/*- * Copyright (c) 2002 Michael Shalayeff * Copyright (c) 2012 Gleb Smirnoff * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR OR HIS RELATIVES BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF MIND, USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 2009 David Gwynne * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * $OpenBSD: if_pfsync.c,v 1.110 2009/02/24 05:39:19 dlg Exp $ * * Revisions picked from OpenBSD after revision 1.110 import: * 1.119 - don't m_copydata() beyond the len of mbuf in pfsync_input() * 1.118, 1.124, 1.148, 1.149, 1.151, 1.171 - fixes to bulk updates * 1.120, 1.175 - use monotonic time_uptime * 1.122 - reduce number of updates for non-TCP sessions * 1.125, 1.127 - rewrite merge or stale processing * 1.128 - cleanups * 1.146 - bzero() mbuf before sparsely filling it with data * 1.170 - SIOCSIFMTU checks * 1.126, 1.142 - deferred packets processing * 1.173 - correct expire time processing */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_pf.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define PFSYNC_MINPKT ( \ sizeof(struct ip) + \ sizeof(struct pfsync_header) + \ sizeof(struct pfsync_subheader) ) struct pfsync_pkt { struct ip *ip; struct in_addr src; u_int8_t flags; }; static int pfsync_upd_tcp(struct pf_state *, struct pfsync_state_peer *, struct pfsync_state_peer *); static int pfsync_in_clr(struct pfsync_pkt *, struct mbuf *, int, int); static int pfsync_in_ins(struct pfsync_pkt *, struct mbuf *, int, int); static int pfsync_in_iack(struct pfsync_pkt *, struct mbuf *, int, int); static int pfsync_in_upd(struct pfsync_pkt *, struct mbuf *, int, int); static int pfsync_in_upd_c(struct pfsync_pkt *, struct mbuf *, int, int); static int pfsync_in_ureq(struct pfsync_pkt *, struct mbuf *, int, int); static int pfsync_in_del(struct pfsync_pkt *, struct mbuf *, int, int); static int pfsync_in_del_c(struct pfsync_pkt *, struct mbuf *, int, int); static int pfsync_in_bus(struct pfsync_pkt *, struct mbuf *, int, int); static int pfsync_in_tdb(struct pfsync_pkt *, struct mbuf *, int, int); static int pfsync_in_eof(struct pfsync_pkt *, struct mbuf *, int, int); static int pfsync_in_error(struct pfsync_pkt *, struct mbuf *, int, int); static int (*pfsync_acts[])(struct pfsync_pkt *, struct mbuf *, int, int) = { pfsync_in_clr, /* PFSYNC_ACT_CLR */ pfsync_in_ins, /* PFSYNC_ACT_INS */ pfsync_in_iack, /* PFSYNC_ACT_INS_ACK */ pfsync_in_upd, /* PFSYNC_ACT_UPD */ pfsync_in_upd_c, /* PFSYNC_ACT_UPD_C */ pfsync_in_ureq, /* PFSYNC_ACT_UPD_REQ */ pfsync_in_del, /* PFSYNC_ACT_DEL */ pfsync_in_del_c, /* PFSYNC_ACT_DEL_C */ pfsync_in_error, /* PFSYNC_ACT_INS_F */ pfsync_in_error, /* PFSYNC_ACT_DEL_F */ pfsync_in_bus, /* PFSYNC_ACT_BUS */ pfsync_in_tdb, /* PFSYNC_ACT_TDB */ pfsync_in_eof /* PFSYNC_ACT_EOF */ }; struct pfsync_q { void (*write)(struct pf_state *, void *); size_t len; u_int8_t action; }; /* we have one of these for every PFSYNC_S_ */ static void pfsync_out_state(struct pf_state *, void *); static void pfsync_out_iack(struct pf_state *, void *); static void pfsync_out_upd_c(struct pf_state *, void *); static void pfsync_out_del(struct pf_state *, void *); static struct pfsync_q pfsync_qs[] = { { pfsync_out_state, sizeof(struct pfsync_state), PFSYNC_ACT_INS }, { pfsync_out_iack, sizeof(struct pfsync_ins_ack), PFSYNC_ACT_INS_ACK }, { pfsync_out_state, sizeof(struct pfsync_state), PFSYNC_ACT_UPD }, { pfsync_out_upd_c, sizeof(struct pfsync_upd_c), PFSYNC_ACT_UPD_C }, { pfsync_out_del, sizeof(struct pfsync_del_c), PFSYNC_ACT_DEL_C } }; static void pfsync_q_ins(struct pf_state *, int); static void pfsync_q_del(struct pf_state *); static void pfsync_update_state(struct pf_state *); struct pfsync_upd_req_item { TAILQ_ENTRY(pfsync_upd_req_item) ur_entry; struct pfsync_upd_req ur_msg; }; struct pfsync_deferral { struct pfsync_softc *pd_sc; TAILQ_ENTRY(pfsync_deferral) pd_entry; u_int pd_refs; struct callout pd_tmo; struct pf_state *pd_st; struct mbuf *pd_m; }; struct pfsync_softc { /* Configuration */ struct ifnet *sc_ifp; struct ifnet *sc_sync_if; struct ip_moptions sc_imo; struct in_addr sc_sync_peer; uint32_t sc_flags; #define PFSYNCF_OK 0x00000001 #define PFSYNCF_DEFER 0x00000002 #define PFSYNCF_PUSH 0x00000004 uint8_t sc_maxupdates; struct ip sc_template; struct callout sc_tmo; struct mtx sc_mtx; /* Queued data */ size_t sc_len; TAILQ_HEAD(, pf_state) sc_qs[PFSYNC_S_COUNT]; TAILQ_HEAD(, pfsync_upd_req_item) sc_upd_req_list; TAILQ_HEAD(, pfsync_deferral) sc_deferrals; u_int sc_deferred; void *sc_plus; size_t sc_pluslen; /* Bulk update info */ struct mtx sc_bulk_mtx; uint32_t sc_ureq_sent; int sc_bulk_tries; uint32_t sc_ureq_received; int sc_bulk_hashid; uint64_t sc_bulk_stateid; uint32_t sc_bulk_creatorid; struct callout sc_bulk_tmo; struct callout sc_bulkfail_tmo; }; #define PFSYNC_LOCK(sc) mtx_lock(&(sc)->sc_mtx) #define PFSYNC_UNLOCK(sc) mtx_unlock(&(sc)->sc_mtx) #define PFSYNC_LOCK_ASSERT(sc) mtx_assert(&(sc)->sc_mtx, MA_OWNED) #define PFSYNC_BLOCK(sc) mtx_lock(&(sc)->sc_bulk_mtx) #define PFSYNC_BUNLOCK(sc) mtx_unlock(&(sc)->sc_bulk_mtx) #define PFSYNC_BLOCK_ASSERT(sc) mtx_assert(&(sc)->sc_bulk_mtx, MA_OWNED) static const char pfsyncname[] = "pfsync"; static MALLOC_DEFINE(M_PFSYNC, pfsyncname, "pfsync(4) data"); static VNET_DEFINE(struct pfsync_softc *, pfsyncif) = NULL; #define V_pfsyncif VNET(pfsyncif) static VNET_DEFINE(void *, pfsync_swi_cookie) = NULL; #define V_pfsync_swi_cookie VNET(pfsync_swi_cookie) static VNET_DEFINE(struct pfsyncstats, pfsyncstats); #define V_pfsyncstats VNET(pfsyncstats) static VNET_DEFINE(int, pfsync_carp_adj) = CARP_MAXSKEW; #define V_pfsync_carp_adj VNET(pfsync_carp_adj) static void pfsync_timeout(void *); static void pfsync_push(struct pfsync_softc *); static void pfsyncintr(void *); static int pfsync_multicast_setup(struct pfsync_softc *, struct ifnet *, void *); static void pfsync_multicast_cleanup(struct pfsync_softc *); static void pfsync_pointers_init(void); static void pfsync_pointers_uninit(void); static int pfsync_init(void); static void pfsync_uninit(void); SYSCTL_NODE(_net, OID_AUTO, pfsync, CTLFLAG_RW, 0, "PFSYNC"); SYSCTL_VNET_STRUCT(_net_pfsync, OID_AUTO, stats, CTLFLAG_RW, &VNET_NAME(pfsyncstats), pfsyncstats, "PFSYNC statistics (struct pfsyncstats, net/if_pfsync.h)"); SYSCTL_INT(_net_pfsync, OID_AUTO, carp_demotion_factor, CTLFLAG_RW, &VNET_NAME(pfsync_carp_adj), 0, "pfsync's CARP demotion factor adjustment"); static int pfsync_clone_create(struct if_clone *, int, caddr_t); static void pfsync_clone_destroy(struct ifnet *); static int pfsync_alloc_scrub_memory(struct pfsync_state_peer *, struct pf_state_peer *); static int pfsyncoutput(struct ifnet *, struct mbuf *, struct sockaddr *, struct route *); static int pfsyncioctl(struct ifnet *, u_long, caddr_t); static int pfsync_defer(struct pf_state *, struct mbuf *); static void pfsync_undefer(struct pfsync_deferral *, int); static void pfsync_undefer_state(struct pf_state *, int); static void pfsync_defer_tmo(void *); static void pfsync_request_update(u_int32_t, u_int64_t); static void pfsync_update_state_req(struct pf_state *); static void pfsync_drop(struct pfsync_softc *); static void pfsync_sendout(int); static void pfsync_send_plus(void *, size_t); static void pfsync_bulk_start(void); static void pfsync_bulk_status(u_int8_t); static void pfsync_bulk_update(void *); static void pfsync_bulk_fail(void *); #ifdef IPSEC static void pfsync_update_net_tdb(struct pfsync_tdb *); #endif #define PFSYNC_MAX_BULKTRIES 12 VNET_DEFINE(struct if_clone *, pfsync_cloner); #define V_pfsync_cloner VNET(pfsync_cloner) static int pfsync_clone_create(struct if_clone *ifc, int unit, caddr_t param) { struct pfsync_softc *sc; struct ifnet *ifp; int q; if (unit != 0) return (EINVAL); sc = malloc(sizeof(struct pfsync_softc), M_PFSYNC, M_WAITOK | M_ZERO); sc->sc_flags |= PFSYNCF_OK; for (q = 0; q < PFSYNC_S_COUNT; q++) TAILQ_INIT(&sc->sc_qs[q]); TAILQ_INIT(&sc->sc_upd_req_list); TAILQ_INIT(&sc->sc_deferrals); sc->sc_len = PFSYNC_MINPKT; sc->sc_maxupdates = 128; ifp = sc->sc_ifp = if_alloc(IFT_PFSYNC); if (ifp == NULL) { free(sc, M_PFSYNC); return (ENOSPC); } if_initname(ifp, pfsyncname, unit); ifp->if_softc = sc; ifp->if_ioctl = pfsyncioctl; ifp->if_output = pfsyncoutput; ifp->if_type = IFT_PFSYNC; ifp->if_snd.ifq_maxlen = ifqmaxlen; ifp->if_hdrlen = sizeof(struct pfsync_header); ifp->if_mtu = ETHERMTU; mtx_init(&sc->sc_mtx, pfsyncname, NULL, MTX_DEF); mtx_init(&sc->sc_bulk_mtx, "pfsync bulk", NULL, MTX_DEF); callout_init(&sc->sc_tmo, CALLOUT_MPSAFE); callout_init_mtx(&sc->sc_bulk_tmo, &sc->sc_bulk_mtx, 0); callout_init_mtx(&sc->sc_bulkfail_tmo, &sc->sc_bulk_mtx, 0); if_attach(ifp); bpfattach(ifp, DLT_PFSYNC, PFSYNC_HDRLEN); V_pfsyncif = sc; return (0); } static void pfsync_clone_destroy(struct ifnet *ifp) { struct pfsync_softc *sc = ifp->if_softc; /* * At this stage, everything should have already been * cleared by pfsync_uninit(), and we have only to * drain callouts. */ while (sc->sc_deferred > 0) { struct pfsync_deferral *pd = TAILQ_FIRST(&sc->sc_deferrals); TAILQ_REMOVE(&sc->sc_deferrals, pd, pd_entry); sc->sc_deferred--; if (callout_stop(&pd->pd_tmo)) { pf_release_state(pd->pd_st); m_freem(pd->pd_m); free(pd, M_PFSYNC); } else { pd->pd_refs++; callout_drain(&pd->pd_tmo); free(pd, M_PFSYNC); } } callout_drain(&sc->sc_tmo); callout_drain(&sc->sc_bulkfail_tmo); callout_drain(&sc->sc_bulk_tmo); if (!(sc->sc_flags & PFSYNCF_OK) && carp_demote_adj_p) (*carp_demote_adj_p)(-V_pfsync_carp_adj, "pfsync destroy"); bpfdetach(ifp); if_detach(ifp); pfsync_drop(sc); if_free(ifp); if (sc->sc_imo.imo_membership) pfsync_multicast_cleanup(sc); mtx_destroy(&sc->sc_mtx); mtx_destroy(&sc->sc_bulk_mtx); free(sc, M_PFSYNC); V_pfsyncif = NULL; } static int pfsync_alloc_scrub_memory(struct pfsync_state_peer *s, struct pf_state_peer *d) { if (s->scrub.scrub_flag && d->scrub == NULL) { d->scrub = uma_zalloc(V_pf_state_scrub_z, M_NOWAIT | M_ZERO); if (d->scrub == NULL) return (ENOMEM); } return (0); } static int pfsync_state_import(struct pfsync_state *sp, u_int8_t flags) { struct pfsync_softc *sc = V_pfsyncif; struct pf_state *st = NULL; struct pf_state_key *skw = NULL, *sks = NULL; struct pf_rule *r = NULL; struct pfi_kif *kif; int error; PF_RULES_RASSERT(); if (sp->creatorid == 0 && V_pf_status.debug >= PF_DEBUG_MISC) { printf("%s: invalid creator id: %08x\n", __func__, ntohl(sp->creatorid)); return (EINVAL); } if ((kif = pfi_kif_find(sp->ifname)) == NULL) { if (V_pf_status.debug >= PF_DEBUG_MISC) printf("%s: unknown interface: %s\n", __func__, sp->ifname); if (flags & PFSYNC_SI_IOCTL) return (EINVAL); return (0); /* skip this state */ } /* * If the ruleset checksums match or the state is coming from the ioctl, * it's safe to associate the state with the rule of that number. */ if (sp->rule != htonl(-1) && sp->anchor == htonl(-1) && (flags & (PFSYNC_SI_IOCTL | PFSYNC_SI_CKSUM)) && ntohl(sp->rule) < pf_main_ruleset.rules[PF_RULESET_FILTER].active.rcount) r = pf_main_ruleset.rules[ PF_RULESET_FILTER].active.ptr_array[ntohl(sp->rule)]; else r = &V_pf_default_rule; if ((r->max_states && r->states_cur >= r->max_states)) goto cleanup; /* * XXXGL: consider M_WAITOK in ioctl path after. */ if ((st = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO)) == NULL) goto cleanup; if ((skw = uma_zalloc(V_pf_state_key_z, M_NOWAIT)) == NULL) goto cleanup; if (PF_ANEQ(&sp->key[PF_SK_WIRE].addr[0], &sp->key[PF_SK_STACK].addr[0], sp->af) || PF_ANEQ(&sp->key[PF_SK_WIRE].addr[1], &sp->key[PF_SK_STACK].addr[1], sp->af) || sp->key[PF_SK_WIRE].port[0] != sp->key[PF_SK_STACK].port[0] || sp->key[PF_SK_WIRE].port[1] != sp->key[PF_SK_STACK].port[1]) { sks = uma_zalloc(V_pf_state_key_z, M_NOWAIT); if (sks == NULL) goto cleanup; } else sks = skw; /* allocate memory for scrub info */ if (pfsync_alloc_scrub_memory(&sp->src, &st->src) || pfsync_alloc_scrub_memory(&sp->dst, &st->dst)) goto cleanup; /* copy to state key(s) */ skw->addr[0] = sp->key[PF_SK_WIRE].addr[0]; skw->addr[1] = sp->key[PF_SK_WIRE].addr[1]; skw->port[0] = sp->key[PF_SK_WIRE].port[0]; skw->port[1] = sp->key[PF_SK_WIRE].port[1]; skw->proto = sp->proto; skw->af = sp->af; if (sks != skw) { sks->addr[0] = sp->key[PF_SK_STACK].addr[0]; sks->addr[1] = sp->key[PF_SK_STACK].addr[1]; sks->port[0] = sp->key[PF_SK_STACK].port[0]; sks->port[1] = sp->key[PF_SK_STACK].port[1]; sks->proto = sp->proto; sks->af = sp->af; } /* copy to state */ bcopy(&sp->rt_addr, &st->rt_addr, sizeof(st->rt_addr)); st->creation = time_uptime - ntohl(sp->creation); st->expire = time_uptime; if (sp->expire) { uint32_t timeout; timeout = r->timeout[sp->timeout]; if (!timeout) timeout = V_pf_default_rule.timeout[sp->timeout]; /* sp->expire may have been adaptively scaled by export. */ st->expire -= timeout - ntohl(sp->expire); } st->direction = sp->direction; st->log = sp->log; st->timeout = sp->timeout; st->state_flags = sp->state_flags; st->id = sp->id; st->creatorid = sp->creatorid; pf_state_peer_ntoh(&sp->src, &st->src); pf_state_peer_ntoh(&sp->dst, &st->dst); st->rule.ptr = r; st->nat_rule.ptr = NULL; st->anchor.ptr = NULL; st->rt_kif = NULL; st->pfsync_time = time_uptime; st->sync_state = PFSYNC_S_NONE; /* XXX when we have nat_rule/anchors, use STATE_INC_COUNTERS */ r->states_cur++; r->states_tot++; if (!(flags & PFSYNC_SI_IOCTL)) st->state_flags |= PFSTATE_NOSYNC; if ((error = pf_state_insert(kif, skw, sks, st)) != 0) { /* XXX when we have nat_rule/anchors, use STATE_DEC_COUNTERS */ r->states_cur--; goto cleanup_state; } if (!(flags & PFSYNC_SI_IOCTL)) { st->state_flags &= ~PFSTATE_NOSYNC; if (st->state_flags & PFSTATE_ACK) { pfsync_q_ins(st, PFSYNC_S_IACK); pfsync_push(sc); } } st->state_flags &= ~PFSTATE_ACK; PF_STATE_UNLOCK(st); return (0); cleanup: error = ENOMEM; if (skw == sks) sks = NULL; if (skw != NULL) uma_zfree(V_pf_state_key_z, skw); if (sks != NULL) uma_zfree(V_pf_state_key_z, sks); cleanup_state: /* pf_state_insert() frees the state keys. */ if (st) { if (st->dst.scrub) uma_zfree(V_pf_state_scrub_z, st->dst.scrub); if (st->src.scrub) uma_zfree(V_pf_state_scrub_z, st->src.scrub); uma_zfree(V_pf_state_z, st); } return (error); } static void pfsync_input(struct mbuf *m, __unused int off) { struct pfsync_softc *sc = V_pfsyncif; struct pfsync_pkt pkt; struct ip *ip = mtod(m, struct ip *); struct pfsync_header *ph; struct pfsync_subheader subh; int offset, len; int rv; uint16_t count; V_pfsyncstats.pfsyncs_ipackets++; /* Verify that we have a sync interface configured. */ if (!sc || !sc->sc_sync_if || !V_pf_status.running || (sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) goto done; /* verify that the packet came in on the right interface */ if (sc->sc_sync_if != m->m_pkthdr.rcvif) { V_pfsyncstats.pfsyncs_badif++; goto done; } sc->sc_ifp->if_ipackets++; sc->sc_ifp->if_ibytes += m->m_pkthdr.len; /* verify that the IP TTL is 255. */ if (ip->ip_ttl != PFSYNC_DFLTTL) { V_pfsyncstats.pfsyncs_badttl++; goto done; } offset = ip->ip_hl << 2; if (m->m_pkthdr.len < offset + sizeof(*ph)) { V_pfsyncstats.pfsyncs_hdrops++; goto done; } if (offset + sizeof(*ph) > m->m_len) { if (m_pullup(m, offset + sizeof(*ph)) == NULL) { V_pfsyncstats.pfsyncs_hdrops++; return; } ip = mtod(m, struct ip *); } ph = (struct pfsync_header *)((char *)ip + offset); /* verify the version */ if (ph->version != PFSYNC_VERSION) { V_pfsyncstats.pfsyncs_badver++; goto done; } len = ntohs(ph->len) + offset; if (m->m_pkthdr.len < len) { V_pfsyncstats.pfsyncs_badlen++; goto done; } /* Cheaper to grab this now than having to mess with mbufs later */ pkt.ip = ip; pkt.src = ip->ip_src; pkt.flags = 0; /* * Trusting pf_chksum during packet processing, as well as seeking * in interface name tree, require holding PF_RULES_RLOCK(). */ PF_RULES_RLOCK(); if (!bcmp(&ph->pfcksum, &V_pf_status.pf_chksum, PF_MD5_DIGEST_LENGTH)) pkt.flags |= PFSYNC_SI_CKSUM; offset += sizeof(*ph); while (offset <= len - sizeof(subh)) { m_copydata(m, offset, sizeof(subh), (caddr_t)&subh); offset += sizeof(subh); if (subh.action >= PFSYNC_ACT_MAX) { V_pfsyncstats.pfsyncs_badact++; PF_RULES_RUNLOCK(); goto done; } count = ntohs(subh.count); V_pfsyncstats.pfsyncs_iacts[subh.action] += count; rv = (*pfsync_acts[subh.action])(&pkt, m, offset, count); if (rv == -1) { PF_RULES_RUNLOCK(); return; } offset += rv; } PF_RULES_RUNLOCK(); done: m_freem(m); } static int pfsync_in_clr(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count) { struct pfsync_clr *clr; struct mbuf *mp; int len = sizeof(*clr) * count; int i, offp; u_int32_t creatorid; mp = m_pulldown(m, offset, len, &offp); if (mp == NULL) { V_pfsyncstats.pfsyncs_badlen++; return (-1); } clr = (struct pfsync_clr *)(mp->m_data + offp); for (i = 0; i < count; i++) { creatorid = clr[i].creatorid; if (clr[i].ifname[0] != '\0' && pfi_kif_find(clr[i].ifname) == NULL) continue; for (int i = 0; i <= V_pf_hashmask; i++) { struct pf_idhash *ih = &V_pf_idhash[i]; struct pf_state *s; relock: PF_HASHROW_LOCK(ih); LIST_FOREACH(s, &ih->states, entry) { if (s->creatorid == creatorid) { s->state_flags |= PFSTATE_NOSYNC; pf_unlink_state(s, PF_ENTER_LOCKED); goto relock; } } PF_HASHROW_UNLOCK(ih); } } return (len); } static int pfsync_in_ins(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count) { struct mbuf *mp; struct pfsync_state *sa, *sp; int len = sizeof(*sp) * count; int i, offp; mp = m_pulldown(m, offset, len, &offp); if (mp == NULL) { V_pfsyncstats.pfsyncs_badlen++; return (-1); } sa = (struct pfsync_state *)(mp->m_data + offp); for (i = 0; i < count; i++) { sp = &sa[i]; /* Check for invalid values. */ if (sp->timeout >= PFTM_MAX || sp->src.state > PF_TCPS_PROXY_DST || sp->dst.state > PF_TCPS_PROXY_DST || sp->direction > PF_OUT || (sp->af != AF_INET && sp->af != AF_INET6)) { if (V_pf_status.debug >= PF_DEBUG_MISC) printf("%s: invalid value\n", __func__); V_pfsyncstats.pfsyncs_badval++; continue; } if (pfsync_state_import(sp, pkt->flags) == ENOMEM) /* Drop out, but process the rest of the actions. */ break; } return (len); } static int pfsync_in_iack(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count) { struct pfsync_ins_ack *ia, *iaa; struct pf_state *st; struct mbuf *mp; int len = count * sizeof(*ia); int offp, i; mp = m_pulldown(m, offset, len, &offp); if (mp == NULL) { V_pfsyncstats.pfsyncs_badlen++; return (-1); } iaa = (struct pfsync_ins_ack *)(mp->m_data + offp); for (i = 0; i < count; i++) { ia = &iaa[i]; st = pf_find_state_byid(ia->id, ia->creatorid); if (st == NULL) continue; if (st->state_flags & PFSTATE_ACK) { PFSYNC_LOCK(V_pfsyncif); pfsync_undefer_state(st, 0); PFSYNC_UNLOCK(V_pfsyncif); } PF_STATE_UNLOCK(st); } /* * XXX this is not yet implemented, but we know the size of the * message so we can skip it. */ return (count * sizeof(struct pfsync_ins_ack)); } static int pfsync_upd_tcp(struct pf_state *st, struct pfsync_state_peer *src, struct pfsync_state_peer *dst) { int sync = 0; PF_STATE_LOCK_ASSERT(st); /* * The state should never go backwards except * for syn-proxy states. Neither should the * sequence window slide backwards. */ if ((st->src.state > src->state && (st->src.state < PF_TCPS_PROXY_SRC || src->state >= PF_TCPS_PROXY_SRC)) || (st->src.state == src->state && SEQ_GT(st->src.seqlo, ntohl(src->seqlo)))) sync++; else pf_state_peer_ntoh(src, &st->src); if ((st->dst.state > dst->state) || (st->dst.state >= TCPS_SYN_SENT && SEQ_GT(st->dst.seqlo, ntohl(dst->seqlo)))) sync++; else pf_state_peer_ntoh(dst, &st->dst); return (sync); } static int pfsync_in_upd(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count) { struct pfsync_softc *sc = V_pfsyncif; struct pfsync_state *sa, *sp; struct pf_state *st; int sync; struct mbuf *mp; int len = count * sizeof(*sp); int offp, i; mp = m_pulldown(m, offset, len, &offp); if (mp == NULL) { V_pfsyncstats.pfsyncs_badlen++; return (-1); } sa = (struct pfsync_state *)(mp->m_data + offp); for (i = 0; i < count; i++) { sp = &sa[i]; /* check for invalid values */ if (sp->timeout >= PFTM_MAX || sp->src.state > PF_TCPS_PROXY_DST || sp->dst.state > PF_TCPS_PROXY_DST) { if (V_pf_status.debug >= PF_DEBUG_MISC) { printf("pfsync_input: PFSYNC_ACT_UPD: " "invalid value\n"); } V_pfsyncstats.pfsyncs_badval++; continue; } st = pf_find_state_byid(sp->id, sp->creatorid); if (st == NULL) { /* insert the update */ if (pfsync_state_import(sp, 0)) V_pfsyncstats.pfsyncs_badstate++; continue; } if (st->state_flags & PFSTATE_ACK) { PFSYNC_LOCK(sc); pfsync_undefer_state(st, 1); PFSYNC_UNLOCK(sc); } if (st->key[PF_SK_WIRE]->proto == IPPROTO_TCP) sync = pfsync_upd_tcp(st, &sp->src, &sp->dst); else { sync = 0; /* * Non-TCP protocol state machine always go * forwards */ if (st->src.state > sp->src.state) sync++; else pf_state_peer_ntoh(&sp->src, &st->src); if (st->dst.state > sp->dst.state) sync++; else pf_state_peer_ntoh(&sp->dst, &st->dst); } if (sync < 2) { pfsync_alloc_scrub_memory(&sp->dst, &st->dst); pf_state_peer_ntoh(&sp->dst, &st->dst); st->expire = time_uptime; st->timeout = sp->timeout; } st->pfsync_time = time_uptime; if (sync) { V_pfsyncstats.pfsyncs_stale++; pfsync_update_state(st); PF_STATE_UNLOCK(st); PFSYNC_LOCK(sc); pfsync_push(sc); PFSYNC_UNLOCK(sc); continue; } PF_STATE_UNLOCK(st); } return (len); } static int pfsync_in_upd_c(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count) { struct pfsync_softc *sc = V_pfsyncif; struct pfsync_upd_c *ua, *up; struct pf_state *st; int len = count * sizeof(*up); int sync; struct mbuf *mp; int offp, i; mp = m_pulldown(m, offset, len, &offp); if (mp == NULL) { V_pfsyncstats.pfsyncs_badlen++; return (-1); } ua = (struct pfsync_upd_c *)(mp->m_data + offp); for (i = 0; i < count; i++) { up = &ua[i]; /* check for invalid values */ if (up->timeout >= PFTM_MAX || up->src.state > PF_TCPS_PROXY_DST || up->dst.state > PF_TCPS_PROXY_DST) { if (V_pf_status.debug >= PF_DEBUG_MISC) { printf("pfsync_input: " "PFSYNC_ACT_UPD_C: " "invalid value\n"); } V_pfsyncstats.pfsyncs_badval++; continue; } st = pf_find_state_byid(up->id, up->creatorid); if (st == NULL) { /* We don't have this state. Ask for it. */ PFSYNC_LOCK(sc); pfsync_request_update(up->creatorid, up->id); PFSYNC_UNLOCK(sc); continue; } if (st->state_flags & PFSTATE_ACK) { PFSYNC_LOCK(sc); pfsync_undefer_state(st, 1); PFSYNC_UNLOCK(sc); } if (st->key[PF_SK_WIRE]->proto == IPPROTO_TCP) sync = pfsync_upd_tcp(st, &up->src, &up->dst); else { sync = 0; /* * Non-TCP protocol state machine always go * forwards */ if (st->src.state > up->src.state) sync++; else pf_state_peer_ntoh(&up->src, &st->src); if (st->dst.state > up->dst.state) sync++; else pf_state_peer_ntoh(&up->dst, &st->dst); } if (sync < 2) { pfsync_alloc_scrub_memory(&up->dst, &st->dst); pf_state_peer_ntoh(&up->dst, &st->dst); st->expire = time_uptime; st->timeout = up->timeout; } st->pfsync_time = time_uptime; if (sync) { V_pfsyncstats.pfsyncs_stale++; pfsync_update_state(st); PF_STATE_UNLOCK(st); PFSYNC_LOCK(sc); pfsync_push(sc); PFSYNC_UNLOCK(sc); continue; } PF_STATE_UNLOCK(st); } return (len); } static int pfsync_in_ureq(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count) { struct pfsync_upd_req *ur, *ura; struct mbuf *mp; int len = count * sizeof(*ur); int i, offp; struct pf_state *st; mp = m_pulldown(m, offset, len, &offp); if (mp == NULL) { V_pfsyncstats.pfsyncs_badlen++; return (-1); } ura = (struct pfsync_upd_req *)(mp->m_data + offp); for (i = 0; i < count; i++) { ur = &ura[i]; if (ur->id == 0 && ur->creatorid == 0) pfsync_bulk_start(); else { st = pf_find_state_byid(ur->id, ur->creatorid); if (st == NULL) { V_pfsyncstats.pfsyncs_badstate++; continue; } if (st->state_flags & PFSTATE_NOSYNC) { PF_STATE_UNLOCK(st); continue; } pfsync_update_state_req(st); PF_STATE_UNLOCK(st); } } return (len); } static int pfsync_in_del(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count) { struct mbuf *mp; struct pfsync_state *sa, *sp; struct pf_state *st; int len = count * sizeof(*sp); int offp, i; mp = m_pulldown(m, offset, len, &offp); if (mp == NULL) { V_pfsyncstats.pfsyncs_badlen++; return (-1); } sa = (struct pfsync_state *)(mp->m_data + offp); for (i = 0; i < count; i++) { sp = &sa[i]; st = pf_find_state_byid(sp->id, sp->creatorid); if (st == NULL) { V_pfsyncstats.pfsyncs_badstate++; continue; } st->state_flags |= PFSTATE_NOSYNC; pf_unlink_state(st, PF_ENTER_LOCKED); } return (len); } static int pfsync_in_del_c(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count) { struct mbuf *mp; struct pfsync_del_c *sa, *sp; struct pf_state *st; int len = count * sizeof(*sp); int offp, i; mp = m_pulldown(m, offset, len, &offp); if (mp == NULL) { V_pfsyncstats.pfsyncs_badlen++; return (-1); } sa = (struct pfsync_del_c *)(mp->m_data + offp); for (i = 0; i < count; i++) { sp = &sa[i]; st = pf_find_state_byid(sp->id, sp->creatorid); if (st == NULL) { V_pfsyncstats.pfsyncs_badstate++; continue; } st->state_flags |= PFSTATE_NOSYNC; pf_unlink_state(st, PF_ENTER_LOCKED); } return (len); } static int pfsync_in_bus(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count) { struct pfsync_softc *sc = V_pfsyncif; struct pfsync_bus *bus; struct mbuf *mp; int len = count * sizeof(*bus); int offp; PFSYNC_BLOCK(sc); /* If we're not waiting for a bulk update, who cares. */ if (sc->sc_ureq_sent == 0) { PFSYNC_BUNLOCK(sc); return (len); } mp = m_pulldown(m, offset, len, &offp); if (mp == NULL) { PFSYNC_BUNLOCK(sc); V_pfsyncstats.pfsyncs_badlen++; return (-1); } bus = (struct pfsync_bus *)(mp->m_data + offp); switch (bus->status) { case PFSYNC_BUS_START: callout_reset(&sc->sc_bulkfail_tmo, 4 * hz + V_pf_limits[PF_LIMIT_STATES].limit / ((sc->sc_ifp->if_mtu - PFSYNC_MINPKT) / sizeof(struct pfsync_state)), pfsync_bulk_fail, sc); if (V_pf_status.debug >= PF_DEBUG_MISC) printf("pfsync: received bulk update start\n"); break; case PFSYNC_BUS_END: if (time_uptime - ntohl(bus->endtime) >= sc->sc_ureq_sent) { /* that's it, we're happy */ sc->sc_ureq_sent = 0; sc->sc_bulk_tries = 0; callout_stop(&sc->sc_bulkfail_tmo); if (!(sc->sc_flags & PFSYNCF_OK) && carp_demote_adj_p) (*carp_demote_adj_p)(-V_pfsync_carp_adj, "pfsync bulk done"); sc->sc_flags |= PFSYNCF_OK; if (V_pf_status.debug >= PF_DEBUG_MISC) printf("pfsync: received valid " "bulk update end\n"); } else { if (V_pf_status.debug >= PF_DEBUG_MISC) printf("pfsync: received invalid " "bulk update end: bad timestamp\n"); } break; } PFSYNC_BUNLOCK(sc); return (len); } static int pfsync_in_tdb(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count) { int len = count * sizeof(struct pfsync_tdb); #if defined(IPSEC) struct pfsync_tdb *tp; struct mbuf *mp; int offp; int i; int s; mp = m_pulldown(m, offset, len, &offp); if (mp == NULL) { V_pfsyncstats.pfsyncs_badlen++; return (-1); } tp = (struct pfsync_tdb *)(mp->m_data + offp); for (i = 0; i < count; i++) pfsync_update_net_tdb(&tp[i]); #endif return (len); } #if defined(IPSEC) /* Update an in-kernel tdb. Silently fail if no tdb is found. */ static void pfsync_update_net_tdb(struct pfsync_tdb *pt) { struct tdb *tdb; int s; /* check for invalid values */ if (ntohl(pt->spi) <= SPI_RESERVED_MAX || (pt->dst.sa.sa_family != AF_INET && pt->dst.sa.sa_family != AF_INET6)) goto bad; tdb = gettdb(pt->spi, &pt->dst, pt->sproto); if (tdb) { pt->rpl = ntohl(pt->rpl); pt->cur_bytes = (unsigned long long)be64toh(pt->cur_bytes); /* Neither replay nor byte counter should ever decrease. */ if (pt->rpl < tdb->tdb_rpl || pt->cur_bytes < tdb->tdb_cur_bytes) { goto bad; } tdb->tdb_rpl = pt->rpl; tdb->tdb_cur_bytes = pt->cur_bytes; } return; bad: if (V_pf_status.debug >= PF_DEBUG_MISC) printf("pfsync_insert: PFSYNC_ACT_TDB_UPD: " "invalid value\n"); V_pfsyncstats.pfsyncs_badstate++; return; } #endif static int pfsync_in_eof(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count) { /* check if we are at the right place in the packet */ if (offset != m->m_pkthdr.len) V_pfsyncstats.pfsyncs_badlen++; /* we're done. free and let the caller return */ m_freem(m); return (-1); } static int pfsync_in_error(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count) { V_pfsyncstats.pfsyncs_badact++; m_freem(m); return (-1); } static int pfsyncoutput(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst, struct route *rt) { m_freem(m); return (0); } /* ARGSUSED */ static int pfsyncioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct pfsync_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; struct pfsyncreq pfsyncr; int error; switch (cmd) { case SIOCSIFFLAGS: PFSYNC_LOCK(sc); if (ifp->if_flags & IFF_UP) { ifp->if_drv_flags |= IFF_DRV_RUNNING; PFSYNC_UNLOCK(sc); pfsync_pointers_init(); } else { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; PFSYNC_UNLOCK(sc); pfsync_pointers_uninit(); } break; case SIOCSIFMTU: if (!sc->sc_sync_if || ifr->ifr_mtu <= PFSYNC_MINPKT || ifr->ifr_mtu > sc->sc_sync_if->if_mtu) return (EINVAL); if (ifr->ifr_mtu < ifp->if_mtu) { PFSYNC_LOCK(sc); if (sc->sc_len > PFSYNC_MINPKT) pfsync_sendout(1); PFSYNC_UNLOCK(sc); } ifp->if_mtu = ifr->ifr_mtu; break; case SIOCGETPFSYNC: bzero(&pfsyncr, sizeof(pfsyncr)); PFSYNC_LOCK(sc); if (sc->sc_sync_if) { strlcpy(pfsyncr.pfsyncr_syncdev, sc->sc_sync_if->if_xname, IFNAMSIZ); } pfsyncr.pfsyncr_syncpeer = sc->sc_sync_peer; pfsyncr.pfsyncr_maxupdates = sc->sc_maxupdates; pfsyncr.pfsyncr_defer = (PFSYNCF_DEFER == (sc->sc_flags & PFSYNCF_DEFER)); PFSYNC_UNLOCK(sc); return (copyout(&pfsyncr, ifr->ifr_data, sizeof(pfsyncr))); case SIOCSETPFSYNC: { struct ip_moptions *imo = &sc->sc_imo; struct ifnet *sifp; struct ip *ip; void *mship = NULL; if ((error = priv_check(curthread, PRIV_NETINET_PF)) != 0) return (error); if ((error = copyin(ifr->ifr_data, &pfsyncr, sizeof(pfsyncr)))) return (error); if (pfsyncr.pfsyncr_maxupdates > 255) return (EINVAL); if (pfsyncr.pfsyncr_syncdev[0] == 0) sifp = NULL; else if ((sifp = ifunit_ref(pfsyncr.pfsyncr_syncdev)) == NULL) return (EINVAL); if (pfsyncr.pfsyncr_syncpeer.s_addr == 0 && sifp != NULL) mship = malloc((sizeof(struct in_multi *) * IP_MIN_MEMBERSHIPS), M_PFSYNC, M_WAITOK | M_ZERO); PFSYNC_LOCK(sc); if (pfsyncr.pfsyncr_syncpeer.s_addr == 0) sc->sc_sync_peer.s_addr = htonl(INADDR_PFSYNC_GROUP); else sc->sc_sync_peer.s_addr = pfsyncr.pfsyncr_syncpeer.s_addr; sc->sc_maxupdates = pfsyncr.pfsyncr_maxupdates; if (pfsyncr.pfsyncr_defer) { sc->sc_flags |= PFSYNCF_DEFER; pfsync_defer_ptr = pfsync_defer; } else { sc->sc_flags &= ~PFSYNCF_DEFER; pfsync_defer_ptr = NULL; } if (sifp == NULL) { if (sc->sc_sync_if) if_rele(sc->sc_sync_if); sc->sc_sync_if = NULL; if (imo->imo_membership) pfsync_multicast_cleanup(sc); PFSYNC_UNLOCK(sc); break; } if (sc->sc_len > PFSYNC_MINPKT && (sifp->if_mtu < sc->sc_ifp->if_mtu || (sc->sc_sync_if != NULL && sifp->if_mtu < sc->sc_sync_if->if_mtu) || sifp->if_mtu < MCLBYTES - sizeof(struct ip))) pfsync_sendout(1); if (imo->imo_membership) pfsync_multicast_cleanup(sc); if (sc->sc_sync_peer.s_addr == htonl(INADDR_PFSYNC_GROUP)) { error = pfsync_multicast_setup(sc, sifp, mship); if (error) { if_rele(sifp); free(mship, M_PFSYNC); return (error); } } if (sc->sc_sync_if) if_rele(sc->sc_sync_if); sc->sc_sync_if = sifp; ip = &sc->sc_template; bzero(ip, sizeof(*ip)); ip->ip_v = IPVERSION; ip->ip_hl = sizeof(sc->sc_template) >> 2; ip->ip_tos = IPTOS_LOWDELAY; /* len and id are set later. */ ip->ip_off = htons(IP_DF); ip->ip_ttl = PFSYNC_DFLTTL; ip->ip_p = IPPROTO_PFSYNC; ip->ip_src.s_addr = INADDR_ANY; ip->ip_dst.s_addr = sc->sc_sync_peer.s_addr; /* Request a full state table update. */ if ((sc->sc_flags & PFSYNCF_OK) && carp_demote_adj_p) (*carp_demote_adj_p)(V_pfsync_carp_adj, "pfsync bulk start"); sc->sc_flags &= ~PFSYNCF_OK; if (V_pf_status.debug >= PF_DEBUG_MISC) printf("pfsync: requesting bulk update\n"); pfsync_request_update(0, 0); PFSYNC_UNLOCK(sc); PFSYNC_BLOCK(sc); sc->sc_ureq_sent = time_uptime; callout_reset(&sc->sc_bulkfail_tmo, 5 * hz, pfsync_bulk_fail, sc); PFSYNC_BUNLOCK(sc); break; } default: return (ENOTTY); } return (0); } static void pfsync_out_state(struct pf_state *st, void *buf) { struct pfsync_state *sp = buf; pfsync_state_export(sp, st); } static void pfsync_out_iack(struct pf_state *st, void *buf) { struct pfsync_ins_ack *iack = buf; iack->id = st->id; iack->creatorid = st->creatorid; } static void pfsync_out_upd_c(struct pf_state *st, void *buf) { struct pfsync_upd_c *up = buf; bzero(up, sizeof(*up)); up->id = st->id; pf_state_peer_hton(&st->src, &up->src); pf_state_peer_hton(&st->dst, &up->dst); up->creatorid = st->creatorid; up->timeout = st->timeout; } static void pfsync_out_del(struct pf_state *st, void *buf) { struct pfsync_del_c *dp = buf; dp->id = st->id; dp->creatorid = st->creatorid; st->state_flags |= PFSTATE_NOSYNC; } static void pfsync_drop(struct pfsync_softc *sc) { struct pf_state *st, *next; struct pfsync_upd_req_item *ur; int q; for (q = 0; q < PFSYNC_S_COUNT; q++) { if (TAILQ_EMPTY(&sc->sc_qs[q])) continue; TAILQ_FOREACH_SAFE(st, &sc->sc_qs[q], sync_list, next) { KASSERT(st->sync_state == q, ("%s: st->sync_state == q", __func__)); st->sync_state = PFSYNC_S_NONE; pf_release_state(st); } TAILQ_INIT(&sc->sc_qs[q]); } while ((ur = TAILQ_FIRST(&sc->sc_upd_req_list)) != NULL) { TAILQ_REMOVE(&sc->sc_upd_req_list, ur, ur_entry); free(ur, M_PFSYNC); } sc->sc_plus = NULL; sc->sc_len = PFSYNC_MINPKT; } static void pfsync_sendout(int schedswi) { struct pfsync_softc *sc = V_pfsyncif; struct ifnet *ifp = sc->sc_ifp; struct mbuf *m; struct ip *ip; struct pfsync_header *ph; struct pfsync_subheader *subh; struct pf_state *st; struct pfsync_upd_req_item *ur; int offset; int q, count = 0; KASSERT(sc != NULL, ("%s: null sc", __func__)); KASSERT(sc->sc_len > PFSYNC_MINPKT, ("%s: sc_len %zu", __func__, sc->sc_len)); PFSYNC_LOCK_ASSERT(sc); if (ifp->if_bpf == NULL && sc->sc_sync_if == NULL) { pfsync_drop(sc); return; } m = m_get2(max_linkhdr + sc->sc_len, M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) { sc->sc_ifp->if_oerrors++; V_pfsyncstats.pfsyncs_onomem++; return; } m->m_data += max_linkhdr; m->m_len = m->m_pkthdr.len = sc->sc_len; /* build the ip header */ ip = (struct ip *)m->m_data; bcopy(&sc->sc_template, ip, sizeof(*ip)); offset = sizeof(*ip); ip->ip_len = htons(m->m_pkthdr.len); ip->ip_id = htons(ip_randomid()); /* build the pfsync header */ ph = (struct pfsync_header *)(m->m_data + offset); bzero(ph, sizeof(*ph)); offset += sizeof(*ph); ph->version = PFSYNC_VERSION; ph->len = htons(sc->sc_len - sizeof(*ip)); bcopy(V_pf_status.pf_chksum, ph->pfcksum, PF_MD5_DIGEST_LENGTH); /* walk the queues */ for (q = 0; q < PFSYNC_S_COUNT; q++) { if (TAILQ_EMPTY(&sc->sc_qs[q])) continue; subh = (struct pfsync_subheader *)(m->m_data + offset); offset += sizeof(*subh); count = 0; TAILQ_FOREACH(st, &sc->sc_qs[q], sync_list) { KASSERT(st->sync_state == q, ("%s: st->sync_state == q", __func__)); /* * XXXGL: some of write methods do unlocked reads * of state data :( */ pfsync_qs[q].write(st, m->m_data + offset); offset += pfsync_qs[q].len; st->sync_state = PFSYNC_S_NONE; pf_release_state(st); count++; } TAILQ_INIT(&sc->sc_qs[q]); bzero(subh, sizeof(*subh)); subh->action = pfsync_qs[q].action; subh->count = htons(count); V_pfsyncstats.pfsyncs_oacts[pfsync_qs[q].action] += count; } if (!TAILQ_EMPTY(&sc->sc_upd_req_list)) { subh = (struct pfsync_subheader *)(m->m_data + offset); offset += sizeof(*subh); count = 0; while ((ur = TAILQ_FIRST(&sc->sc_upd_req_list)) != NULL) { TAILQ_REMOVE(&sc->sc_upd_req_list, ur, ur_entry); bcopy(&ur->ur_msg, m->m_data + offset, sizeof(ur->ur_msg)); offset += sizeof(ur->ur_msg); free(ur, M_PFSYNC); count++; } bzero(subh, sizeof(*subh)); subh->action = PFSYNC_ACT_UPD_REQ; subh->count = htons(count); V_pfsyncstats.pfsyncs_oacts[PFSYNC_ACT_UPD_REQ] += count; } /* has someone built a custom region for us to add? */ if (sc->sc_plus != NULL) { bcopy(sc->sc_plus, m->m_data + offset, sc->sc_pluslen); offset += sc->sc_pluslen; sc->sc_plus = NULL; } subh = (struct pfsync_subheader *)(m->m_data + offset); offset += sizeof(*subh); bzero(subh, sizeof(*subh)); subh->action = PFSYNC_ACT_EOF; subh->count = htons(1); V_pfsyncstats.pfsyncs_oacts[PFSYNC_ACT_EOF]++; /* we're done, let's put it on the wire */ if (ifp->if_bpf) { m->m_data += sizeof(*ip); m->m_len = m->m_pkthdr.len = sc->sc_len - sizeof(*ip); BPF_MTAP(ifp, m); m->m_data -= sizeof(*ip); m->m_len = m->m_pkthdr.len = sc->sc_len; } if (sc->sc_sync_if == NULL) { sc->sc_len = PFSYNC_MINPKT; m_freem(m); return; } sc->sc_ifp->if_opackets++; sc->sc_ifp->if_obytes += m->m_pkthdr.len; sc->sc_len = PFSYNC_MINPKT; if (!_IF_QFULL(&sc->sc_ifp->if_snd)) _IF_ENQUEUE(&sc->sc_ifp->if_snd, m); else { m_freem(m); sc->sc_ifp->if_snd.ifq_drops++; } if (schedswi) swi_sched(V_pfsync_swi_cookie, 0); } static void pfsync_insert_state(struct pf_state *st) { struct pfsync_softc *sc = V_pfsyncif; if (st->state_flags & PFSTATE_NOSYNC) return; if ((st->rule.ptr->rule_flag & PFRULE_NOSYNC) || st->key[PF_SK_WIRE]->proto == IPPROTO_PFSYNC) { st->state_flags |= PFSTATE_NOSYNC; return; } KASSERT(st->sync_state == PFSYNC_S_NONE, ("%s: st->sync_state == PFSYNC_S_NONE", __func__)); PFSYNC_LOCK(sc); if (sc->sc_len == PFSYNC_MINPKT) callout_reset(&sc->sc_tmo, 1 * hz, pfsync_timeout, V_pfsyncif); pfsync_q_ins(st, PFSYNC_S_INS); PFSYNC_UNLOCK(sc); st->sync_updates = 0; } static int pfsync_defer(struct pf_state *st, struct mbuf *m) { struct pfsync_softc *sc = V_pfsyncif; struct pfsync_deferral *pd; if (m->m_flags & (M_BCAST|M_MCAST)) return (0); PFSYNC_LOCK(sc); if (sc == NULL || !(sc->sc_ifp->if_flags & IFF_DRV_RUNNING) || !(sc->sc_flags & PFSYNCF_DEFER)) { PFSYNC_UNLOCK(sc); return (0); } if (sc->sc_deferred >= 128) pfsync_undefer(TAILQ_FIRST(&sc->sc_deferrals), 0); pd = malloc(sizeof(*pd), M_PFSYNC, M_NOWAIT); if (pd == NULL) return (0); sc->sc_deferred++; m->m_flags |= M_SKIP_FIREWALL; st->state_flags |= PFSTATE_ACK; pd->pd_sc = sc; pd->pd_refs = 0; pd->pd_st = st; pf_ref_state(st); pd->pd_m = m; TAILQ_INSERT_TAIL(&sc->sc_deferrals, pd, pd_entry); callout_init_mtx(&pd->pd_tmo, &sc->sc_mtx, CALLOUT_RETURNUNLOCKED); callout_reset(&pd->pd_tmo, 10, pfsync_defer_tmo, pd); pfsync_push(sc); return (1); } static void pfsync_undefer(struct pfsync_deferral *pd, int drop) { struct pfsync_softc *sc = pd->pd_sc; struct mbuf *m = pd->pd_m; struct pf_state *st = pd->pd_st; PFSYNC_LOCK_ASSERT(sc); TAILQ_REMOVE(&sc->sc_deferrals, pd, pd_entry); sc->sc_deferred--; pd->pd_st->state_flags &= ~PFSTATE_ACK; /* XXX: locking! */ free(pd, M_PFSYNC); pf_release_state(st); if (drop) m_freem(m); else { _IF_ENQUEUE(&sc->sc_ifp->if_snd, m); pfsync_push(sc); } } static void pfsync_defer_tmo(void *arg) { struct pfsync_deferral *pd = arg; struct pfsync_softc *sc = pd->pd_sc; struct mbuf *m = pd->pd_m; struct pf_state *st = pd->pd_st; PFSYNC_LOCK_ASSERT(sc); CURVNET_SET(m->m_pkthdr.rcvif->if_vnet); TAILQ_REMOVE(&sc->sc_deferrals, pd, pd_entry); sc->sc_deferred--; pd->pd_st->state_flags &= ~PFSTATE_ACK; /* XXX: locking! */ if (pd->pd_refs == 0) free(pd, M_PFSYNC); PFSYNC_UNLOCK(sc); ip_output(m, NULL, NULL, 0, NULL, NULL); pf_release_state(st); CURVNET_RESTORE(); } static void pfsync_undefer_state(struct pf_state *st, int drop) { struct pfsync_softc *sc = V_pfsyncif; struct pfsync_deferral *pd; PFSYNC_LOCK_ASSERT(sc); TAILQ_FOREACH(pd, &sc->sc_deferrals, pd_entry) { if (pd->pd_st == st) { if (callout_stop(&pd->pd_tmo)) pfsync_undefer(pd, drop); return; } } panic("%s: unable to find deferred state", __func__); } static void pfsync_update_state(struct pf_state *st) { struct pfsync_softc *sc = V_pfsyncif; int sync = 0; PF_STATE_LOCK_ASSERT(st); PFSYNC_LOCK(sc); if (st->state_flags & PFSTATE_ACK) pfsync_undefer_state(st, 0); if (st->state_flags & PFSTATE_NOSYNC) { if (st->sync_state != PFSYNC_S_NONE) pfsync_q_del(st); PFSYNC_UNLOCK(sc); return; } if (sc->sc_len == PFSYNC_MINPKT) callout_reset(&sc->sc_tmo, 1 * hz, pfsync_timeout, V_pfsyncif); switch (st->sync_state) { case PFSYNC_S_UPD_C: case PFSYNC_S_UPD: case PFSYNC_S_INS: /* we're already handling it */ if (st->key[PF_SK_WIRE]->proto == IPPROTO_TCP) { st->sync_updates++; if (st->sync_updates >= sc->sc_maxupdates) sync = 1; } break; case PFSYNC_S_IACK: pfsync_q_del(st); case PFSYNC_S_NONE: pfsync_q_ins(st, PFSYNC_S_UPD_C); st->sync_updates = 0; break; default: panic("%s: unexpected sync state %d", __func__, st->sync_state); } if (sync || (time_uptime - st->pfsync_time) < 2) pfsync_push(sc); PFSYNC_UNLOCK(sc); } static void pfsync_request_update(u_int32_t creatorid, u_int64_t id) { struct pfsync_softc *sc = V_pfsyncif; struct pfsync_upd_req_item *item; size_t nlen = sizeof(struct pfsync_upd_req); PFSYNC_LOCK_ASSERT(sc); /* * This code does a bit to prevent multiple update requests for the * same state being generated. It searches current subheader queue, * but it doesn't lookup into queue of already packed datagrams. */ TAILQ_FOREACH(item, &sc->sc_upd_req_list, ur_entry) if (item->ur_msg.id == id && item->ur_msg.creatorid == creatorid) return; item = malloc(sizeof(*item), M_PFSYNC, M_NOWAIT); if (item == NULL) return; /* XXX stats */ item->ur_msg.id = id; item->ur_msg.creatorid = creatorid; if (TAILQ_EMPTY(&sc->sc_upd_req_list)) nlen += sizeof(struct pfsync_subheader); if (sc->sc_len + nlen > sc->sc_ifp->if_mtu) { pfsync_sendout(1); nlen = sizeof(struct pfsync_subheader) + sizeof(struct pfsync_upd_req); } TAILQ_INSERT_TAIL(&sc->sc_upd_req_list, item, ur_entry); sc->sc_len += nlen; } static void pfsync_update_state_req(struct pf_state *st) { struct pfsync_softc *sc = V_pfsyncif; PF_STATE_LOCK_ASSERT(st); PFSYNC_LOCK(sc); if (st->state_flags & PFSTATE_NOSYNC) { if (st->sync_state != PFSYNC_S_NONE) pfsync_q_del(st); PFSYNC_UNLOCK(sc); return; } switch (st->sync_state) { case PFSYNC_S_UPD_C: case PFSYNC_S_IACK: pfsync_q_del(st); case PFSYNC_S_NONE: pfsync_q_ins(st, PFSYNC_S_UPD); pfsync_push(sc); break; case PFSYNC_S_INS: case PFSYNC_S_UPD: case PFSYNC_S_DEL: /* we're already handling it */ break; default: panic("%s: unexpected sync state %d", __func__, st->sync_state); } PFSYNC_UNLOCK(sc); } static void pfsync_delete_state(struct pf_state *st) { struct pfsync_softc *sc = V_pfsyncif; PFSYNC_LOCK(sc); if (st->state_flags & PFSTATE_ACK) pfsync_undefer_state(st, 1); if (st->state_flags & PFSTATE_NOSYNC) { if (st->sync_state != PFSYNC_S_NONE) pfsync_q_del(st); PFSYNC_UNLOCK(sc); return; } if (sc->sc_len == PFSYNC_MINPKT) callout_reset(&sc->sc_tmo, 1 * hz, pfsync_timeout, V_pfsyncif); switch (st->sync_state) { case PFSYNC_S_INS: /* We never got to tell the world so just forget about it. */ pfsync_q_del(st); break; case PFSYNC_S_UPD_C: case PFSYNC_S_UPD: case PFSYNC_S_IACK: pfsync_q_del(st); /* FALLTHROUGH to putting it on the del list */ case PFSYNC_S_NONE: pfsync_q_ins(st, PFSYNC_S_DEL); break; default: panic("%s: unexpected sync state %d", __func__, st->sync_state); } PFSYNC_UNLOCK(sc); } static void pfsync_clear_states(u_int32_t creatorid, const char *ifname) { struct pfsync_softc *sc = V_pfsyncif; struct { struct pfsync_subheader subh; struct pfsync_clr clr; } __packed r; bzero(&r, sizeof(r)); r.subh.action = PFSYNC_ACT_CLR; r.subh.count = htons(1); V_pfsyncstats.pfsyncs_oacts[PFSYNC_ACT_CLR]++; strlcpy(r.clr.ifname, ifname, sizeof(r.clr.ifname)); r.clr.creatorid = creatorid; PFSYNC_LOCK(sc); pfsync_send_plus(&r, sizeof(r)); PFSYNC_UNLOCK(sc); } static void pfsync_q_ins(struct pf_state *st, int q) { struct pfsync_softc *sc = V_pfsyncif; size_t nlen = pfsync_qs[q].len; PFSYNC_LOCK_ASSERT(sc); KASSERT(st->sync_state == PFSYNC_S_NONE, ("%s: st->sync_state == PFSYNC_S_NONE", __func__)); KASSERT(sc->sc_len >= PFSYNC_MINPKT, ("pfsync pkt len is too low %zu", sc->sc_len)); if (TAILQ_EMPTY(&sc->sc_qs[q])) nlen += sizeof(struct pfsync_subheader); if (sc->sc_len + nlen > sc->sc_ifp->if_mtu) { pfsync_sendout(1); nlen = sizeof(struct pfsync_subheader) + pfsync_qs[q].len; } sc->sc_len += nlen; TAILQ_INSERT_TAIL(&sc->sc_qs[q], st, sync_list); st->sync_state = q; pf_ref_state(st); } static void pfsync_q_del(struct pf_state *st) { struct pfsync_softc *sc = V_pfsyncif; int q = st->sync_state; PFSYNC_LOCK_ASSERT(sc); KASSERT(st->sync_state != PFSYNC_S_NONE, ("%s: st->sync_state != PFSYNC_S_NONE", __func__)); sc->sc_len -= pfsync_qs[q].len; TAILQ_REMOVE(&sc->sc_qs[q], st, sync_list); st->sync_state = PFSYNC_S_NONE; pf_release_state(st); if (TAILQ_EMPTY(&sc->sc_qs[q])) sc->sc_len -= sizeof(struct pfsync_subheader); } static void pfsync_bulk_start(void) { struct pfsync_softc *sc = V_pfsyncif; if (V_pf_status.debug >= PF_DEBUG_MISC) printf("pfsync: received bulk update request\n"); PFSYNC_BLOCK(sc); sc->sc_ureq_received = time_uptime; sc->sc_bulk_hashid = 0; sc->sc_bulk_stateid = 0; pfsync_bulk_status(PFSYNC_BUS_START); callout_reset(&sc->sc_bulk_tmo, 1, pfsync_bulk_update, sc); PFSYNC_BUNLOCK(sc); } static void pfsync_bulk_update(void *arg) { struct pfsync_softc *sc = arg; struct pf_state *s; int i, sent = 0; PFSYNC_BLOCK_ASSERT(sc); CURVNET_SET(sc->sc_ifp->if_vnet); /* * Start with last state from previous invocation. * It may had gone, in this case start from the * hash slot. */ s = pf_find_state_byid(sc->sc_bulk_stateid, sc->sc_bulk_creatorid); if (s != NULL) i = PF_IDHASH(s); else i = sc->sc_bulk_hashid; for (; i <= V_pf_hashmask; i++) { struct pf_idhash *ih = &V_pf_idhash[i]; if (s != NULL) PF_HASHROW_ASSERT(ih); else { PF_HASHROW_LOCK(ih); s = LIST_FIRST(&ih->states); } for (; s; s = LIST_NEXT(s, entry)) { if (sent > 1 && (sc->sc_ifp->if_mtu - sc->sc_len) < sizeof(struct pfsync_state)) { /* We've filled a packet. */ sc->sc_bulk_hashid = i; sc->sc_bulk_stateid = s->id; sc->sc_bulk_creatorid = s->creatorid; PF_HASHROW_UNLOCK(ih); callout_reset(&sc->sc_bulk_tmo, 1, pfsync_bulk_update, sc); goto full; } if (s->sync_state == PFSYNC_S_NONE && s->timeout < PFTM_MAX && s->pfsync_time <= sc->sc_ureq_received) { pfsync_update_state_req(s); sent++; } } PF_HASHROW_UNLOCK(ih); } /* We're done. */ pfsync_bulk_status(PFSYNC_BUS_END); full: CURVNET_RESTORE(); } static void pfsync_bulk_status(u_int8_t status) { struct { struct pfsync_subheader subh; struct pfsync_bus bus; } __packed r; struct pfsync_softc *sc = V_pfsyncif; bzero(&r, sizeof(r)); r.subh.action = PFSYNC_ACT_BUS; r.subh.count = htons(1); V_pfsyncstats.pfsyncs_oacts[PFSYNC_ACT_BUS]++; r.bus.creatorid = V_pf_status.hostid; r.bus.endtime = htonl(time_uptime - sc->sc_ureq_received); r.bus.status = status; PFSYNC_LOCK(sc); pfsync_send_plus(&r, sizeof(r)); PFSYNC_UNLOCK(sc); } static void pfsync_bulk_fail(void *arg) { struct pfsync_softc *sc = arg; CURVNET_SET(sc->sc_ifp->if_vnet); PFSYNC_BLOCK_ASSERT(sc); if (sc->sc_bulk_tries++ < PFSYNC_MAX_BULKTRIES) { /* Try again */ callout_reset(&sc->sc_bulkfail_tmo, 5 * hz, pfsync_bulk_fail, V_pfsyncif); PFSYNC_LOCK(sc); pfsync_request_update(0, 0); PFSYNC_UNLOCK(sc); } else { /* Pretend like the transfer was ok. */ sc->sc_ureq_sent = 0; sc->sc_bulk_tries = 0; PFSYNC_LOCK(sc); if (!(sc->sc_flags & PFSYNCF_OK) && carp_demote_adj_p) (*carp_demote_adj_p)(-V_pfsync_carp_adj, "pfsync bulk fail"); sc->sc_flags |= PFSYNCF_OK; PFSYNC_UNLOCK(sc); if (V_pf_status.debug >= PF_DEBUG_MISC) printf("pfsync: failed to receive bulk update\n"); } CURVNET_RESTORE(); } static void pfsync_send_plus(void *plus, size_t pluslen) { struct pfsync_softc *sc = V_pfsyncif; PFSYNC_LOCK_ASSERT(sc); if (sc->sc_len + pluslen > sc->sc_ifp->if_mtu) pfsync_sendout(1); sc->sc_plus = plus; sc->sc_len += (sc->sc_pluslen = pluslen); pfsync_sendout(1); } static void pfsync_timeout(void *arg) { struct pfsync_softc *sc = arg; CURVNET_SET(sc->sc_ifp->if_vnet); PFSYNC_LOCK(sc); pfsync_push(sc); PFSYNC_UNLOCK(sc); CURVNET_RESTORE(); } static void pfsync_push(struct pfsync_softc *sc) { PFSYNC_LOCK_ASSERT(sc); sc->sc_flags |= PFSYNCF_PUSH; swi_sched(V_pfsync_swi_cookie, 0); } static void pfsyncintr(void *arg) { struct pfsync_softc *sc = arg; struct mbuf *m, *n; CURVNET_SET(sc->sc_ifp->if_vnet); PFSYNC_LOCK(sc); if ((sc->sc_flags & PFSYNCF_PUSH) && sc->sc_len > PFSYNC_MINPKT) { pfsync_sendout(0); sc->sc_flags &= ~PFSYNCF_PUSH; } _IF_DEQUEUE_ALL(&sc->sc_ifp->if_snd, m); PFSYNC_UNLOCK(sc); for (; m != NULL; m = n) { n = m->m_nextpkt; m->m_nextpkt = NULL; /* * We distinguish between a deferral packet and our * own pfsync packet based on M_SKIP_FIREWALL * flag. This is XXX. */ if (m->m_flags & M_SKIP_FIREWALL) ip_output(m, NULL, NULL, 0, NULL, NULL); else if (ip_output(m, NULL, NULL, IP_RAWOUTPUT, &sc->sc_imo, NULL) == 0) V_pfsyncstats.pfsyncs_opackets++; else V_pfsyncstats.pfsyncs_oerrors++; } CURVNET_RESTORE(); } static int pfsync_multicast_setup(struct pfsync_softc *sc, struct ifnet *ifp, void *mship) { struct ip_moptions *imo = &sc->sc_imo; int error; if (!(ifp->if_flags & IFF_MULTICAST)) return (EADDRNOTAVAIL); imo->imo_membership = (struct in_multi **)mship; imo->imo_max_memberships = IP_MIN_MEMBERSHIPS; imo->imo_multicast_vif = -1; if ((error = in_joingroup(ifp, &sc->sc_sync_peer, NULL, &imo->imo_membership[0])) != 0) { imo->imo_membership = NULL; return (error); } imo->imo_num_memberships++; imo->imo_multicast_ifp = ifp; imo->imo_multicast_ttl = PFSYNC_DFLTTL; imo->imo_multicast_loop = 0; return (0); } static void pfsync_multicast_cleanup(struct pfsync_softc *sc) { struct ip_moptions *imo = &sc->sc_imo; in_leavegroup(imo->imo_membership[0], NULL); free(imo->imo_membership, M_PFSYNC); imo->imo_membership = NULL; imo->imo_multicast_ifp = NULL; } #ifdef INET extern struct domain inetdomain; static struct protosw in_pfsync_protosw = { .pr_type = SOCK_RAW, .pr_domain = &inetdomain, .pr_protocol = IPPROTO_PFSYNC, .pr_flags = PR_ATOMIC|PR_ADDR, .pr_input = pfsync_input, .pr_output = (pr_output_t *)rip_output, .pr_ctloutput = rip_ctloutput, .pr_usrreqs = &rip_usrreqs }; #endif static void pfsync_pointers_init() { PF_RULES_WLOCK(); pfsync_state_import_ptr = pfsync_state_import; pfsync_insert_state_ptr = pfsync_insert_state; pfsync_update_state_ptr = pfsync_update_state; pfsync_delete_state_ptr = pfsync_delete_state; pfsync_clear_states_ptr = pfsync_clear_states; pfsync_defer_ptr = pfsync_defer; PF_RULES_WUNLOCK(); } static void pfsync_pointers_uninit() { PF_RULES_WLOCK(); pfsync_state_import_ptr = NULL; pfsync_insert_state_ptr = NULL; pfsync_update_state_ptr = NULL; pfsync_delete_state_ptr = NULL; pfsync_clear_states_ptr = NULL; pfsync_defer_ptr = NULL; PF_RULES_WUNLOCK(); } static int pfsync_init() { VNET_ITERATOR_DECL(vnet_iter); int error = 0; VNET_LIST_RLOCK(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); V_pfsync_cloner = if_clone_simple(pfsyncname, pfsync_clone_create, pfsync_clone_destroy, 1); error = swi_add(NULL, pfsyncname, pfsyncintr, V_pfsyncif, SWI_NET, INTR_MPSAFE, &V_pfsync_swi_cookie); CURVNET_RESTORE(); if (error) goto fail_locked; } VNET_LIST_RUNLOCK(); #ifdef INET error = pf_proto_register(PF_INET, &in_pfsync_protosw); if (error) goto fail; error = ipproto_register(IPPROTO_PFSYNC); if (error) { pf_proto_unregister(PF_INET, IPPROTO_PFSYNC, SOCK_RAW); goto fail; } #endif pfsync_pointers_init(); return (0); fail: VNET_LIST_RLOCK(); fail_locked: VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); if (V_pfsync_swi_cookie) { swi_remove(V_pfsync_swi_cookie); if_clone_detach(V_pfsync_cloner); } CURVNET_RESTORE(); } VNET_LIST_RUNLOCK(); return (error); } static void pfsync_uninit() { VNET_ITERATOR_DECL(vnet_iter); pfsync_pointers_uninit(); ipproto_unregister(IPPROTO_PFSYNC); pf_proto_unregister(PF_INET, IPPROTO_PFSYNC, SOCK_RAW); VNET_LIST_RLOCK(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); if_clone_detach(V_pfsync_cloner); swi_remove(V_pfsync_swi_cookie); CURVNET_RESTORE(); } VNET_LIST_RUNLOCK(); } static int pfsync_modevent(module_t mod, int type, void *data) { int error = 0; switch (type) { case MOD_LOAD: error = pfsync_init(); break; case MOD_QUIESCE: /* * Module should not be unloaded due to race conditions. */ error = EBUSY; break; case MOD_UNLOAD: pfsync_uninit(); break; default: error = EINVAL; break; } return (error); } static moduledata_t pfsync_mod = { pfsyncname, pfsync_modevent, 0 }; #define PFSYNC_MODVER 1 DECLARE_MODULE(pfsync, pfsync_mod, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY); MODULE_VERSION(pfsync, PFSYNC_MODVER); MODULE_DEPEND(pfsync, pf, PF_MODVER, PF_MODVER, PF_MODVER);