//===--- Lexer.cpp - C Language Family Lexer ------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Lexer and Token interfaces. // //===----------------------------------------------------------------------===// // // TODO: GCC Diagnostics emitted by the lexer: // PEDWARN: (form feed|vertical tab) in preprocessing directive // // Universal characters, unicode, char mapping: // WARNING: `%.*s' is not in NFKC // WARNING: `%.*s' is not in NFC // // Other: // TODO: Options to support: // -fexec-charset,-fwide-exec-charset // //===----------------------------------------------------------------------===// #include "clang/Lex/Lexer.h" #include "clang/Lex/Preprocessor.h" #include "clang/Lex/LexDiagnostic.h" #include "clang/Basic/SourceManager.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/MemoryBuffer.h" #include using namespace clang; static void InitCharacterInfo(); //===----------------------------------------------------------------------===// // Token Class Implementation //===----------------------------------------------------------------------===// /// isObjCAtKeyword - Return true if we have an ObjC keyword identifier. bool Token::isObjCAtKeyword(tok::ObjCKeywordKind objcKey) const { if (IdentifierInfo *II = getIdentifierInfo()) return II->getObjCKeywordID() == objcKey; return false; } /// getObjCKeywordID - Return the ObjC keyword kind. tok::ObjCKeywordKind Token::getObjCKeywordID() const { IdentifierInfo *specId = getIdentifierInfo(); return specId ? specId->getObjCKeywordID() : tok::objc_not_keyword; } //===----------------------------------------------------------------------===// // Lexer Class Implementation //===----------------------------------------------------------------------===// void Lexer::InitLexer(const char *BufStart, const char *BufPtr, const char *BufEnd) { InitCharacterInfo(); BufferStart = BufStart; BufferPtr = BufPtr; BufferEnd = BufEnd; assert(BufEnd[0] == 0 && "We assume that the input buffer has a null character at the end" " to simplify lexing!"); Is_PragmaLexer = false; IsEofCodeCompletion = false; // Start of the file is a start of line. IsAtStartOfLine = true; // We are not after parsing a #. ParsingPreprocessorDirective = false; // We are not after parsing #include. ParsingFilename = false; // We are not in raw mode. Raw mode disables diagnostics and interpretation // of tokens (e.g. identifiers, thus disabling macro expansion). It is used // to quickly lex the tokens of the buffer, e.g. when handling a "#if 0" block // or otherwise skipping over tokens. LexingRawMode = false; // Default to not keeping comments. ExtendedTokenMode = 0; } /// Lexer constructor - Create a new lexer object for the specified buffer /// with the specified preprocessor managing the lexing process. This lexer /// assumes that the associated file buffer and Preprocessor objects will /// outlive it, so it doesn't take ownership of either of them. Lexer::Lexer(FileID FID, Preprocessor &PP) : PreprocessorLexer(&PP, FID), FileLoc(PP.getSourceManager().getLocForStartOfFile(FID)), Features(PP.getLangOptions()) { const llvm::MemoryBuffer *InputFile = PP.getSourceManager().getBuffer(FID); InitLexer(InputFile->getBufferStart(), InputFile->getBufferStart(), InputFile->getBufferEnd()); // Default to keeping comments if the preprocessor wants them. SetCommentRetentionState(PP.getCommentRetentionState()); // If the input file is truncated, the EOF is a code-completion token. if (PP.getSourceManager().isTruncatedFile(FID)) IsEofCodeCompletion = true; } /// Lexer constructor - Create a new raw lexer object. This object is only /// suitable for calls to 'LexRawToken'. This lexer assumes that the text /// range will outlive it, so it doesn't take ownership of it. Lexer::Lexer(SourceLocation fileloc, const LangOptions &features, const char *BufStart, const char *BufPtr, const char *BufEnd) : FileLoc(fileloc), Features(features) { InitLexer(BufStart, BufPtr, BufEnd); // We *are* in raw mode. LexingRawMode = true; } /// Lexer constructor - Create a new raw lexer object. This object is only /// suitable for calls to 'LexRawToken'. This lexer assumes that the text /// range will outlive it, so it doesn't take ownership of it. Lexer::Lexer(FileID FID, const SourceManager &SM, const LangOptions &features) : FileLoc(SM.getLocForStartOfFile(FID)), Features(features) { const llvm::MemoryBuffer *FromFile = SM.getBuffer(FID); InitLexer(FromFile->getBufferStart(), FromFile->getBufferStart(), FromFile->getBufferEnd()); // We *are* in raw mode. LexingRawMode = true; } /// Create_PragmaLexer: Lexer constructor - Create a new lexer object for /// _Pragma expansion. This has a variety of magic semantics that this method /// sets up. It returns a new'd Lexer that must be delete'd when done. /// /// On entrance to this routine, TokStartLoc is a macro location which has a /// spelling loc that indicates the bytes to be lexed for the token and an /// instantiation location that indicates where all lexed tokens should be /// "expanded from". /// /// FIXME: It would really be nice to make _Pragma just be a wrapper around a /// normal lexer that remaps tokens as they fly by. This would require making /// Preprocessor::Lex virtual. Given that, we could just dump in a magic lexer /// interface that could handle this stuff. This would pull GetMappedTokenLoc /// out of the critical path of the lexer! /// Lexer *Lexer::Create_PragmaLexer(SourceLocation SpellingLoc, SourceLocation InstantiationLocStart, SourceLocation InstantiationLocEnd, unsigned TokLen, Preprocessor &PP) { SourceManager &SM = PP.getSourceManager(); // Create the lexer as if we were going to lex the file normally. FileID SpellingFID = SM.getFileID(SpellingLoc); Lexer *L = new Lexer(SpellingFID, PP); // Now that the lexer is created, change the start/end locations so that we // just lex the subsection of the file that we want. This is lexing from a // scratch buffer. const char *StrData = SM.getCharacterData(SpellingLoc); L->BufferPtr = StrData; L->BufferEnd = StrData+TokLen; assert(L->BufferEnd[0] == 0 && "Buffer is not nul terminated!"); // Set the SourceLocation with the remapping information. This ensures that // GetMappedTokenLoc will remap the tokens as they are lexed. L->FileLoc = SM.createInstantiationLoc(SM.getLocForStartOfFile(SpellingFID), InstantiationLocStart, InstantiationLocEnd, TokLen); // Ensure that the lexer thinks it is inside a directive, so that end \n will // return an EOM token. L->ParsingPreprocessorDirective = true; // This lexer really is for _Pragma. L->Is_PragmaLexer = true; return L; } /// Stringify - Convert the specified string into a C string, with surrounding /// ""'s, and with escaped \ and " characters. std::string Lexer::Stringify(const std::string &Str, bool Charify) { std::string Result = Str; char Quote = Charify ? '\'' : '"'; for (unsigned i = 0, e = Result.size(); i != e; ++i) { if (Result[i] == '\\' || Result[i] == Quote) { Result.insert(Result.begin()+i, '\\'); ++i; ++e; } } return Result; } /// Stringify - Convert the specified string into a C string by escaping '\' /// and " characters. This does not add surrounding ""'s to the string. void Lexer::Stringify(llvm::SmallVectorImpl &Str) { for (unsigned i = 0, e = Str.size(); i != e; ++i) { if (Str[i] == '\\' || Str[i] == '"') { Str.insert(Str.begin()+i, '\\'); ++i; ++e; } } } /// MeasureTokenLength - Relex the token at the specified location and return /// its length in bytes in the input file. If the token needs cleaning (e.g. /// includes a trigraph or an escaped newline) then this count includes bytes /// that are part of that. unsigned Lexer::MeasureTokenLength(SourceLocation Loc, const SourceManager &SM, const LangOptions &LangOpts) { // TODO: this could be special cased for common tokens like identifiers, ')', // etc to make this faster, if it mattered. Just look at StrData[0] to handle // all obviously single-char tokens. This could use // Lexer::isObviouslySimpleCharacter for example to handle identifiers or // something. // If this comes from a macro expansion, we really do want the macro name, not // the token this macro expanded to. Loc = SM.getInstantiationLoc(Loc); std::pair LocInfo = SM.getDecomposedLoc(Loc); std::pair Buffer = SM.getBufferData(LocInfo.first); const char *StrData = Buffer.first+LocInfo.second; // Create a lexer starting at the beginning of this token. Lexer TheLexer(Loc, LangOpts, Buffer.first, StrData, Buffer.second); TheLexer.SetCommentRetentionState(true); Token TheTok; TheLexer.LexFromRawLexer(TheTok); return TheTok.getLength(); } //===----------------------------------------------------------------------===// // Character information. //===----------------------------------------------------------------------===// enum { CHAR_HORZ_WS = 0x01, // ' ', '\t', '\f', '\v'. Note, no '\0' CHAR_VERT_WS = 0x02, // '\r', '\n' CHAR_LETTER = 0x04, // a-z,A-Z CHAR_NUMBER = 0x08, // 0-9 CHAR_UNDER = 0x10, // _ CHAR_PERIOD = 0x20 // . }; // Statically initialize CharInfo table based on ASCII character set // Reference: FreeBSD 7.2 /usr/share/misc/ascii static const unsigned char CharInfo[256] = { // 0 NUL 1 SOH 2 STX 3 ETX // 4 EOT 5 ENQ 6 ACK 7 BEL 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , // 8 BS 9 HT 10 NL 11 VT //12 NP 13 CR 14 SO 15 SI 0 , CHAR_HORZ_WS, CHAR_VERT_WS, CHAR_HORZ_WS, CHAR_HORZ_WS, CHAR_VERT_WS, 0 , 0 , //16 DLE 17 DC1 18 DC2 19 DC3 //20 DC4 21 NAK 22 SYN 23 ETB 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , //24 CAN 25 EM 26 SUB 27 ESC //28 FS 29 GS 30 RS 31 US 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , //32 SP 33 ! 34 " 35 # //36 $ 37 % 38 & 39 ' CHAR_HORZ_WS, 0 , 0 , 0 , 0 , 0 , 0 , 0 , //40 ( 41 ) 42 * 43 + //44 , 45 - 46 . 47 / 0 , 0 , 0 , 0 , 0 , 0 , CHAR_PERIOD , 0 , //48 0 49 1 50 2 51 3 //52 4 53 5 54 6 55 7 CHAR_NUMBER , CHAR_NUMBER , CHAR_NUMBER , CHAR_NUMBER , CHAR_NUMBER , CHAR_NUMBER , CHAR_NUMBER , CHAR_NUMBER , //56 8 57 9 58 : 59 ; //60 < 61 = 62 > 63 ? CHAR_NUMBER , CHAR_NUMBER , 0 , 0 , 0 , 0 , 0 , 0 , //64 @ 65 A 66 B 67 C //68 D 69 E 70 F 71 G 0 , CHAR_LETTER , CHAR_LETTER , CHAR_LETTER , CHAR_LETTER , CHAR_LETTER , CHAR_LETTER , CHAR_LETTER , //72 H 73 I 74 J 75 K //76 L 77 M 78 N 79 O CHAR_LETTER , CHAR_LETTER , CHAR_LETTER , CHAR_LETTER , CHAR_LETTER , CHAR_LETTER , CHAR_LETTER , CHAR_LETTER , //80 P 81 Q 82 R 83 S //84 T 85 U 86 V 87 W CHAR_LETTER , CHAR_LETTER , CHAR_LETTER , CHAR_LETTER , CHAR_LETTER , CHAR_LETTER , CHAR_LETTER , CHAR_LETTER , //88 X 89 Y 90 Z 91 [ //92 \ 93 ] 94 ^ 95 _ CHAR_LETTER , CHAR_LETTER , CHAR_LETTER , 0 , 0 , 0 , 0 , CHAR_UNDER , //96 ` 97 a 98 b 99 c //100 d 101 e 102 f 103 g 0 , CHAR_LETTER , CHAR_LETTER , CHAR_LETTER , CHAR_LETTER , CHAR_LETTER , CHAR_LETTER , CHAR_LETTER , //104 h 105 i 106 j 107 k //108 l 109 m 110 n 111 o CHAR_LETTER , CHAR_LETTER , CHAR_LETTER , CHAR_LETTER , CHAR_LETTER , CHAR_LETTER , CHAR_LETTER , CHAR_LETTER , //112 p 113 q 114 r 115 s //116 t 117 u 118 v 119 w CHAR_LETTER , CHAR_LETTER , CHAR_LETTER , CHAR_LETTER , CHAR_LETTER , CHAR_LETTER , CHAR_LETTER , CHAR_LETTER , //120 x 121 y 122 z 123 { //124 | 125 } 126 ~ 127 DEL CHAR_LETTER , CHAR_LETTER , CHAR_LETTER , 0 , 0 , 0 , 0 , 0 }; static void InitCharacterInfo() { static bool isInited = false; if (isInited) return; // check the statically-initialized CharInfo table assert(CHAR_HORZ_WS == CharInfo[(int)' ']); assert(CHAR_HORZ_WS == CharInfo[(int)'\t']); assert(CHAR_HORZ_WS == CharInfo[(int)'\f']); assert(CHAR_HORZ_WS == CharInfo[(int)'\v']); assert(CHAR_VERT_WS == CharInfo[(int)'\n']); assert(CHAR_VERT_WS == CharInfo[(int)'\r']); assert(CHAR_UNDER == CharInfo[(int)'_']); assert(CHAR_PERIOD == CharInfo[(int)'.']); for (unsigned i = 'a'; i <= 'z'; ++i) { assert(CHAR_LETTER == CharInfo[i]); assert(CHAR_LETTER == CharInfo[i+'A'-'a']); } for (unsigned i = '0'; i <= '9'; ++i) assert(CHAR_NUMBER == CharInfo[i]); isInited = true; } /// isIdentifierBody - Return true if this is the body character of an /// identifier, which is [a-zA-Z0-9_]. static inline bool isIdentifierBody(unsigned char c) { return (CharInfo[c] & (CHAR_LETTER|CHAR_NUMBER|CHAR_UNDER)) ? true : false; } /// isHorizontalWhitespace - Return true if this character is horizontal /// whitespace: ' ', '\t', '\f', '\v'. Note that this returns false for '\0'. static inline bool isHorizontalWhitespace(unsigned char c) { return (CharInfo[c] & CHAR_HORZ_WS) ? true : false; } /// isWhitespace - Return true if this character is horizontal or vertical /// whitespace: ' ', '\t', '\f', '\v', '\n', '\r'. Note that this returns false /// for '\0'. static inline bool isWhitespace(unsigned char c) { return (CharInfo[c] & (CHAR_HORZ_WS|CHAR_VERT_WS)) ? true : false; } /// isNumberBody - Return true if this is the body character of an /// preprocessing number, which is [a-zA-Z0-9_.]. static inline bool isNumberBody(unsigned char c) { return (CharInfo[c] & (CHAR_LETTER|CHAR_NUMBER|CHAR_UNDER|CHAR_PERIOD)) ? true : false; } //===----------------------------------------------------------------------===// // Diagnostics forwarding code. //===----------------------------------------------------------------------===// /// GetMappedTokenLoc - If lexing out of a 'mapped buffer', where we pretend the /// lexer buffer was all instantiated at a single point, perform the mapping. /// This is currently only used for _Pragma implementation, so it is the slow /// path of the hot getSourceLocation method. Do not allow it to be inlined. static SourceLocation GetMappedTokenLoc(Preprocessor &PP, SourceLocation FileLoc, unsigned CharNo, unsigned TokLen) DISABLE_INLINE; static SourceLocation GetMappedTokenLoc(Preprocessor &PP, SourceLocation FileLoc, unsigned CharNo, unsigned TokLen) { assert(FileLoc.isMacroID() && "Must be an instantiation"); // Otherwise, we're lexing "mapped tokens". This is used for things like // _Pragma handling. Combine the instantiation location of FileLoc with the // spelling location. SourceManager &SM = PP.getSourceManager(); // Create a new SLoc which is expanded from Instantiation(FileLoc) but whose // characters come from spelling(FileLoc)+Offset. SourceLocation SpellingLoc = SM.getSpellingLoc(FileLoc); SpellingLoc = SpellingLoc.getFileLocWithOffset(CharNo); // Figure out the expansion loc range, which is the range covered by the // original _Pragma(...) sequence. std::pair II = SM.getImmediateInstantiationRange(FileLoc); return SM.createInstantiationLoc(SpellingLoc, II.first, II.second, TokLen); } /// getSourceLocation - Return a source location identifier for the specified /// offset in the current file. SourceLocation Lexer::getSourceLocation(const char *Loc, unsigned TokLen) const { assert(Loc >= BufferStart && Loc <= BufferEnd && "Location out of range for this buffer!"); // In the normal case, we're just lexing from a simple file buffer, return // the file id from FileLoc with the offset specified. unsigned CharNo = Loc-BufferStart; if (FileLoc.isFileID()) return FileLoc.getFileLocWithOffset(CharNo); // Otherwise, this is the _Pragma lexer case, which pretends that all of the // tokens are lexed from where the _Pragma was defined. assert(PP && "This doesn't work on raw lexers"); return GetMappedTokenLoc(*PP, FileLoc, CharNo, TokLen); } /// Diag - Forwarding function for diagnostics. This translate a source /// position in the current buffer into a SourceLocation object for rendering. DiagnosticBuilder Lexer::Diag(const char *Loc, unsigned DiagID) const { return PP->Diag(getSourceLocation(Loc), DiagID); } //===----------------------------------------------------------------------===// // Trigraph and Escaped Newline Handling Code. //===----------------------------------------------------------------------===// /// GetTrigraphCharForLetter - Given a character that occurs after a ?? pair, /// return the decoded trigraph letter it corresponds to, or '\0' if nothing. static char GetTrigraphCharForLetter(char Letter) { switch (Letter) { default: return 0; case '=': return '#'; case ')': return ']'; case '(': return '['; case '!': return '|'; case '\'': return '^'; case '>': return '}'; case '/': return '\\'; case '<': return '{'; case '-': return '~'; } } /// DecodeTrigraphChar - If the specified character is a legal trigraph when /// prefixed with ??, emit a trigraph warning. If trigraphs are enabled, /// return the result character. Finally, emit a warning about trigraph use /// whether trigraphs are enabled or not. static char DecodeTrigraphChar(const char *CP, Lexer *L) { char Res = GetTrigraphCharForLetter(*CP); if (!Res || !L) return Res; if (!L->getFeatures().Trigraphs) { if (!L->isLexingRawMode()) L->Diag(CP-2, diag::trigraph_ignored); return 0; } if (!L->isLexingRawMode()) L->Diag(CP-2, diag::trigraph_converted) << std::string()+Res; return Res; } /// getEscapedNewLineSize - Return the size of the specified escaped newline, /// or 0 if it is not an escaped newline. P[-1] is known to be a "\" or a /// trigraph equivalent on entry to this function. unsigned Lexer::getEscapedNewLineSize(const char *Ptr) { unsigned Size = 0; while (isWhitespace(Ptr[Size])) { ++Size; if (Ptr[Size-1] != '\n' && Ptr[Size-1] != '\r') continue; // If this is a \r\n or \n\r, skip the other half. if ((Ptr[Size] == '\r' || Ptr[Size] == '\n') && Ptr[Size-1] != Ptr[Size]) ++Size; return Size; } // Not an escaped newline, must be a \t or something else. return 0; } /// SkipEscapedNewLines - If P points to an escaped newline (or a series of /// them), skip over them and return the first non-escaped-newline found, /// otherwise return P. const char *Lexer::SkipEscapedNewLines(const char *P) { while (1) { const char *AfterEscape; if (*P == '\\') { AfterEscape = P+1; } else if (*P == '?') { // If not a trigraph for escape, bail out. if (P[1] != '?' || P[2] != '/') return P; AfterEscape = P+3; } else { return P; } unsigned NewLineSize = Lexer::getEscapedNewLineSize(AfterEscape); if (NewLineSize == 0) return P; P = AfterEscape+NewLineSize; } } /// getCharAndSizeSlow - Peek a single 'character' from the specified buffer, /// get its size, and return it. This is tricky in several cases: /// 1. If currently at the start of a trigraph, we warn about the trigraph, /// then either return the trigraph (skipping 3 chars) or the '?', /// depending on whether trigraphs are enabled or not. /// 2. If this is an escaped newline (potentially with whitespace between /// the backslash and newline), implicitly skip the newline and return /// the char after it. /// 3. If this is a UCN, return it. FIXME: C++ UCN's? /// /// This handles the slow/uncommon case of the getCharAndSize method. Here we /// know that we can accumulate into Size, and that we have already incremented /// Ptr by Size bytes. /// /// NOTE: When this method is updated, getCharAndSizeSlowNoWarn (below) should /// be updated to match. /// char Lexer::getCharAndSizeSlow(const char *Ptr, unsigned &Size, Token *Tok) { // If we have a slash, look for an escaped newline. if (Ptr[0] == '\\') { ++Size; ++Ptr; Slash: // Common case, backslash-char where the char is not whitespace. if (!isWhitespace(Ptr[0])) return '\\'; // See if we have optional whitespace characters between the slash and // newline. if (unsigned EscapedNewLineSize = getEscapedNewLineSize(Ptr)) { // Remember that this token needs to be cleaned. if (Tok) Tok->setFlag(Token::NeedsCleaning); // Warn if there was whitespace between the backslash and newline. if (Ptr[0] != '\n' && Ptr[0] != '\r' && Tok && !isLexingRawMode()) Diag(Ptr, diag::backslash_newline_space); // Found backslash. Parse the char after it. Size += EscapedNewLineSize; Ptr += EscapedNewLineSize; // Use slow version to accumulate a correct size field. return getCharAndSizeSlow(Ptr, Size, Tok); } // Otherwise, this is not an escaped newline, just return the slash. return '\\'; } // If this is a trigraph, process it. if (Ptr[0] == '?' && Ptr[1] == '?') { // If this is actually a legal trigraph (not something like "??x"), emit // a trigraph warning. If so, and if trigraphs are enabled, return it. if (char C = DecodeTrigraphChar(Ptr+2, Tok ? this : 0)) { // Remember that this token needs to be cleaned. if (Tok) Tok->setFlag(Token::NeedsCleaning); Ptr += 3; Size += 3; if (C == '\\') goto Slash; return C; } } // If this is neither, return a single character. ++Size; return *Ptr; } /// getCharAndSizeSlowNoWarn - Handle the slow/uncommon case of the /// getCharAndSizeNoWarn method. Here we know that we can accumulate into Size, /// and that we have already incremented Ptr by Size bytes. /// /// NOTE: When this method is updated, getCharAndSizeSlow (above) should /// be updated to match. char Lexer::getCharAndSizeSlowNoWarn(const char *Ptr, unsigned &Size, const LangOptions &Features) { // If we have a slash, look for an escaped newline. if (Ptr[0] == '\\') { ++Size; ++Ptr; Slash: // Common case, backslash-char where the char is not whitespace. if (!isWhitespace(Ptr[0])) return '\\'; // See if we have optional whitespace characters followed by a newline. if (unsigned EscapedNewLineSize = getEscapedNewLineSize(Ptr)) { // Found backslash. Parse the char after it. Size += EscapedNewLineSize; Ptr += EscapedNewLineSize; // Use slow version to accumulate a correct size field. return getCharAndSizeSlowNoWarn(Ptr, Size, Features); } // Otherwise, this is not an escaped newline, just return the slash. return '\\'; } // If this is a trigraph, process it. if (Features.Trigraphs && Ptr[0] == '?' && Ptr[1] == '?') { // If this is actually a legal trigraph (not something like "??x"), return // it. if (char C = GetTrigraphCharForLetter(Ptr[2])) { Ptr += 3; Size += 3; if (C == '\\') goto Slash; return C; } } // If this is neither, return a single character. ++Size; return *Ptr; } //===----------------------------------------------------------------------===// // Helper methods for lexing. //===----------------------------------------------------------------------===// void Lexer::LexIdentifier(Token &Result, const char *CurPtr) { // Match [_A-Za-z0-9]*, we have already matched [_A-Za-z$] unsigned Size; unsigned char C = *CurPtr++; while (isIdentifierBody(C)) { C = *CurPtr++; } --CurPtr; // Back up over the skipped character. // Fast path, no $,\,? in identifier found. '\' might be an escaped newline // or UCN, and ? might be a trigraph for '\', an escaped newline or UCN. // FIXME: UCNs. if (C != '\\' && C != '?' && (C != '$' || !Features.DollarIdents)) { FinishIdentifier: const char *IdStart = BufferPtr; FormTokenWithChars(Result, CurPtr, tok::identifier); // If we are in raw mode, return this identifier raw. There is no need to // look up identifier information or attempt to macro expand it. if (LexingRawMode) return; // Fill in Result.IdentifierInfo, looking up the identifier in the // identifier table. IdentifierInfo *II = PP->LookUpIdentifierInfo(Result, IdStart); // Change the kind of this identifier to the appropriate token kind, e.g. // turning "for" into a keyword. Result.setKind(II->getTokenID()); // Finally, now that we know we have an identifier, pass this off to the // preprocessor, which may macro expand it or something. if (II->isHandleIdentifierCase()) PP->HandleIdentifier(Result); return; } // Otherwise, $,\,? in identifier found. Enter slower path. C = getCharAndSize(CurPtr, Size); while (1) { if (C == '$') { // If we hit a $ and they are not supported in identifiers, we are done. if (!Features.DollarIdents) goto FinishIdentifier; // Otherwise, emit a diagnostic and continue. if (!isLexingRawMode()) Diag(CurPtr, diag::ext_dollar_in_identifier); CurPtr = ConsumeChar(CurPtr, Size, Result); C = getCharAndSize(CurPtr, Size); continue; } else if (!isIdentifierBody(C)) { // FIXME: UCNs. // Found end of identifier. goto FinishIdentifier; } // Otherwise, this character is good, consume it. CurPtr = ConsumeChar(CurPtr, Size, Result); C = getCharAndSize(CurPtr, Size); while (isIdentifierBody(C)) { // FIXME: UCNs. CurPtr = ConsumeChar(CurPtr, Size, Result); C = getCharAndSize(CurPtr, Size); } } } /// LexNumericConstant - Lex the remainder of a integer or floating point /// constant. From[-1] is the first character lexed. Return the end of the /// constant. void Lexer::LexNumericConstant(Token &Result, const char *CurPtr) { unsigned Size; char C = getCharAndSize(CurPtr, Size); char PrevCh = 0; while (isNumberBody(C)) { // FIXME: UCNs? CurPtr = ConsumeChar(CurPtr, Size, Result); PrevCh = C; C = getCharAndSize(CurPtr, Size); } // If we fell out, check for a sign, due to 1e+12. If we have one, continue. if ((C == '-' || C == '+') && (PrevCh == 'E' || PrevCh == 'e')) return LexNumericConstant(Result, ConsumeChar(CurPtr, Size, Result)); // If we have a hex FP constant, continue. if ((C == '-' || C == '+') && (PrevCh == 'P' || PrevCh == 'p')) return LexNumericConstant(Result, ConsumeChar(CurPtr, Size, Result)); // Update the location of token as well as BufferPtr. const char *TokStart = BufferPtr; FormTokenWithChars(Result, CurPtr, tok::numeric_constant); Result.setLiteralData(TokStart); } /// LexStringLiteral - Lex the remainder of a string literal, after having lexed /// either " or L". void Lexer::LexStringLiteral(Token &Result, const char *CurPtr, bool Wide) { const char *NulCharacter = 0; // Does this string contain the \0 character? char C = getAndAdvanceChar(CurPtr, Result); while (C != '"') { // Skip escaped characters. if (C == '\\') { // Skip the escaped character. C = getAndAdvanceChar(CurPtr, Result); } else if (C == '\n' || C == '\r' || // Newline. (C == 0 && CurPtr-1 == BufferEnd)) { // End of file. if (!isLexingRawMode() && !Features.AsmPreprocessor) Diag(BufferPtr, diag::err_unterminated_string); FormTokenWithChars(Result, CurPtr-1, tok::unknown); return; } else if (C == 0) { NulCharacter = CurPtr-1; } C = getAndAdvanceChar(CurPtr, Result); } // If a nul character existed in the string, warn about it. if (NulCharacter && !isLexingRawMode()) Diag(NulCharacter, diag::null_in_string); // Update the location of the token as well as the BufferPtr instance var. const char *TokStart = BufferPtr; FormTokenWithChars(Result, CurPtr, Wide ? tok::wide_string_literal : tok::string_literal); Result.setLiteralData(TokStart); } /// LexAngledStringLiteral - Lex the remainder of an angled string literal, /// after having lexed the '<' character. This is used for #include filenames. void Lexer::LexAngledStringLiteral(Token &Result, const char *CurPtr) { const char *NulCharacter = 0; // Does this string contain the \0 character? const char *AfterLessPos = CurPtr; char C = getAndAdvanceChar(CurPtr, Result); while (C != '>') { // Skip escaped characters. if (C == '\\') { // Skip the escaped character. C = getAndAdvanceChar(CurPtr, Result); } else if (C == '\n' || C == '\r' || // Newline. (C == 0 && CurPtr-1 == BufferEnd)) { // End of file. // If the filename is unterminated, then it must just be a lone < // character. Return this as such. FormTokenWithChars(Result, AfterLessPos, tok::less); return; } else if (C == 0) { NulCharacter = CurPtr-1; } C = getAndAdvanceChar(CurPtr, Result); } // If a nul character existed in the string, warn about it. if (NulCharacter && !isLexingRawMode()) Diag(NulCharacter, diag::null_in_string); // Update the location of token as well as BufferPtr. const char *TokStart = BufferPtr; FormTokenWithChars(Result, CurPtr, tok::angle_string_literal); Result.setLiteralData(TokStart); } /// LexCharConstant - Lex the remainder of a character constant, after having /// lexed either ' or L'. void Lexer::LexCharConstant(Token &Result, const char *CurPtr) { const char *NulCharacter = 0; // Does this character contain the \0 character? // Handle the common case of 'x' and '\y' efficiently. char C = getAndAdvanceChar(CurPtr, Result); if (C == '\'') { if (!isLexingRawMode() && !Features.AsmPreprocessor) Diag(BufferPtr, diag::err_empty_character); FormTokenWithChars(Result, CurPtr, tok::unknown); return; } else if (C == '\\') { // Skip the escaped character. // FIXME: UCN's. C = getAndAdvanceChar(CurPtr, Result); } if (C && C != '\n' && C != '\r' && CurPtr[0] == '\'') { ++CurPtr; } else { // Fall back on generic code for embedded nulls, newlines, wide chars. do { // Skip escaped characters. if (C == '\\') { // Skip the escaped character. C = getAndAdvanceChar(CurPtr, Result); } else if (C == '\n' || C == '\r' || // Newline. (C == 0 && CurPtr-1 == BufferEnd)) { // End of file. if (!isLexingRawMode() && !Features.AsmPreprocessor) Diag(BufferPtr, diag::err_unterminated_char); FormTokenWithChars(Result, CurPtr-1, tok::unknown); return; } else if (C == 0) { NulCharacter = CurPtr-1; } C = getAndAdvanceChar(CurPtr, Result); } while (C != '\''); } if (NulCharacter && !isLexingRawMode()) Diag(NulCharacter, diag::null_in_char); // Update the location of token as well as BufferPtr. const char *TokStart = BufferPtr; FormTokenWithChars(Result, CurPtr, tok::char_constant); Result.setLiteralData(TokStart); } /// SkipWhitespace - Efficiently skip over a series of whitespace characters. /// Update BufferPtr to point to the next non-whitespace character and return. /// /// This method forms a token and returns true if KeepWhitespaceMode is enabled. /// bool Lexer::SkipWhitespace(Token &Result, const char *CurPtr) { // Whitespace - Skip it, then return the token after the whitespace. unsigned char Char = *CurPtr; // Skip consequtive spaces efficiently. while (1) { // Skip horizontal whitespace very aggressively. while (isHorizontalWhitespace(Char)) Char = *++CurPtr; // Otherwise if we have something other than whitespace, we're done. if (Char != '\n' && Char != '\r') break; if (ParsingPreprocessorDirective) { // End of preprocessor directive line, let LexTokenInternal handle this. BufferPtr = CurPtr; return false; } // ok, but handle newline. // The returned token is at the start of the line. Result.setFlag(Token::StartOfLine); // No leading whitespace seen so far. Result.clearFlag(Token::LeadingSpace); Char = *++CurPtr; } // If this isn't immediately after a newline, there is leading space. char PrevChar = CurPtr[-1]; if (PrevChar != '\n' && PrevChar != '\r') Result.setFlag(Token::LeadingSpace); // If the client wants us to return whitespace, return it now. if (isKeepWhitespaceMode()) { FormTokenWithChars(Result, CurPtr, tok::unknown); return true; } BufferPtr = CurPtr; return false; } // SkipBCPLComment - We have just read the // characters from input. Skip until // we find the newline character thats terminate the comment. Then update /// BufferPtr and return. If we're in KeepCommentMode, this will form the token /// and return true. bool Lexer::SkipBCPLComment(Token &Result, const char *CurPtr) { // If BCPL comments aren't explicitly enabled for this language, emit an // extension warning. if (!Features.BCPLComment && !isLexingRawMode()) { Diag(BufferPtr, diag::ext_bcpl_comment); // Mark them enabled so we only emit one warning for this translation // unit. Features.BCPLComment = true; } // Scan over the body of the comment. The common case, when scanning, is that // the comment contains normal ascii characters with nothing interesting in // them. As such, optimize for this case with the inner loop. char C; do { C = *CurPtr; // FIXME: Speedup BCPL comment lexing. Just scan for a \n or \r character. // If we find a \n character, scan backwards, checking to see if it's an // escaped newline, like we do for block comments. // Skip over characters in the fast loop. while (C != 0 && // Potentially EOF. C != '\\' && // Potentially escaped newline. C != '?' && // Potentially trigraph. C != '\n' && C != '\r') // Newline or DOS-style newline. C = *++CurPtr; // If this is a newline, we're done. if (C == '\n' || C == '\r') break; // Found the newline? Break out! // Otherwise, this is a hard case. Fall back on getAndAdvanceChar to // properly decode the character. Read it in raw mode to avoid emitting // diagnostics about things like trigraphs. If we see an escaped newline, // we'll handle it below. const char *OldPtr = CurPtr; bool OldRawMode = isLexingRawMode(); LexingRawMode = true; C = getAndAdvanceChar(CurPtr, Result); LexingRawMode = OldRawMode; // If the char that we finally got was a \n, then we must have had something // like \. We don't want to have consumed the second // newline, we want CurPtr, to end up pointing to it down below. if (C == '\n' || C == '\r') { --CurPtr; C = 'x'; // doesn't matter what this is. } // If we read multiple characters, and one of those characters was a \r or // \n, then we had an escaped newline within the comment. Emit diagnostic // unless the next line is also a // comment. if (CurPtr != OldPtr+1 && C != '/' && CurPtr[0] != '/') { for (; OldPtr != CurPtr; ++OldPtr) if (OldPtr[0] == '\n' || OldPtr[0] == '\r') { // Okay, we found a // comment that ends in a newline, if the next // line is also a // comment, but has spaces, don't emit a diagnostic. if (isspace(C)) { const char *ForwardPtr = CurPtr; while (isspace(*ForwardPtr)) // Skip whitespace. ++ForwardPtr; if (ForwardPtr[0] == '/' && ForwardPtr[1] == '/') break; } if (!isLexingRawMode()) Diag(OldPtr-1, diag::ext_multi_line_bcpl_comment); break; } } if (CurPtr == BufferEnd+1) { --CurPtr; break; } } while (C != '\n' && C != '\r'); // Found but did not consume the newline. if (PP) PP->HandleComment(SourceRange(getSourceLocation(BufferPtr), getSourceLocation(CurPtr))); // If we are returning comments as tokens, return this comment as a token. if (inKeepCommentMode()) return SaveBCPLComment(Result, CurPtr); // If we are inside a preprocessor directive and we see the end of line, // return immediately, so that the lexer can return this as an EOM token. if (ParsingPreprocessorDirective || CurPtr == BufferEnd) { BufferPtr = CurPtr; return false; } // Otherwise, eat the \n character. We don't care if this is a \n\r or // \r\n sequence. This is an efficiency hack (because we know the \n can't // contribute to another token), it isn't needed for correctness. Note that // this is ok even in KeepWhitespaceMode, because we would have returned the /// comment above in that mode. ++CurPtr; // The next returned token is at the start of the line. Result.setFlag(Token::StartOfLine); // No leading whitespace seen so far. Result.clearFlag(Token::LeadingSpace); BufferPtr = CurPtr; return false; } /// SaveBCPLComment - If in save-comment mode, package up this BCPL comment in /// an appropriate way and return it. bool Lexer::SaveBCPLComment(Token &Result, const char *CurPtr) { // If we're not in a preprocessor directive, just return the // comment // directly. FormTokenWithChars(Result, CurPtr, tok::comment); if (!ParsingPreprocessorDirective) return true; // If this BCPL-style comment is in a macro definition, transmogrify it into // a C-style block comment. std::string Spelling = PP->getSpelling(Result); assert(Spelling[0] == '/' && Spelling[1] == '/' && "Not bcpl comment?"); Spelling[1] = '*'; // Change prefix to "/*". Spelling += "*/"; // add suffix. Result.setKind(tok::comment); PP->CreateString(&Spelling[0], Spelling.size(), Result, Result.getLocation()); return true; } /// isBlockCommentEndOfEscapedNewLine - Return true if the specified newline /// character (either \n or \r) is part of an escaped newline sequence. Issue a /// diagnostic if so. We know that the newline is inside of a block comment. static bool isEndOfBlockCommentWithEscapedNewLine(const char *CurPtr, Lexer *L) { assert(CurPtr[0] == '\n' || CurPtr[0] == '\r'); // Back up off the newline. --CurPtr; // If this is a two-character newline sequence, skip the other character. if (CurPtr[0] == '\n' || CurPtr[0] == '\r') { // \n\n or \r\r -> not escaped newline. if (CurPtr[0] == CurPtr[1]) return false; // \n\r or \r\n -> skip the newline. --CurPtr; } // If we have horizontal whitespace, skip over it. We allow whitespace // between the slash and newline. bool HasSpace = false; while (isHorizontalWhitespace(*CurPtr) || *CurPtr == 0) { --CurPtr; HasSpace = true; } // If we have a slash, we know this is an escaped newline. if (*CurPtr == '\\') { if (CurPtr[-1] != '*') return false; } else { // It isn't a slash, is it the ?? / trigraph? if (CurPtr[0] != '/' || CurPtr[-1] != '?' || CurPtr[-2] != '?' || CurPtr[-3] != '*') return false; // This is the trigraph ending the comment. Emit a stern warning! CurPtr -= 2; // If no trigraphs are enabled, warn that we ignored this trigraph and // ignore this * character. if (!L->getFeatures().Trigraphs) { if (!L->isLexingRawMode()) L->Diag(CurPtr, diag::trigraph_ignored_block_comment); return false; } if (!L->isLexingRawMode()) L->Diag(CurPtr, diag::trigraph_ends_block_comment); } // Warn about having an escaped newline between the */ characters. if (!L->isLexingRawMode()) L->Diag(CurPtr, diag::escaped_newline_block_comment_end); // If there was space between the backslash and newline, warn about it. if (HasSpace && !L->isLexingRawMode()) L->Diag(CurPtr, diag::backslash_newline_space); return true; } #ifdef __SSE2__ #include #elif __ALTIVEC__ #include #undef bool #endif /// SkipBlockComment - We have just read the /* characters from input. Read /// until we find the */ characters that terminate the comment. Note that we /// don't bother decoding trigraphs or escaped newlines in block comments, /// because they cannot cause the comment to end. The only thing that can /// happen is the comment could end with an escaped newline between the */ end /// of comment. /// /// If KeepCommentMode is enabled, this forms a token from the comment and /// returns true. bool Lexer::SkipBlockComment(Token &Result, const char *CurPtr) { // Scan one character past where we should, looking for a '/' character. Once // we find it, check to see if it was preceeded by a *. This common // optimization helps people who like to put a lot of * characters in their // comments. // The first character we get with newlines and trigraphs skipped to handle // the degenerate /*/ case below correctly if the * has an escaped newline // after it. unsigned CharSize; unsigned char C = getCharAndSize(CurPtr, CharSize); CurPtr += CharSize; if (C == 0 && CurPtr == BufferEnd+1) { if (!isLexingRawMode()) Diag(BufferPtr, diag::err_unterminated_block_comment); --CurPtr; // KeepWhitespaceMode should return this broken comment as a token. Since // it isn't a well formed comment, just return it as an 'unknown' token. if (isKeepWhitespaceMode()) { FormTokenWithChars(Result, CurPtr, tok::unknown); return true; } BufferPtr = CurPtr; return false; } // Check to see if the first character after the '/*' is another /. If so, // then this slash does not end the block comment, it is part of it. if (C == '/') C = *CurPtr++; while (1) { // Skip over all non-interesting characters until we find end of buffer or a // (probably ending) '/' character. if (CurPtr + 24 < BufferEnd) { // While not aligned to a 16-byte boundary. while (C != '/' && ((intptr_t)CurPtr & 0x0F) != 0) C = *CurPtr++; if (C == '/') goto FoundSlash; #ifdef __SSE2__ __m128i Slashes = _mm_set_epi8('/', '/', '/', '/', '/', '/', '/', '/', '/', '/', '/', '/', '/', '/', '/', '/'); while (CurPtr+16 <= BufferEnd && _mm_movemask_epi8(_mm_cmpeq_epi8(*(__m128i*)CurPtr, Slashes)) == 0) CurPtr += 16; #elif __ALTIVEC__ __vector unsigned char Slashes = { '/', '/', '/', '/', '/', '/', '/', '/', '/', '/', '/', '/', '/', '/', '/', '/' }; while (CurPtr+16 <= BufferEnd && !vec_any_eq(*(vector unsigned char*)CurPtr, Slashes)) CurPtr += 16; #else // Scan for '/' quickly. Many block comments are very large. while (CurPtr[0] != '/' && CurPtr[1] != '/' && CurPtr[2] != '/' && CurPtr[3] != '/' && CurPtr+4 < BufferEnd) { CurPtr += 4; } #endif // It has to be one of the bytes scanned, increment to it and read one. C = *CurPtr++; } // Loop to scan the remainder. while (C != '/' && C != '\0') C = *CurPtr++; FoundSlash: if (C == '/') { if (CurPtr[-2] == '*') // We found the final */. We're done! break; if ((CurPtr[-2] == '\n' || CurPtr[-2] == '\r')) { if (isEndOfBlockCommentWithEscapedNewLine(CurPtr-2, this)) { // We found the final */, though it had an escaped newline between the // * and /. We're done! break; } } if (CurPtr[0] == '*' && CurPtr[1] != '/') { // If this is a /* inside of the comment, emit a warning. Don't do this // if this is a /*/, which will end the comment. This misses cases with // embedded escaped newlines, but oh well. if (!isLexingRawMode()) Diag(CurPtr-1, diag::warn_nested_block_comment); } } else if (C == 0 && CurPtr == BufferEnd+1) { if (!isLexingRawMode()) Diag(BufferPtr, diag::err_unterminated_block_comment); // Note: the user probably forgot a */. We could continue immediately // after the /*, but this would involve lexing a lot of what really is the // comment, which surely would confuse the parser. --CurPtr; // KeepWhitespaceMode should return this broken comment as a token. Since // it isn't a well formed comment, just return it as an 'unknown' token. if (isKeepWhitespaceMode()) { FormTokenWithChars(Result, CurPtr, tok::unknown); return true; } BufferPtr = CurPtr; return false; } C = *CurPtr++; } if (PP) PP->HandleComment(SourceRange(getSourceLocation(BufferPtr), getSourceLocation(CurPtr))); // If we are returning comments as tokens, return this comment as a token. if (inKeepCommentMode()) { FormTokenWithChars(Result, CurPtr, tok::comment); return true; } // It is common for the tokens immediately after a /**/ comment to be // whitespace. Instead of going through the big switch, handle it // efficiently now. This is safe even in KeepWhitespaceMode because we would // have already returned above with the comment as a token. if (isHorizontalWhitespace(*CurPtr)) { Result.setFlag(Token::LeadingSpace); SkipWhitespace(Result, CurPtr+1); return false; } // Otherwise, just return so that the next character will be lexed as a token. BufferPtr = CurPtr; Result.setFlag(Token::LeadingSpace); return false; } //===----------------------------------------------------------------------===// // Primary Lexing Entry Points //===----------------------------------------------------------------------===// /// ReadToEndOfLine - Read the rest of the current preprocessor line as an /// uninterpreted string. This switches the lexer out of directive mode. std::string Lexer::ReadToEndOfLine() { assert(ParsingPreprocessorDirective && ParsingFilename == false && "Must be in a preprocessing directive!"); std::string Result; Token Tmp; // CurPtr - Cache BufferPtr in an automatic variable. const char *CurPtr = BufferPtr; while (1) { char Char = getAndAdvanceChar(CurPtr, Tmp); switch (Char) { default: Result += Char; break; case 0: // Null. // Found end of file? if (CurPtr-1 != BufferEnd) { // Nope, normal character, continue. Result += Char; break; } // FALL THROUGH. case '\r': case '\n': // Okay, we found the end of the line. First, back up past the \0, \r, \n. assert(CurPtr[-1] == Char && "Trigraphs for newline?"); BufferPtr = CurPtr-1; // Next, lex the character, which should handle the EOM transition. Lex(Tmp); assert(Tmp.is(tok::eom) && "Unexpected token!"); // Finally, we're done, return the string we found. return Result; } } } /// LexEndOfFile - CurPtr points to the end of this file. Handle this /// condition, reporting diagnostics and handling other edge cases as required. /// This returns true if Result contains a token, false if PP.Lex should be /// called again. bool Lexer::LexEndOfFile(Token &Result, const char *CurPtr) { // If we hit the end of the file while parsing a preprocessor directive, // end the preprocessor directive first. The next token returned will // then be the end of file. if (ParsingPreprocessorDirective) { // Done parsing the "line". ParsingPreprocessorDirective = false; // Update the location of token as well as BufferPtr. FormTokenWithChars(Result, CurPtr, tok::eom); // Restore comment saving mode, in case it was disabled for directive. SetCommentRetentionState(PP->getCommentRetentionState()); return true; // Have a token. } // If we are in raw mode, return this event as an EOF token. Let the caller // that put us in raw mode handle the event. if (isLexingRawMode()) { Result.startToken(); BufferPtr = BufferEnd; FormTokenWithChars(Result, BufferEnd, tok::eof); return true; } // Otherwise, check if we are code-completing, then issue diagnostics for // unterminated #if and missing newline. if (IsEofCodeCompletion) { bool isIntendedFile = true; if (PP && FileLoc.isFileID()) { SourceManager &SM = PP->getSourceManager(); isIntendedFile = SM.isTruncatedFile(SM.getFileID(FileLoc)); } if (isIntendedFile) { // We're at the end of the file, but we've been asked to consider the // end of the file to be a code-completion token. Return the // code-completion token. Result.startToken(); FormTokenWithChars(Result, CurPtr, tok::code_completion); // Only do the eof -> code_completion translation once. IsEofCodeCompletion = false; return true; } } // If we are in a #if directive, emit an error. while (!ConditionalStack.empty()) { PP->Diag(ConditionalStack.back().IfLoc, diag::err_pp_unterminated_conditional); ConditionalStack.pop_back(); } // C99 5.1.1.2p2: If the file is non-empty and didn't end in a newline, issue // a pedwarn. if (CurPtr != BufferStart && (CurPtr[-1] != '\n' && CurPtr[-1] != '\r')) Diag(BufferEnd, diag::ext_no_newline_eof) << CodeModificationHint::CreateInsertion(getSourceLocation(BufferEnd), "\n"); BufferPtr = CurPtr; // Finally, let the preprocessor handle this. return PP->HandleEndOfFile(Result); } /// isNextPPTokenLParen - Return 1 if the next unexpanded token lexed from /// the specified lexer will return a tok::l_paren token, 0 if it is something /// else and 2 if there are no more tokens in the buffer controlled by the /// lexer. unsigned Lexer::isNextPPTokenLParen() { assert(!LexingRawMode && "How can we expand a macro from a skipping buffer?"); // Switch to 'skipping' mode. This will ensure that we can lex a token // without emitting diagnostics, disables macro expansion, and will cause EOF // to return an EOF token instead of popping the include stack. LexingRawMode = true; // Save state that can be changed while lexing so that we can restore it. const char *TmpBufferPtr = BufferPtr; bool inPPDirectiveMode = ParsingPreprocessorDirective; Token Tok; Tok.startToken(); LexTokenInternal(Tok); // Restore state that may have changed. BufferPtr = TmpBufferPtr; ParsingPreprocessorDirective = inPPDirectiveMode; // Restore the lexer back to non-skipping mode. LexingRawMode = false; if (Tok.is(tok::eof)) return 2; return Tok.is(tok::l_paren); } /// LexTokenInternal - This implements a simple C family lexer. It is an /// extremely performance critical piece of code. This assumes that the buffer /// has a null character at the end of the file. This returns a preprocessing /// token, not a normal token, as such, it is an internal interface. It assumes /// that the Flags of result have been cleared before calling this. void Lexer::LexTokenInternal(Token &Result) { LexNextToken: // New token, can't need cleaning yet. Result.clearFlag(Token::NeedsCleaning); Result.setIdentifierInfo(0); // CurPtr - Cache BufferPtr in an automatic variable. const char *CurPtr = BufferPtr; // Small amounts of horizontal whitespace is very common between tokens. if ((*CurPtr == ' ') || (*CurPtr == '\t')) { ++CurPtr; while ((*CurPtr == ' ') || (*CurPtr == '\t')) ++CurPtr; // If we are keeping whitespace and other tokens, just return what we just // skipped. The next lexer invocation will return the token after the // whitespace. if (isKeepWhitespaceMode()) { FormTokenWithChars(Result, CurPtr, tok::unknown); return; } BufferPtr = CurPtr; Result.setFlag(Token::LeadingSpace); } unsigned SizeTmp, SizeTmp2; // Temporaries for use in cases below. // Read a character, advancing over it. char Char = getAndAdvanceChar(CurPtr, Result); tok::TokenKind Kind; switch (Char) { case 0: // Null. // Found end of file? if (CurPtr-1 == BufferEnd) { // Read the PP instance variable into an automatic variable, because // LexEndOfFile will often delete 'this'. Preprocessor *PPCache = PP; if (LexEndOfFile(Result, CurPtr-1)) // Retreat back into the file. return; // Got a token to return. assert(PPCache && "Raw buffer::LexEndOfFile should return a token"); return PPCache->Lex(Result); } if (!isLexingRawMode()) Diag(CurPtr-1, diag::null_in_file); Result.setFlag(Token::LeadingSpace); if (SkipWhitespace(Result, CurPtr)) return; // KeepWhitespaceMode goto LexNextToken; // GCC isn't tail call eliminating. case '\n': case '\r': // If we are inside a preprocessor directive and we see the end of line, // we know we are done with the directive, so return an EOM token. if (ParsingPreprocessorDirective) { // Done parsing the "line". ParsingPreprocessorDirective = false; // Restore comment saving mode, in case it was disabled for directive. SetCommentRetentionState(PP->getCommentRetentionState()); // Since we consumed a newline, we are back at the start of a line. IsAtStartOfLine = true; Kind = tok::eom; break; } // The returned token is at the start of the line. Result.setFlag(Token::StartOfLine); // No leading whitespace seen so far. Result.clearFlag(Token::LeadingSpace); if (SkipWhitespace(Result, CurPtr)) return; // KeepWhitespaceMode goto LexNextToken; // GCC isn't tail call eliminating. case ' ': case '\t': case '\f': case '\v': SkipHorizontalWhitespace: Result.setFlag(Token::LeadingSpace); if (SkipWhitespace(Result, CurPtr)) return; // KeepWhitespaceMode SkipIgnoredUnits: CurPtr = BufferPtr; // If the next token is obviously a // or /* */ comment, skip it efficiently // too (without going through the big switch stmt). if (CurPtr[0] == '/' && CurPtr[1] == '/' && !inKeepCommentMode() && Features.BCPLComment) { SkipBCPLComment(Result, CurPtr+2); goto SkipIgnoredUnits; } else if (CurPtr[0] == '/' && CurPtr[1] == '*' && !inKeepCommentMode()) { SkipBlockComment(Result, CurPtr+2); goto SkipIgnoredUnits; } else if (isHorizontalWhitespace(*CurPtr)) { goto SkipHorizontalWhitespace; } goto LexNextToken; // GCC isn't tail call eliminating. // C99 6.4.4.1: Integer Constants. // C99 6.4.4.2: Floating Constants. case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': // Notify MIOpt that we read a non-whitespace/non-comment token. MIOpt.ReadToken(); return LexNumericConstant(Result, CurPtr); case 'L': // Identifier (Loony) or wide literal (L'x' or L"xyz"). // Notify MIOpt that we read a non-whitespace/non-comment token. MIOpt.ReadToken(); Char = getCharAndSize(CurPtr, SizeTmp); // Wide string literal. if (Char == '"') return LexStringLiteral(Result, ConsumeChar(CurPtr, SizeTmp, Result), true); // Wide character constant. if (Char == '\'') return LexCharConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result)); // FALL THROUGH, treating L like the start of an identifier. // C99 6.4.2: Identifiers. case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': case 'G': case 'H': case 'I': case 'J': case 'K': /*'L'*/case 'M': case 'N': case 'O': case 'P': case 'Q': case 'R': case 'S': case 'T': case 'U': case 'V': case 'W': case 'X': case 'Y': case 'Z': case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'g': case 'h': case 'i': case 'j': case 'k': case 'l': case 'm': case 'n': case 'o': case 'p': case 'q': case 'r': case 's': case 't': case 'u': case 'v': case 'w': case 'x': case 'y': case 'z': case '_': // Notify MIOpt that we read a non-whitespace/non-comment token. MIOpt.ReadToken(); return LexIdentifier(Result, CurPtr); case '$': // $ in identifiers. if (Features.DollarIdents) { if (!isLexingRawMode()) Diag(CurPtr-1, diag::ext_dollar_in_identifier); // Notify MIOpt that we read a non-whitespace/non-comment token. MIOpt.ReadToken(); return LexIdentifier(Result, CurPtr); } Kind = tok::unknown; break; // C99 6.4.4: Character Constants. case '\'': // Notify MIOpt that we read a non-whitespace/non-comment token. MIOpt.ReadToken(); return LexCharConstant(Result, CurPtr); // C99 6.4.5: String Literals. case '"': // Notify MIOpt that we read a non-whitespace/non-comment token. MIOpt.ReadToken(); return LexStringLiteral(Result, CurPtr, false); // C99 6.4.6: Punctuators. case '?': Kind = tok::question; break; case '[': Kind = tok::l_square; break; case ']': Kind = tok::r_square; break; case '(': Kind = tok::l_paren; break; case ')': Kind = tok::r_paren; break; case '{': Kind = tok::l_brace; break; case '}': Kind = tok::r_brace; break; case '.': Char = getCharAndSize(CurPtr, SizeTmp); if (Char >= '0' && Char <= '9') { // Notify MIOpt that we read a non-whitespace/non-comment token. MIOpt.ReadToken(); return LexNumericConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result)); } else if (Features.CPlusPlus && Char == '*') { Kind = tok::periodstar; CurPtr += SizeTmp; } else if (Char == '.' && getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == '.') { Kind = tok::ellipsis; CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), SizeTmp2, Result); } else { Kind = tok::period; } break; case '&': Char = getCharAndSize(CurPtr, SizeTmp); if (Char == '&') { Kind = tok::ampamp; CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); } else if (Char == '=') { Kind = tok::ampequal; CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); } else { Kind = tok::amp; } break; case '*': if (getCharAndSize(CurPtr, SizeTmp) == '=') { Kind = tok::starequal; CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); } else { Kind = tok::star; } break; case '+': Char = getCharAndSize(CurPtr, SizeTmp); if (Char == '+') { CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); Kind = tok::plusplus; } else if (Char == '=') { CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); Kind = tok::plusequal; } else { Kind = tok::plus; } break; case '-': Char = getCharAndSize(CurPtr, SizeTmp); if (Char == '-') { // -- CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); Kind = tok::minusminus; } else if (Char == '>' && Features.CPlusPlus && getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == '*') { // C++ ->* CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), SizeTmp2, Result); Kind = tok::arrowstar; } else if (Char == '>') { // -> CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); Kind = tok::arrow; } else if (Char == '=') { // -= CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); Kind = tok::minusequal; } else { Kind = tok::minus; } break; case '~': Kind = tok::tilde; break; case '!': if (getCharAndSize(CurPtr, SizeTmp) == '=') { Kind = tok::exclaimequal; CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); } else { Kind = tok::exclaim; } break; case '/': // 6.4.9: Comments Char = getCharAndSize(CurPtr, SizeTmp); if (Char == '/') { // BCPL comment. // Even if BCPL comments are disabled (e.g. in C89 mode), we generally // want to lex this as a comment. There is one problem with this though, // that in one particular corner case, this can change the behavior of the // resultant program. For example, In "foo //**/ bar", C89 would lex // this as "foo / bar" and langauges with BCPL comments would lex it as // "foo". Check to see if the character after the second slash is a '*'. // If so, we will lex that as a "/" instead of the start of a comment. if (Features.BCPLComment || getCharAndSize(CurPtr+SizeTmp, SizeTmp2) != '*') { if (SkipBCPLComment(Result, ConsumeChar(CurPtr, SizeTmp, Result))) return; // KeepCommentMode // It is common for the tokens immediately after a // comment to be // whitespace (indentation for the next line). Instead of going through // the big switch, handle it efficiently now. goto SkipIgnoredUnits; } } if (Char == '*') { // /**/ comment. if (SkipBlockComment(Result, ConsumeChar(CurPtr, SizeTmp, Result))) return; // KeepCommentMode goto LexNextToken; // GCC isn't tail call eliminating. } if (Char == '=') { CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); Kind = tok::slashequal; } else { Kind = tok::slash; } break; case '%': Char = getCharAndSize(CurPtr, SizeTmp); if (Char == '=') { Kind = tok::percentequal; CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); } else if (Features.Digraphs && Char == '>') { Kind = tok::r_brace; // '%>' -> '}' CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); } else if (Features.Digraphs && Char == ':') { CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); Char = getCharAndSize(CurPtr, SizeTmp); if (Char == '%' && getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == ':') { Kind = tok::hashhash; // '%:%:' -> '##' CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), SizeTmp2, Result); } else if (Char == '@' && Features.Microsoft) { // %:@ -> #@ -> Charize CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); if (!isLexingRawMode()) Diag(BufferPtr, diag::charize_microsoft_ext); Kind = tok::hashat; } else { // '%:' -> '#' // We parsed a # character. If this occurs at the start of the line, // it's actually the start of a preprocessing directive. Callback to // the preprocessor to handle it. // FIXME: -fpreprocessed mode?? if (Result.isAtStartOfLine() && !LexingRawMode && !Is_PragmaLexer) { FormTokenWithChars(Result, CurPtr, tok::hash); PP->HandleDirective(Result); // As an optimization, if the preprocessor didn't switch lexers, tail // recurse. if (PP->isCurrentLexer(this)) { // Start a new token. If this is a #include or something, the PP may // want us starting at the beginning of the line again. If so, set // the StartOfLine flag. if (IsAtStartOfLine) { Result.setFlag(Token::StartOfLine); IsAtStartOfLine = false; } goto LexNextToken; // GCC isn't tail call eliminating. } return PP->Lex(Result); } Kind = tok::hash; } } else { Kind = tok::percent; } break; case '<': Char = getCharAndSize(CurPtr, SizeTmp); if (ParsingFilename) { return LexAngledStringLiteral(Result, CurPtr); } else if (Char == '<' && getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == '=') { Kind = tok::lesslessequal; CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), SizeTmp2, Result); } else if (Char == '<') { CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); Kind = tok::lessless; } else if (Char == '=') { CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); Kind = tok::lessequal; } else if (Features.Digraphs && Char == ':') { // '<:' -> '[' CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); Kind = tok::l_square; } else if (Features.Digraphs && Char == '%') { // '<%' -> '{' CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); Kind = tok::l_brace; } else { Kind = tok::less; } break; case '>': Char = getCharAndSize(CurPtr, SizeTmp); if (Char == '=') { CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); Kind = tok::greaterequal; } else if (Char == '>' && getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == '=') { CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), SizeTmp2, Result); Kind = tok::greatergreaterequal; } else if (Char == '>') { CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); Kind = tok::greatergreater; } else { Kind = tok::greater; } break; case '^': Char = getCharAndSize(CurPtr, SizeTmp); if (Char == '=') { CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); Kind = tok::caretequal; } else { Kind = tok::caret; } break; case '|': Char = getCharAndSize(CurPtr, SizeTmp); if (Char == '=') { Kind = tok::pipeequal; CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); } else if (Char == '|') { Kind = tok::pipepipe; CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); } else { Kind = tok::pipe; } break; case ':': Char = getCharAndSize(CurPtr, SizeTmp); if (Features.Digraphs && Char == '>') { Kind = tok::r_square; // ':>' -> ']' CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); } else if (Features.CPlusPlus && Char == ':') { Kind = tok::coloncolon; CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); } else { Kind = tok::colon; } break; case ';': Kind = tok::semi; break; case '=': Char = getCharAndSize(CurPtr, SizeTmp); if (Char == '=') { Kind = tok::equalequal; CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); } else { Kind = tok::equal; } break; case ',': Kind = tok::comma; break; case '#': Char = getCharAndSize(CurPtr, SizeTmp); if (Char == '#') { Kind = tok::hashhash; CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); } else if (Char == '@' && Features.Microsoft) { // #@ -> Charize Kind = tok::hashat; if (!isLexingRawMode()) Diag(BufferPtr, diag::charize_microsoft_ext); CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); } else { // We parsed a # character. If this occurs at the start of the line, // it's actually the start of a preprocessing directive. Callback to // the preprocessor to handle it. // FIXME: -fpreprocessed mode?? if (Result.isAtStartOfLine() && !LexingRawMode && !Is_PragmaLexer) { FormTokenWithChars(Result, CurPtr, tok::hash); PP->HandleDirective(Result); // As an optimization, if the preprocessor didn't switch lexers, tail // recurse. if (PP->isCurrentLexer(this)) { // Start a new token. If this is a #include or something, the PP may // want us starting at the beginning of the line again. If so, set // the StartOfLine flag. if (IsAtStartOfLine) { Result.setFlag(Token::StartOfLine); IsAtStartOfLine = false; } goto LexNextToken; // GCC isn't tail call eliminating. } return PP->Lex(Result); } Kind = tok::hash; } break; case '@': // Objective C support. if (CurPtr[-1] == '@' && Features.ObjC1) Kind = tok::at; else Kind = tok::unknown; break; case '\\': // FIXME: UCN's. // FALL THROUGH. default: Kind = tok::unknown; break; } // Notify MIOpt that we read a non-whitespace/non-comment token. MIOpt.ReadToken(); // Update the location of token as well as BufferPtr. FormTokenWithChars(Result, CurPtr, Kind); }