm; struct ifg_req ifgrq, *ifgp; int len, error; IFNET_RLOCK(); TAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) if (!strcmp(ifg->ifg_group, ifgr->ifgr_name)) break; if (ifg == NULL) { IFNET_RUNLOCK(); return (ENOENT); } if (ifgr->ifgr_len == 0) { TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) ifgr->ifgr_len += sizeof(ifgrq); IFNET_RUNLOCK(); return (0); } len = ifgr->ifgr_len; ifgp = ifgr->ifgr_groups; TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) { if (len < sizeof(ifgrq)) { IFNET_RUNLOCK(); return (EINVAL); } bzero(&ifgrq, sizeof ifgrq); strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname, sizeof(ifgrq.ifgrq_member)); if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) { IFNET_RUNLOCK(); return (error); } len -= sizeof(ifgrq); ifgp++; } IFNET_RUNLOCK(); return (0); } /* * Delete Routes for a Network Interface * * Called for each routing entry via the rnh->rnh_walktree() call above * to delete all route entries referencing a detaching network interface. * * Arguments: * rn pointer to node in the routing table * arg argument passed to rnh->rnh_walktree() - detaching interface * * Returns: * 0 successful * errno failed - reason indicated * */ static int if_rtdel(struct radix_node *rn, void *arg) { struct rtentry *rt = (struct rtentry *)rn; struct ifnet *ifp = arg; int err; if (rt->rt_ifp == ifp) { /* * Protect (sorta) against walktree recursion problems * with cloned routes */ if ((rt->rt_flags & RTF_UP) == 0) return (0); err = rtrequest_fib(RTM_DELETE, rt_key(rt), rt->rt_gateway, rt_mask(rt), rt->rt_flags|RTF_RNH_LOCKED, (struct rtentry **) NULL, rt->rt_fibnum); if (err) { log(LOG_WARNING, "if_rtdel: error %d\n", err); } } return (0); } /* * XXX: Because sockaddr_dl has deeper structure than the sockaddr * structs used to represent other address families, it is necessary * to perform a different comparison. */ #define sa_equal(a1, a2) \ (bcmp((a1), (a2), ((a1))->sa_len) == 0) #define sa_dl_equal(a1, a2) \ ((((struct sockaddr_dl *)(a1))->sdl_len == \ ((struct sockaddr_dl *)(a2))->sdl_len) && \ (bcmp(LLADDR((struct sockaddr_dl *)(a1)), \ LLADDR((struct sockaddr_dl *)(a2)), \ ((struct sockaddr_dl *)(a1))->sdl_alen) == 0)) /* * Locate an interface based on a complete address. */ /*ARGSUSED*/ struct ifaddr * ifa_ifwithaddr(struct sockaddr *addr) { INIT_VNET_NET(curvnet); struct ifnet *ifp; struct ifaddr *ifa; IFNET_RLOCK(); TAILQ_FOREACH(ifp, &V_ifnet, if_link) TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != addr->sa_family) continue; if (sa_equal(addr, ifa->ifa_addr)) goto done; /* IP6 doesn't have broadcast */ if ((ifp->if_flags & IFF_BROADCAST) && ifa->ifa_broadaddr && ifa->ifa_broadaddr->sa_len != 0 && sa_equal(ifa->ifa_broadaddr, addr)) goto done; } ifa = NULL; done: IFNET_RUNLOCK(); return (ifa); } /* * Locate an interface based on the broadcast address. */ /* ARGSUSED */ struct ifaddr * ifa_ifwithbroadaddr(struct sockaddr *addr) { INIT_VNET_NET(curvnet); struct ifnet *ifp; struct ifaddr *ifa; IFNET_RLOCK(); TAILQ_FOREACH(ifp, &V_ifnet, if_link) TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != addr->sa_family) continue; if ((ifp->if_flags & IFF_BROADCAST) && ifa->ifa_broadaddr && ifa->ifa_broadaddr->sa_len != 0 && sa_equal(ifa->ifa_broadaddr, addr)) goto done; } ifa = NULL; done: IFNET_RUNLOCK(); return (ifa); } /* * Locate the point to point interface with a given destination address. */ /*ARGSUSED*/ struct ifaddr * ifa_ifwithdstaddr(struct sockaddr *addr) { INIT_VNET_NET(curvnet); struct ifnet *ifp; struct ifaddr *ifa; IFNET_RLOCK(); TAILQ_FOREACH(ifp, &V_ifnet, if_link) { if ((ifp->if_flags & IFF_POINTOPOINT) == 0) continue; TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != addr->sa_family) continue; if (ifa->ifa_dstaddr != NULL && sa_equal(addr, ifa->ifa_dstaddr)) goto done; } } ifa = NULL; done: IFNET_RUNLOCK(); return (ifa); } /* * Find an interface on a specific network. If many, choice * is most specific found. */ struct ifaddr * ifa_ifwithnet(struct sockaddr *addr) { INIT_VNET_NET(curvnet); struct ifnet *ifp; struct ifaddr *ifa; struct ifaddr *ifa_maybe = (struct ifaddr *) 0; u_int af = addr->sa_family; char *addr_data = addr->sa_data, *cplim; /* * AF_LINK addresses can be looked up directly by their index number, * so do that if we can. */ if (af == AF_LINK) { struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr; if (sdl->sdl_index && sdl->sdl_index <= V_if_index) return (ifaddr_byindex(sdl->sdl_index)); } /* * Scan though each interface, looking for ones that have * addresses in this address family. */ IFNET_RLOCK(); TAILQ_FOREACH(ifp, &V_ifnet, if_link) { TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { char *cp, *cp2, *cp3; if (ifa->ifa_addr->sa_family != af) next: continue; if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) { /* * This is a bit broken as it doesn't * take into account that the remote end may * be a single node in the network we are * looking for. * The trouble is that we don't know the * netmask for the remote end. */ if (ifa->ifa_dstaddr != NULL && sa_equal(addr, ifa->ifa_dstaddr)) goto done; } else { /* * if we have a special address handler, * then use it instead of the generic one. */ if (ifa->ifa_claim_addr) { if ((*ifa->ifa_claim_addr)(ifa, addr)) goto done; continue; } /* * Scan all the bits in the ifa's address. * If a bit dissagrees with what we are * looking for, mask it with the netmask * to see if it really matters. * (A byte at a time) */ if (ifa->ifa_netmask == 0) continue; cp = addr_data; cp2 = ifa->ifa_addr->sa_data; cp3 = ifa->ifa_netmask->sa_data; cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; while (cp3 < cplim) if ((*cp++ ^ *cp2++) & *cp3++) goto next; /* next address! */ /* * If the netmask of what we just found * is more specific than what we had before * (if we had one) then remember the new one * before continuing to search * for an even better one. */ if (ifa_maybe == 0 || rn_refines((caddr_t)ifa->ifa_netmask, (caddr_t)ifa_maybe->ifa_netmask)) ifa_maybe = ifa; } } } ifa = ifa_maybe; done: IFNET_RUNLOCK(); return (ifa); } /* * Find an interface address specific to an interface best matching * a given address. */ struct ifaddr * ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp) { struct ifaddr *ifa; char *cp, *cp2, *cp3; char *cplim; struct ifaddr *ifa_maybe = 0; u_int af = addr->sa_family; if (af >= AF_MAX) return (0); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != af) continue; if (ifa_maybe == 0) ifa_maybe = ifa; if (ifa->ifa_netmask == 0) { if (sa_equal(addr, ifa->ifa_addr) || (ifa->ifa_dstaddr && sa_equal(addr, ifa->ifa_dstaddr))) goto done; continue; } if (ifp->if_flags & IFF_POINTOPOINT) { if (sa_equal(addr, ifa->ifa_dstaddr)) goto done; } else { cp = addr->sa_data; cp2 = ifa->ifa_addr->sa_data; cp3 = ifa->ifa_netmask->sa_data; cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; for (; cp3 < cplim; cp3++) if ((*cp++ ^ *cp2++) & *cp3) break; if (cp3 == cplim) goto done; } } ifa = ifa_maybe; done: return (ifa); } #include #include /* * Default action when installing a route with a Link Level gateway. * Lookup an appropriate real ifa to point to. * This should be moved to /sys/net/link.c eventually. */ static void link_rtrequest(int cmd, struct rtentry *rt, struct rt_addrinfo *info) { struct ifaddr *ifa, *oifa; struct sockaddr *dst; struct ifnet *ifp; RT_LOCK_ASSERT(rt); if (cmd != RTM_ADD || ((ifa = rt->rt_ifa) == 0) || ((ifp = ifa->ifa_ifp) == 0) || ((dst = rt_key(rt)) == 0)) return; ifa = ifaof_ifpforaddr(dst, ifp); if (ifa) { IFAREF(ifa); /* XXX */ oifa = rt->rt_ifa; rt->rt_ifa = ifa; IFAFREE(oifa); if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) ifa->ifa_rtrequest(cmd, rt, info); } } /* * Mark an interface down and notify protocols of * the transition. * NOTE: must be called at splnet or eqivalent. */ static void if_unroute(struct ifnet *ifp, int flag, int fam) { struct ifaddr *ifa; KASSERT(flag == IFF_UP, ("if_unroute: flag != IFF_UP")); ifp->if_flags &= ~flag; getmicrotime(&ifp->if_lastchange); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) pfctlinput(PRC_IFDOWN, ifa->ifa_addr); ifp->if_qflush(ifp); #ifdef DEV_CARP if (ifp->if_carp) carp_carpdev_state(ifp->if_carp); #endif rt_ifmsg(ifp); } /* * Mark an interface up and notify protocols of * the transition. * NOTE: must be called at splnet or eqivalent. */ static void if_route(struct ifnet *ifp, int flag, int fam) { struct ifaddr *ifa; KASSERT(flag == IFF_UP, ("if_route: flag != IFF_UP")); ifp->if_flags |= flag; getmicrotime(&ifp->if_lastchange); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) pfctlinput(PRC_IFUP, ifa->ifa_addr); #ifdef DEV_CARP if (ifp->if_carp) carp_carpdev_state(ifp->if_carp); #endif rt_ifmsg(ifp); #ifdef INET6 in6_if_up(ifp); #endif } void (*vlan_link_state_p)(struct ifnet *, int); /* XXX: private from if_vlan */ void (*vlan_trunk_cap_p)(struct ifnet *); /* XXX: private from if_vlan */ /* * Handle a change in the interface link state. To avoid LORs * between driver lock and upper layer locks, as well as possible * recursions, we post event to taskqueue, and all job * is done in static do_link_state_change(). */ void if_link_state_change(struct ifnet *ifp, int link_state) { /* Return if state hasn't changed. */ if (ifp->if_link_state == link_state) return; ifp->if_link_state = link_state; taskqueue_enqueue(taskqueue_swi, &ifp->if_linktask); } static void do_link_state_change(void *arg, int pending) { struct ifnet *ifp = (struct ifnet *)arg; int link_state = ifp->if_link_state; int link; CURVNET_SET(ifp->if_vnet); /* Notify that the link state has changed. */ rt_ifmsg(ifp); if (link_state == LINK_STATE_UP) link = NOTE_LINKUP; else if (link_state == LINK_STATE_DOWN) link = NOTE_LINKDOWN; else link = NOTE_LINKINV; KNOTE_UNLOCKED(&ifp->if_klist, link); if (ifp->if_vlantrunk != NULL) (*vlan_link_state_p)(ifp, link); if ((ifp->if_type == IFT_ETHER || ifp->if_type == IFT_L2VLAN) && IFP2AC(ifp)->ac_netgraph != NULL) (*ng_ether_link_state_p)(ifp, link_state); #ifdef DEV_CARP if (ifp->if_carp) carp_carpdev_state(ifp->if_carp); #endif if (ifp->if_bridge) { KASSERT(bstp_linkstate_p != NULL,("if_bridge bstp not loaded!")); (*bstp_linkstate_p)(ifp, link_state); } if (ifp->if_lagg) { KASSERT(lagg_linkstate_p != NULL,("if_lagg not loaded!")); (*lagg_linkstate_p)(ifp, link_state); } devctl_notify("IFNET", ifp->if_xname, (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL); if (pending > 1) if_printf(ifp, "%d link states coalesced\n", pending); if (log_link_state_change) log(LOG_NOTICE, "%s: link state changed to %s\n", ifp->if_xname, (link_state == LINK_STATE_UP) ? "UP" : "DOWN" ); CURVNET_RESTORE(); } /* * Mark an interface down and notify protocols of * the transition. * NOTE: must be called at splnet or eqivalent. */ void if_down(struct ifnet *ifp) { if_unroute(ifp, IFF_UP, AF_UNSPEC); } /* * Mark an interface up and notify protocols of * the transition. * NOTE: must be called at splnet or eqivalent. */ void if_up(struct ifnet *ifp) { if_route(ifp, IFF_UP, AF_UNSPEC); } /* * Flush an interface queue. */ static void if_qflush(struct ifnet *ifp) { struct mbuf *m, *n; struct ifaltq *ifq; ifq = &ifp->if_snd; IFQ_LOCK(ifq); #ifdef ALTQ if (ALTQ_IS_ENABLED(ifq)) ALTQ_PURGE(ifq); #endif n = ifq->ifq_head; while ((m = n) != 0) { n = m->m_act; m_freem(m); } ifq->ifq_head = 0; ifq->ifq_tail = 0; ifq->ifq_len = 0; IFQ_UNLOCK(ifq); } /* * Handle interface watchdog timer routines. Called * from softclock, we decrement timers (if set) and * call the appropriate interface routine on expiration. * * XXXRW: Note that because timeouts run with Giant, if_watchdog() is called * holding Giant. If we switch to an MPSAFE callout, we likely need to grab * Giant before entering if_watchdog() on an IFF_NEEDSGIANT interface. */ static void if_slowtimo(void *arg) { VNET_ITERATOR_DECL(vnet_iter); struct ifnet *ifp; int s = splimp(); IFNET_RLOCK(); VNET_LIST_RLOCK(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); INIT_VNET_NET(vnet_iter); TAILQ_FOREACH(ifp, &V_ifnet, if_link) { if (ifp->if_timer == 0 || --ifp->if_timer) continue; if (ifp->if_watchdog) (*ifp->if_watchdog)(ifp); } CURVNET_RESTORE(); } VNET_LIST_RUNLOCK(); IFNET_RUNLOCK(); splx(s); timeout(if_slowtimo, (void *)0, hz / IFNET_SLOWHZ); } /* * Map interface name to * interface structure pointer. */ struct ifnet * ifunit(const char *name) { INIT_VNET_NET(curvnet); struct ifnet *ifp; IFNET_RLOCK(); TAILQ_FOREACH(ifp, &V_ifnet, if_link) { if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0) break; } IFNET_RUNLOCK(); return (ifp); } /* * Hardware specific interface ioctls. */ static int ifhwioctl(u_long cmd, struct ifnet *ifp, caddr_t data, struct thread *td) { struct ifreq *ifr; struct ifstat *ifs; int error = 0; int new_flags, temp_flags; size_t namelen, onamelen; char new_name[IFNAMSIZ]; struct ifaddr *ifa; struct sockaddr_dl *sdl; ifr = (struct ifreq *)data; switch (cmd) { case SIOCGIFINDEX: ifr->ifr_index = ifp->if_index; break; case SIOCGIFFLAGS: temp_flags = ifp->if_flags | ifp->if_drv_flags; ifr->ifr_flags = temp_flags & 0xffff; ifr->ifr_flagshigh = temp_flags >> 16; break; case SIOCGIFCAP: ifr->ifr_reqcap = ifp->if_capabilities; ifr->ifr_curcap = ifp->if_capenable; break; #ifdef MAC case SIOCGIFMAC: error = mac_ifnet_ioctl_get(td->td_ucred, ifr, ifp); break; #endif case SIOCGIFMETRIC: ifr->ifr_metric = ifp->if_metric; break; case SIOCGIFMTU: ifr->ifr_mtu = ifp->if_mtu; break; case SIOCGIFPHYS: ifr->ifr_phys = ifp->if_physical; break; case SIOCSIFFLAGS: error = priv_check(td, PRIV_NET_SETIFFLAGS); if (error) return (error); /* * Currently, no driver owned flags pass the IFF_CANTCHANGE * check, so we don't need special handling here yet. */ new_flags = (ifr->ifr_flags & 0xffff) | (ifr->ifr_flagshigh << 16); if (ifp->if_flags & IFF_SMART) { /* Smart drivers twiddle their own routes */ } else if (ifp->if_flags & IFF_UP && (new_flags & IFF_UP) == 0) { int s = splimp(); if_down(ifp); splx(s); } else if (new_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) { int s = splimp(); if_up(ifp); splx(s); } /* See if permanently promiscuous mode bit is about to flip */ if ((ifp->if_flags ^ new_flags) & IFF_PPROMISC) { if (new_flags & IFF_PPROMISC) ifp->if_flags |= IFF_PROMISC; else if (ifp->if_pcount == 0) ifp->if_flags &= ~IFF_PROMISC; log(LOG_INFO, "%s: permanently promiscuous mode %s\n", ifp->if_xname, (new_flags & IFF_PPROMISC) ? "enabled" : "disabled"); } ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | (new_flags &~ IFF_CANTCHANGE); if (ifp->if_ioctl) { IFF_LOCKGIANT(ifp); (void) (*ifp->if_ioctl)(ifp, cmd, data); IFF_UNLOCKGIANT(ifp); } getmicrotime(&ifp->if_lastchange); break; case SIOCSIFCAP: error = priv_check(td, PRIV_NET_SETIFCAP); if (error) return (error); if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); if (ifr->ifr_reqcap & ~ifp->if_capabilities) return (EINVAL); IFF_LOCKGIANT(ifp); error = (*ifp->if_ioctl)(ifp, cmd, data); IFF_UNLOCKGIANT(ifp); if (error == 0) getmicrotime(&ifp->if_lastchange); break; #ifdef MAC case SIOCSIFMAC: error = mac_ifnet_ioctl_set(td->td_ucred, ifr, ifp); break; #endif case SIOCSIFNAME: error = priv_check(td, PRIV_NET_SETIFNAME); if (error) return (error); error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL); if (error != 0) return (error); if (new_name[0] == '\0') return (EINVAL); if (ifunit(new_name) != NULL) return (EEXIST); /* Announce the departure of the interface. */ rt_ifannouncemsg(ifp, IFAN_DEPARTURE); EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); log(LOG_INFO, "%s: changing name to '%s'\n", ifp->if_xname, new_name); strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname)); ifa = ifp->if_addr; IFA_LOCK(ifa); sdl = (struct sockaddr_dl *)ifa->ifa_addr; namelen = strlen(new_name); onamelen = sdl->sdl_nlen; /* * Move the address if needed. This is safe because we * allocate space for a name of length IFNAMSIZ when we * create this in if_attach(). */ if (namelen != onamelen) { bcopy(sdl->sdl_data + onamelen, sdl->sdl_data + namelen, sdl->sdl_alen); } bcopy(new_name, sdl->sdl_data, namelen); sdl->sdl_nlen = namelen; sdl = (struct sockaddr_dl *)ifa->ifa_netmask; bzero(sdl->sdl_data, onamelen); while (namelen != 0) sdl->sdl_data[--namelen] = 0xff; IFA_UNLOCK(ifa); EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); /* Announce the return of the interface. */ rt_ifannouncemsg(ifp, IFAN_ARRIVAL); break; case SIOCSIFMETRIC: error = priv_check(td, PRIV_NET_SETIFMETRIC); if (error) return (error); ifp->if_metric = ifr->ifr_metric; getmicrotime(&ifp->if_lastchange); break; case SIOCSIFPHYS: error = priv_check(td, PRIV_NET_SETIFPHYS); if (error) return (error); if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); IFF_LOCKGIANT(ifp); error = (*ifp->if_ioctl)(ifp, cmd, data); IFF_UNLOCKGIANT(ifp); if (error == 0) getmicrotime(&ifp->if_lastchange); break; case SIOCSIFMTU: { u_long oldmtu = ifp->if_mtu; error = priv_check(td, PRIV_NET_SETIFMTU); if (error) return (error); if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) return (EINVAL); if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); IFF_LOCKGIANT(ifp); error = (*ifp->if_ioctl)(ifp, cmd, data); IFF_UNLOCKGIANT(ifp); if (error == 0) { getmicrotime(&ifp->if_lastchange); rt_ifmsg(ifp); } /* * If the link MTU changed, do network layer specific procedure. */ if (ifp->if_mtu != oldmtu) { #ifdef INET6 nd6_setmtu(ifp); #endif } break; } case SIOCADDMULTI: case SIOCDELMULTI: if (cmd == SIOCADDMULTI) error = priv_check(td, PRIV_NET_ADDMULTI); else error = priv_check(td, PRIV_NET_DELMULTI); if (error) return (error); /* Don't allow group membership on non-multicast interfaces. */ if ((ifp->if_flags & IFF_MULTICAST) == 0) return (EOPNOTSUPP); /* Don't let users screw up protocols' entries. */ if (ifr->ifr_addr.sa_family != AF_LINK) return (EINVAL); if (cmd == SIOCADDMULTI) { struct ifmultiaddr *ifma; /* * Userland is only permitted to join groups once * via the if_addmulti() KPI, because it cannot hold * struct ifmultiaddr * between calls. It may also * lose a race while we check if the membership * already exists. */ IF_ADDR_LOCK(ifp); ifma = if_findmulti(ifp, &ifr->ifr_addr); IF_ADDR_UNLOCK(ifp); if (ifma != NULL) error = EADDRINUSE; else error = if_addmulti(ifp, &ifr->ifr_addr, &ifma); } else { error = if_delmulti(ifp, &ifr->ifr_addr); } if (error == 0) getmicrotime(&ifp->if_lastchange); break; case SIOCSIFPHYADDR: case SIOCDIFPHYADDR: #ifdef INET6 case SIOCSIFPHYADDR_IN6: #endif case SIOCSLIFPHYADDR: case SIOCSIFMEDIA: case SIOCSIFGENERIC: error = priv_check(td, PRIV_NET_HWIOCTL); if (error) return (error); if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); IFF_LOCKGIANT(ifp); error = (*ifp->if_ioctl)(ifp, cmd, data); IFF_UNLOCKGIANT(ifp); if (error == 0) getmicrotime(&ifp->if_lastchange); break; case SIOCGIFSTATUS: ifs = (struct ifstat *)data; ifs->ascii[0] = '\0'; case SIOCGIFPSRCADDR: case SIOCGIFPDSTADDR: case SIOCGLIFPHYADDR: case SIOCGIFMEDIA: case SIOCGIFGENERIC: if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); IFF_LOCKGIANT(ifp); error = (*ifp->if_ioctl)(ifp, cmd, data); IFF_UNLOCKGIANT(ifp); break; case SIOCSIFLLADDR: error = priv_check(td, PRIV_NET_SETLLADDR); if (error) return (error); error = if_setlladdr(ifp, ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len); break; case SIOCAIFGROUP: { struct ifgroupreq *ifgr = (struct ifgroupreq *)ifr; error = priv_check(td, PRIV_NET_ADDIFGROUP); if (error) return (error); if ((error = if_addgroup(ifp, ifgr->ifgr_group))) return (error); break; } case SIOCGIFGROUP: if ((error = if_getgroup((struct ifgroupreq *)ifr, ifp))) return (error); break; case SIOCDIFGROUP: { struct ifgroupreq *ifgr = (struct ifgroupreq *)ifr; error = priv_check(td, PRIV_NET_DELIFGROUP); if (error) return (error); if ((error = if_delgroup(ifp, ifgr->ifgr_group))) return (error); break; } default: error = ENOIOCTL; break; } return (error); } /* * Interface ioctls. */ int ifioctl(struct socket *so, u_long cmd, caddr_t data, struct thread *td) { struct ifnet *ifp; struct ifreq *ifr; int error; int oif_flags; switch (cmd) { case SIOCGIFCONF: case OSIOCGIFCONF: #ifdef __amd64__ case SIOCGIFCONF32: #endif return (ifconf(cmd, data)); } ifr = (struct ifreq *)data; switch (cmd) { case SIOCIFCREATE: case SIOCIFCREATE2: error = priv_check(td, PRIV_NET_IFCREATE); if (error) return (error); return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name), cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL)); case SIOCIFDESTROY: error = priv_check(td, PRIV_NET_IFDESTROY); if (error) return (error); return if_clone_destroy(ifr->ifr_name); case SIOCIFGCLONERS: return (if_clone_list((struct if_clonereq *)data)); case SIOCGIFGMEMB: return (if_getgroupmembers((struct ifgroupreq *)data)); } ifp = ifunit(ifr->ifr_name); if (ifp == 0) return (ENXIO); error = ifhwioctl(cmd, ifp, data, td); if (error != ENOIOCTL) return (error); oif_flags = ifp->if_flags; if (so->so_proto == 0) return (EOPNOTSUPP); #ifndef COMPAT_43 error = ((*so->so_proto->pr_usrreqs->pru_control)(so, cmd, data, ifp, td)); #else { int ocmd = cmd; switch (cmd) { case SIOCSIFDSTADDR: case SIOCSIFADDR: case SIOCSIFBRDADDR: case SIOCSIFNETMASK: #if BYTE_ORDER != BIG_ENDIAN if (ifr->ifr_addr.sa_family == 0 && ifr->ifr_addr.sa_len < 16) { ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len; ifr->ifr_addr.sa_len = 16; } #else if (ifr->ifr_addr.sa_len == 0) ifr->ifr_addr.sa_len = 16; #endif break; case OSIOCGIFADDR: cmd = SIOCGIFADDR; break; case OSIOCGIFDSTADDR: cmd = SIOCGIFDSTADDR; break; case OSIOCGIFBRDADDR: cmd = SIOCGIFBRDADDR; break; case OSIOCGIFNETMASK: cmd = SIOCGIFNETMASK; } error = ((*so->so_proto->pr_usrreqs->pru_control)(so, cmd, data, ifp, td)); switch (ocmd) { case OSIOCGIFADDR: case OSIOCGIFDSTADDR: case OSIOCGIFBRDADDR: case OSIOCGIFNETMASK: *(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family; } } #endif /* COMPAT_43 */ if ((oif_flags ^ ifp->if_flags) & IFF_UP) { #ifdef INET6 DELAY(100);/* XXX: temporary workaround for fxp issue*/ if (ifp->if_flags & IFF_UP) { int s = splimp(); in6_if_up(ifp); splx(s); } #endif } return (error); } /* * The code common to handling reference counted flags, * e.g., in ifpromisc() and if_allmulti(). * The "pflag" argument can specify a permanent mode flag to check, * such as IFF_PPROMISC for promiscuous mode; should be 0 if none. * * Only to be used on stack-owned flags, not driver-owned flags. */ static int if_setflag(struct ifnet *ifp, int flag, int pflag, int *refcount, int onswitch) { struct ifreq ifr; int error; int oldflags, oldcount; /* Sanity checks to catch programming errors */ KASSERT((flag & (IFF_DRV_OACTIVE|IFF_DRV_RUNNING)) == 0, ("%s: setting driver-owned flag %d", __func__, flag)); if (onswitch) KASSERT(*refcount >= 0, ("%s: increment negative refcount %d for flag %d", __func__, *refcount, flag)); else KASSERT(*refcount > 0, ("%s: decrement non-positive refcount %d for flag %d", __func__, *refcount, flag)); /* In case this mode is permanent, just touch refcount */ if (ifp->if_flags & pflag) { *refcount += onswitch ? 1 : -1; return (0); } /* Save ifnet parameters for if_ioctl() may fail */ oldcount = *refcount; oldflags = ifp->if_flags; /* * See if we aren't the only and touching refcount is enough. * Actually toggle interface flag if we are the first or last. */ if (onswitch) { if ((*refcount)++) return (0); ifp->if_flags |= flag; } else { if (--(*refcount)) return (0); ifp->if_flags &= ~flag; } /* Call down the driver since we've changed interface flags */ if (ifp->if_ioctl == NULL) { error = EOPNOTSUPP; goto recover; } ifr.ifr_flags = ifp->if_flags & 0xffff; ifr.ifr_flagshigh = ifp->if_flags >> 16; IFF_LOCKGIANT(ifp); error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); IFF_UNLOCKGIANT(ifp); if (error) goto recover; /* Notify userland that interface flags have changed */ rt_ifmsg(ifp); return (0); recover: /* Recover after driver error */ *refcount = oldcount; ifp->if_flags = oldflags; return (error); } /* * Set/clear promiscuous mode on interface ifp based on the truth value * of pswitch. The calls are reference counted so that only the first * "on" request actually has an effect, as does the final "off" request. * Results are undefined if the "off" and "on" requests are not matched. */ int ifpromisc(struct ifnet *ifp, int pswitch) { int error; int oldflags = ifp->if_flags; error = if_setflag(ifp, IFF_PROMISC, IFF_PPROMISC, &ifp->if_pcount, pswitch); /* If promiscuous mode status has changed, log a message */ if (error == 0 && ((ifp->if_flags ^ oldflags) & IFF_PROMISC)) log(LOG_INFO, "%s: promiscuous mode %s\n", ifp->if_xname, (ifp->if_flags & IFF_PROMISC) ? "enabled" : "disabled"); return (error); } /* * Return interface configuration * of system. List may be used * in later ioctl's (above) to get * other information. */ /*ARGSUSED*/ static int ifconf(u_long cmd, caddr_t data) { INIT_VNET_NET(curvnet); struct ifconf *ifc = (struct ifconf *)data; #ifdef __amd64__ struct ifconf32 *ifc32 = (struct ifconf32 *)data; struct ifconf ifc_swab; #endif struct ifnet *ifp; struct ifaddr *ifa; struct ifreq ifr; struct sbuf *sb; int error, full = 0, valid_len, max_len; #ifdef __amd64__ if (cmd == SIOCGIFCONF32) { ifc_swab.ifc_len = ifc32->ifc_len; ifc_swab.ifc_buf = (caddr_t)(uintptr_t)ifc32->ifc_buf; ifc = &ifc_swab; } #endif /* Limit initial buffer size to MAXPHYS to avoid DoS from userspace. */ max_len = MAXPHYS - 1; /* Prevent hostile input from being able to crash the system */ if (ifc->ifc_len <= 0) return (EINVAL); again: if (ifc->ifc_len <= max_len) { max_len = ifc->ifc_len; full = 1; } sb = sbuf_new(NULL, NULL, max_len + 1, SBUF_FIXEDLEN); max_len = 0; valid_len = 0; IFNET_RLOCK(); /* could sleep XXX */ TAILQ_FOREACH(ifp, &V_ifnet, if_link) { int addrs; /* * Zero the ifr_name buffer to make sure we don't * disclose the contents of the stack. */ memset(ifr.ifr_name, 0, sizeof(ifr.ifr_name)); if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)) >= sizeof(ifr.ifr_name)) { sbuf_delete(sb); IFNET_RUNLOCK(); return (ENAMETOOLONG); } addrs = 0; TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { struct sockaddr *sa = ifa->ifa_addr; if (prison_if(curthread->td_ucred, sa) != 0) continue; addrs++; #ifdef COMPAT_43 if (cmd == OSIOCGIFCONF) { struct osockaddr *osa = (struct osockaddr *)&ifr.ifr_addr; ifr.ifr_addr = *sa; osa->sa_family = sa->sa_family; sbuf_bcat(sb, &ifr, sizeof(ifr)); max_len += sizeof(ifr); } else #endif if (sa->sa_len <= sizeof(*sa)) { ifr.ifr_addr = *sa; sbuf_bcat(sb, &ifr, sizeof(ifr)); max_len += sizeof(ifr); } else { sbuf_bcat(sb, &ifr, offsetof(struct ifreq, ifr_addr)); max_len += offsetof(struct ifreq, ifr_addr); sbuf_bcat(sb, sa, sa->sa_len); max_len += sa->sa_len; } if (!sbuf_overflowed(sb)) valid_len = sbuf_len(sb); } if (addrs == 0) { bzero((caddr_t)&ifr.ifr_addr, sizeof(ifr.ifr_addr)); sbuf_bcat(sb, &ifr, sizeof(ifr)); max_len += sizeof(ifr); if (!sbuf_overflowed(sb)) valid_len = sbuf_len(sb); } } IFNET_RUNLOCK(); /* * If we didn't allocate enough space (uncommon), try again. If * we have already allocated as much space as we are allowed, * return what we've got. */ if (valid_len != max_len && !full) { sbuf_delete(sb); goto again; } ifc->ifc_len = valid_len; #ifdef __amd64__ if (cmd == SIOCGIFCONF32) ifc32->ifc_len = valid_len; #endif sbuf_finish(sb); error = copyout(sbuf_data(sb), ifc->ifc_req, ifc->ifc_len); sbuf_delete(sb); return (error); } /* * Just like ifpromisc(), but for all-multicast-reception mode. */ int if_allmulti(struct ifnet *ifp, int onswitch) { return (if_setflag(ifp, IFF_ALLMULTI, 0, &ifp->if_amcount, onswitch)); } struct ifmultiaddr * if_findmulti(struct ifnet *ifp, struct sockaddr *sa) { struct ifmultiaddr *ifma; IF_ADDR_LOCK_ASSERT(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (sa->sa_family == AF_LINK) { if (sa_dl_equal(ifma->ifma_addr, sa)) break; } else { if (sa_equal(ifma->ifma_addr, sa)) break; } } return ifma; } /* * Allocate a new ifmultiaddr and initialize based on passed arguments. We * make copies of passed sockaddrs. The ifmultiaddr will not be added to * the ifnet multicast address list here, so the caller must do that and * other setup work (such as notifying the device driver). The reference * count is initialized to 1. */ static struct ifmultiaddr * if_allocmulti(struct ifnet *ifp, struct sockaddr *sa, struct sockaddr *llsa, int mflags) { struct ifmultiaddr *ifma; struct sockaddr *dupsa; ifma = malloc(sizeof *ifma, M_IFMADDR, mflags | M_ZERO); if (ifma == NULL) return (NULL); dupsa = malloc(sa->sa_len, M_IFMADDR, mflags); if (dupsa == NULL) { free(ifma, M_IFMADDR); return (NULL); } bcopy(sa, dupsa, sa->sa_len); ifma->ifma_addr = dupsa; ifma->ifma_ifp = ifp; ifma->ifma_refcount = 1; ifma->ifma_protospec = NULL; if (llsa == NULL) { ifma->ifma_lladdr = NULL; return (ifma); } dupsa = malloc(llsa->sa_len, M_IFMADDR, mflags); if (dupsa == NULL) { free(ifma->ifma_addr, M_IFMADDR); free(ifma, M_IFMADDR); return (NULL); } bcopy(llsa, dupsa, llsa->sa_len); ifma->ifma_lladdr = dupsa; return (ifma); } /* * if_freemulti: free ifmultiaddr structure and possibly attached related * addresses. The caller is responsible for implementing reference * counting, notifying the driver, handling routing messages, and releasing * any dependent link layer state. */ static void if_freemulti(struct ifmultiaddr *ifma) { KASSERT(ifma->ifma_refcount == 0, ("if_freemulti: refcount %d", ifma->ifma_refcount)); KASSERT(ifma->ifma_protospec == NULL, ("if_freemulti: protospec not NULL")); if (ifma->ifma_lladdr != NULL) free(ifma->ifma_lladdr, M_IFMADDR); free(ifma->ifma_addr, M_IFMADDR); free(ifma, M_IFMADDR); } /* * Register an additional multicast address with a network interface. * * - If the address is already present, bump the reference count on the * address and return. * - If the address is not link-layer, look up a link layer address. * - Allocate address structures for one or both addresses, and attach to the * multicast address list on the interface. If automatically adding a link * layer address, the protocol address will own a reference to the link * layer address, to be freed when it is freed. * - Notify the network device driver of an addition to the multicast address * list. * * 'sa' points to caller-owned memory with the desired multicast address. * * 'retifma' will be used to return a pointer to the resulting multicast * address reference, if desired. */ int if_addmulti(struct ifnet *ifp, struct sockaddr *sa, struct ifmultiaddr **retifma) { struct ifmultiaddr *ifma, *ll_ifma; struct sockaddr *llsa; int error; /* * If the address is already present, return a new reference to it; * otherwise, allocate storage and set up a new address. */ IF_ADDR_LOCK(ifp); ifma = if_findmulti(ifp, sa); if (ifma != NULL) { ifma->ifma_refcount++; if (retifma != NULL) *retifma = ifma; IF_ADDR_UNLOCK(ifp); return (0); } /* * The address isn't already present; resolve the protocol address * into a link layer address, and then look that up, bump its * refcount or allocate an ifma for that also. If 'llsa' was * returned, we will need to free it later. */ llsa = NULL; ll_ifma = NULL; if (ifp->if_resolvemulti != NULL) { error = ifp->if_resolvemulti(ifp, &llsa, sa); if (error) goto unlock_out; } /* * Allocate the new address. Don't hook it up yet, as we may also * need to allocate a link layer multicast address. */ ifma = if_allocmulti(ifp, sa, llsa, M_NOWAIT); if (ifma == NULL) { error = ENOMEM; goto free_llsa_out; } /* * If a link layer address is found, we'll need to see if it's * already present in the address list, or allocate is as well. * When this block finishes, the link layer address will be on the * list. */ if (llsa != NULL) { ll_ifma = if_findmulti(ifp, llsa); if (ll_ifma == NULL) { ll_ifma = if_allocmulti(ifp, llsa, NULL, M_NOWAIT); if (ll_ifma == NULL) { --ifma->ifma_refcount; if_freemulti(ifma); error = ENOMEM; goto free_llsa_out; } TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ll_ifma, ifma_link); } else ll_ifma->ifma_refcount++; ifma->ifma_llifma = ll_ifma; } /* * We now have a new multicast address, ifma, and possibly a new or * referenced link layer address. Add the primary address to the * ifnet address list. */ TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); if (retifma != NULL) *retifma = ifma; /* * Must generate the message while holding the lock so that 'ifma' * pointer is still valid. */ rt_newmaddrmsg(RTM_NEWMADDR, ifma); IF_ADDR_UNLOCK(ifp); /* * We are certain we have added something, so call down to the * interface to let them know about it. */ if (ifp->if_ioctl != NULL) { IFF_LOCKGIANT(ifp); (void) (*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0); IFF_UNLOCKGIANT(ifp); } if (llsa != NULL) free(llsa, M_IFMADDR); return (0); free_llsa_out: if (llsa != NULL) free(llsa, M_IFMADDR); unlock_out: IF_ADDR_UNLOCK(ifp); return (error); } /* * Delete a multicast group membership by network-layer group address. * * Returns ENOENT if the entry could not be found. If ifp no longer * exists, results are undefined. This entry point should only be used * from subsystems which do appropriate locking to hold ifp for the * duration of the call. * Network-layer protocol domains must use if_delmulti_ifma(). */ int if_delmulti(struct ifnet *ifp, struct sockaddr *sa) { struct ifmultiaddr *ifma; int lastref; #ifdef INVARIANTS struct ifnet *oifp; INIT_VNET_NET(ifp->if_vnet); IFNET_RLOCK(); TAILQ_FOREACH(oifp, &V_ifnet, if_link) if (ifp == oifp) break; if (ifp != oifp) ifp = NULL; IFNET_RUNLOCK(); KASSERT(ifp != NULL, ("%s: ifnet went away", __func__)); #endif if (ifp == NULL) return (ENOENT); IF_ADDR_LOCK(ifp); lastref = 0; ifma = if_findmulti(ifp, sa); if (ifma != NULL) lastref = if_delmulti_locked(ifp, ifma, 0); IF_ADDR_UNLOCK(ifp); if (ifma == NULL) return (ENOENT); if (lastref && ifp->if_ioctl != NULL) { IFF_LOCKGIANT(ifp); (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); IFF_UNLOCKGIANT(ifp); } return (0); } /* * Delete a multicast group membership by group membership pointer. * Network-layer protocol domains must use this routine. * * It is safe to call this routine if the ifp disappeared. Callers should * hold IFF_LOCKGIANT() to avoid a LOR in case the hardware needs to be * reconfigured. */ void if_delmulti_ifma(struct ifmultiaddr *ifma) { #ifdef DIAGNOSTIC INIT_VNET_NET(curvnet); #endif struct ifnet *ifp; int lastref; ifp = ifma->ifma_ifp; #ifdef DIAGNOSTIC if (ifp == NULL) { printf("%s: ifma_ifp seems to be detached\n", __func__); } else { struct ifnet *oifp; IFNET_RLOCK(); TAILQ_FOREACH(oifp, &V_ifnet, if_link) if (ifp == oifp) break; if (ifp != oifp) { printf("%s: ifnet %p disappeared\n", __func__, ifp); ifp = NULL; } IFNET_RUNLOCK(); } #endif /* * If and only if the ifnet instance exists: Acquire the address lock. */ if (ifp != NULL) IF_ADDR_LOCK(ifp); lastref = if_delmulti_locked(ifp, ifma, 0); if (ifp != NULL) { /* * If and only if the ifnet instance exists: * Release the address lock. * If the group was left: update the hardware hash filter. */ IF_ADDR_UNLOCK(ifp); if (lastref && ifp->if_ioctl != NULL) { IFF_LOCKGIANT(ifp); (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); IFF_UNLOCKGIANT(ifp); } } } /* * Perform deletion of network-layer and/or link-layer multicast address. * * Return 0 if the reference count was decremented. * Return 1 if the final reference was released, indicating that the * hardware hash filter should be reprogrammed. */ static int if_delmulti_locked(struct ifnet *ifp, struct ifmultiaddr *ifma, int detaching) { struct ifmultiaddr *ll_ifma; if (ifp != NULL && ifma->ifma_ifp != NULL) { KASSERT(ifma->ifma_ifp == ifp, ("%s: inconsistent ifp %p", __func__, ifp)); IF_ADDR_LOCK_ASSERT(ifp); } ifp = ifma->ifma_ifp; /* * If the ifnet is detaching, null out references to ifnet, * so that upper protocol layers will notice, and not attempt * to obtain locks for an ifnet which no longer exists. The * routing socket announcement must happen before the ifnet * instance is detached from the system. */ if (detaching) { #ifdef DIAGNOSTIC printf("%s: detaching ifnet instance %p\n", __func__, ifp); #endif /* * ifp may already be nulled out if we are being reentered * to delete the ll_ifma. */ if (ifp != NULL) { rt_newmaddrmsg(RTM_DELMADDR, ifma); ifma->ifma_ifp = NULL; } } if (--ifma->ifma_refcount > 0) return 0; /* * If this ifma is a network-layer ifma, a link-layer ifma may * have been associated with it. Release it first if so. */ ll_ifma = ifma->ifma_llifma; if (ll_ifma != NULL) { KASSERT(ifma->ifma_lladdr != NULL, ("%s: llifma w/o lladdr", __func__)); if (detaching) ll_ifma->ifma_ifp = NULL; /* XXX */ if (--ll_ifma->ifma_refcount == 0) { if (ifp != NULL) { TAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifma_link); } if_freemulti(ll_ifma); } } if (ifp != NULL) TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link); if_freemulti(ifma); /* * The last reference to this instance of struct ifmultiaddr * was released; the hardware should be notified of this change. */ return 1; } /* * Set the link layer address on an interface. * * At this time we only support certain types of interfaces, * and we don't allow the length of the address to change. */ int if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len) { struct sockaddr_dl *sdl; struct ifaddr *ifa; struct ifreq ifr; ifa = ifp->if_addr; if (ifa == NULL) return (EINVAL); sdl = (struct sockaddr_dl *)ifa->ifa_addr; if (sdl == NULL) return (EINVAL); if (len != sdl->sdl_alen) /* don't allow length to change */ return (EINVAL); switch (ifp->if_type) { case IFT_ETHER: case IFT_FDDI: case IFT_XETHER: case IFT_ISO88025: case IFT_L2VLAN: case IFT_BRIDGE: case IFT_ARCNET: case IFT_IEEE8023ADLAG: bcopy(lladdr, LLADDR(sdl), len); break; default: return (ENODEV); } /* * If the interface is already up, we need * to re-init it in order to reprogram its * address filter. */ if ((ifp->if_flags & IFF_UP) != 0) { if (ifp->if_ioctl) { IFF_LOCKGIANT(ifp); ifp->if_flags &= ~IFF_UP; ifr.ifr_flags = ifp->if_flags & 0xffff; ifr.ifr_flagshigh = ifp->if_flags >> 16; (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); ifp->if_flags |= IFF_UP; ifr.ifr_flags = ifp->if_flags & 0xffff; ifr.ifr_flagshigh = ifp->if_flags >> 16; (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); IFF_UNLOCKGIANT(ifp); } #ifdef INET /* * Also send gratuitous ARPs to notify other nodes about * the address change. */ TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family == AF_INET) arp_ifinit(ifp, ifa); } #endif } return (0); } /* * The name argument must be a pointer to storage which will last as * long as the interface does. For physical devices, the result of * device_get_name(dev) is a good choice and for pseudo-devices a * static string works well. */ void if_initname(struct ifnet *ifp, const char *name, int unit) { ifp->if_dname = name; ifp->if_dunit = unit; if (unit != IF_DUNIT_NONE) snprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit); else strlcpy(ifp->if_xname, name, IFNAMSIZ); } int if_printf(struct ifnet *ifp, const char * fmt, ...) { va_list ap; int retval; retval = printf("%s: ", ifp->if_xname); va_start(ap, fmt); retval += vprintf(fmt, ap); va_end(ap); return (retval); } /* * When an interface is marked IFF_NEEDSGIANT, its if_start() routine cannot * be called without Giant. However, we often can't acquire the Giant lock * at those points; instead, we run it via a task queue that holds Giant via * if_start_deferred. * * XXXRW: We need to make sure that the ifnet isn't fully detached until any * outstanding if_start_deferred() tasks that will run after the free. This * probably means waiting in if_detach(). */ void if_start(struct ifnet *ifp) { if (ifp->if_flags & IFF_NEEDSGIANT) { if (mtx_owned(&Giant)) (*(ifp)->if_start)(ifp); else taskqueue_enqueue(taskqueue_swi_giant, &ifp->if_starttask); } else (*(ifp)->if_start)(ifp); } static void if_start_deferred(void *context, int pending) { struct ifnet *ifp; GIANT_REQUIRED; ifp = context; (ifp->if_start)(ifp); } /* * Backwards compatibility interface for drivers * that have not implemented it */ static int if_transmit(struct ifnet *ifp, struct mbuf *m) { int error; IFQ_HANDOFF(ifp, m, error); return (error); } int if_handoff(struct ifqueue *ifq, struct mbuf *m, struct ifnet *ifp, int adjust) { int active = 0; IF_LOCK(ifq); if (_IF_QFULL(ifq)) { _IF_DROP(ifq); IF_UNLOCK(ifq); m_freem(m); return (0); } if (ifp != NULL) { ifp->if_obytes += m->m_pkthdr.len + adjust; if (m->m_flags & (M_BCAST|M_MCAST)) ifp->if_omcasts++; active = ifp->if_drv_flags & IFF_DRV_OACTIVE; } _IF_ENQUEUE(ifq, m); IF_UNLOCK(ifq); if (ifp != NULL && !active) if_start(ifp); return (1); } void if_register_com_alloc(u_char type, if_com_alloc_t *a, if_com_free_t *f) { KASSERT(if_com_alloc[type] == NULL, ("if_register_com_alloc: %d already registered", type)); KASSERT(if_com_free[type] == NULL, ("if_register_com_alloc: %d free already registered", type)); if_com_alloc[type] = a; if_com_free[type] = f; } void if_deregister_com_alloc(u_char type) { KASSERT(if_com_alloc[type] != NULL, ("if_deregister_com_alloc: %d not registered", type)); KASSERT(if_com_free[type] != NULL, ("if_deregister_com_alloc: %d free not registered", type)); if_com_alloc[type] = NULL; if_com_free[type] = NULL; }