/*- * Copyright 2009, 2010 Jeffrey W. Roberson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "fsck.h" #define DOTDOT_OFFSET DIRECTSIZ(1) #define SUJ_HASHSIZE 2048 #define SUJ_HASHMASK (SUJ_HASHSIZE - 1) #define SUJ_HASH(x) ((x * 2654435761) & SUJ_HASHMASK) struct suj_seg { TAILQ_ENTRY(suj_seg) ss_next; struct jsegrec ss_rec; uint8_t *ss_blk; }; struct suj_rec { TAILQ_ENTRY(suj_rec) sr_next; union jrec *sr_rec; }; TAILQ_HEAD(srechd, suj_rec); struct suj_ino { LIST_ENTRY(suj_ino) si_next; struct srechd si_recs; struct srechd si_newrecs; struct srechd si_movs; struct jtrncrec *si_trunc; ino_t si_ino; char si_skipparent; char si_hasrecs; char si_blkadj; char si_linkadj; int si_mode; nlink_t si_nlinkadj; nlink_t si_nlink; nlink_t si_dotlinks; }; LIST_HEAD(inohd, suj_ino); struct suj_blk { LIST_ENTRY(suj_blk) sb_next; struct srechd sb_recs; ufs2_daddr_t sb_blk; }; LIST_HEAD(blkhd, suj_blk); struct data_blk { LIST_ENTRY(data_blk) db_next; uint8_t *db_buf; ufs2_daddr_t db_blk; int db_size; int db_dirty; }; struct ino_blk { LIST_ENTRY(ino_blk) ib_next; uint8_t *ib_buf; int ib_dirty; ufs2_daddr_t ib_blk; }; LIST_HEAD(iblkhd, ino_blk); struct suj_cg { LIST_ENTRY(suj_cg) sc_next; struct blkhd sc_blkhash[SUJ_HASHSIZE]; struct inohd sc_inohash[SUJ_HASHSIZE]; struct iblkhd sc_iblkhash[SUJ_HASHSIZE]; struct ino_blk *sc_lastiblk; struct suj_ino *sc_lastino; struct suj_blk *sc_lastblk; uint8_t *sc_cgbuf; struct cg *sc_cgp; int sc_dirty; int sc_cgx; }; LIST_HEAD(cghd, suj_cg) cghash[SUJ_HASHSIZE]; LIST_HEAD(dblkhd, data_blk) dbhash[SUJ_HASHSIZE]; struct suj_cg *lastcg; struct data_blk *lastblk; TAILQ_HEAD(seghd, suj_seg) allsegs; uint64_t oldseq; static struct uufsd *disk = NULL; static struct fs *fs = NULL; ino_t sujino; /* * Summary statistics. */ uint64_t freefrags; uint64_t freeblocks; uint64_t freeinos; uint64_t freedir; uint64_t jbytes; uint64_t jrecs; static jmp_buf jmpbuf; typedef void (*ino_visitor)(ino_t, ufs_lbn_t, ufs2_daddr_t, int); static void err_suj(const char *, ...) __dead2; static void ino_trunc(ino_t, off_t); static void ino_decr(ino_t); static void ino_adjust(struct suj_ino *); static void ino_build(struct suj_ino *); static int blk_isfree(ufs2_daddr_t); static void * errmalloc(size_t n) { void *a; a = malloc(n); if (a == NULL) err(EX_OSERR, "malloc(%zu)", n); return (a); } /* * When hit a fatal error in journalling check, print out * the error and then offer to fallback to normal fsck. */ static void err_suj(const char * restrict fmt, ...) { va_list ap; if (preen) (void)fprintf(stdout, "%s: ", cdevname); va_start(ap, fmt); (void)vfprintf(stdout, fmt, ap); va_end(ap); longjmp(jmpbuf, -1); } /* * Open the given provider, load superblock. */ static void opendisk(const char *devnam) { if (disk != NULL) return; disk = malloc(sizeof(*disk)); if (disk == NULL) err(EX_OSERR, "malloc(%zu)", sizeof(*disk)); if (ufs_disk_fillout(disk, devnam) == -1) { err(EX_OSERR, "ufs_disk_fillout(%s) failed: %s", devnam, disk->d_error); } fs = &disk->d_fs; } /* * Mark file system as clean, write the super-block back, close the disk. */ static void closedisk(const char *devnam) { struct csum *cgsum; int i; /* * Recompute the fs summary info from correct cs summaries. */ bzero(&fs->fs_cstotal, sizeof(struct csum_total)); for (i = 0; i < fs->fs_ncg; i++) { cgsum = &fs->fs_cs(fs, i); fs->fs_cstotal.cs_nffree += cgsum->cs_nffree; fs->fs_cstotal.cs_nbfree += cgsum->cs_nbfree; fs->fs_cstotal.cs_nifree += cgsum->cs_nifree; fs->fs_cstotal.cs_ndir += cgsum->cs_ndir; } fs->fs_pendinginodes = 0; fs->fs_pendingblocks = 0; fs->fs_clean = 1; fs->fs_time = time(NULL); fs->fs_mtime = time(NULL); if (sbwrite(disk, 0) == -1) err(EX_OSERR, "sbwrite(%s)", devnam); if (ufs_disk_close(disk) == -1) err(EX_OSERR, "ufs_disk_close(%s)", devnam); free(disk); disk = NULL; fs = NULL; } /* * Lookup a cg by number in the hash so we can keep track of which cgs * need stats rebuilt. */ static struct suj_cg * cg_lookup(int cgx) { struct cghd *hd; struct suj_cg *sc; if (cgx < 0 || cgx >= fs->fs_ncg) err_suj("Bad cg number %d\n", cgx); if (lastcg && lastcg->sc_cgx == cgx) return (lastcg); hd = &cghash[SUJ_HASH(cgx)]; LIST_FOREACH(sc, hd, sc_next) if (sc->sc_cgx == cgx) { lastcg = sc; return (sc); } sc = errmalloc(sizeof(*sc)); bzero(sc, sizeof(*sc)); sc->sc_cgbuf = errmalloc(fs->fs_bsize); sc->sc_cgp = (struct cg *)sc->sc_cgbuf; sc->sc_cgx = cgx; LIST_INSERT_HEAD(hd, sc, sc_next); if (bread(disk, fsbtodb(fs, cgtod(fs, sc->sc_cgx)), sc->sc_cgbuf, fs->fs_bsize) == -1) err_suj("Unable to read cylinder group %d\n", sc->sc_cgx); return (sc); } /* * Lookup an inode number in the hash and allocate a suj_ino if it does * not exist. */ static struct suj_ino * ino_lookup(ino_t ino, int creat) { struct suj_ino *sino; struct inohd *hd; struct suj_cg *sc; sc = cg_lookup(ino_to_cg(fs, ino)); if (sc->sc_lastino && sc->sc_lastino->si_ino == ino) return (sc->sc_lastino); hd = &sc->sc_inohash[SUJ_HASH(ino)]; LIST_FOREACH(sino, hd, si_next) if (sino->si_ino == ino) return (sino); if (creat == 0) return (NULL); sino = errmalloc(sizeof(*sino)); bzero(sino, sizeof(*sino)); sino->si_ino = ino; TAILQ_INIT(&sino->si_recs); TAILQ_INIT(&sino->si_newrecs); TAILQ_INIT(&sino->si_movs); LIST_INSERT_HEAD(hd, sino, si_next); return (sino); } /* * Lookup a block number in the hash and allocate a suj_blk if it does * not exist. */ static struct suj_blk * blk_lookup(ufs2_daddr_t blk, int creat) { struct suj_blk *sblk; struct suj_cg *sc; struct blkhd *hd; sc = cg_lookup(dtog(fs, blk)); if (sc->sc_lastblk && sc->sc_lastblk->sb_blk == blk) return (sc->sc_lastblk); hd = &sc->sc_blkhash[SUJ_HASH(fragstoblks(fs, blk))]; LIST_FOREACH(sblk, hd, sb_next) if (sblk->sb_blk == blk) return (sblk); if (creat == 0) return (NULL); sblk = errmalloc(sizeof(*sblk)); bzero(sblk, sizeof(*sblk)); sblk->sb_blk = blk; TAILQ_INIT(&sblk->sb_recs); LIST_INSERT_HEAD(hd, sblk, sb_next); return (sblk); } static struct data_blk * dblk_lookup(ufs2_daddr_t blk) { struct data_blk *dblk; struct dblkhd *hd; hd = &dbhash[SUJ_HASH(fragstoblks(fs, blk))]; if (lastblk && lastblk->db_blk == blk) return (lastblk); LIST_FOREACH(dblk, hd, db_next) if (dblk->db_blk == blk) return (dblk); /* * The inode block wasn't located, allocate a new one. */ dblk = errmalloc(sizeof(*dblk)); bzero(dblk, sizeof(*dblk)); LIST_INSERT_HEAD(hd, dblk, db_next); dblk->db_blk = blk; return (dblk); } static uint8_t * dblk_read(ufs2_daddr_t blk, int size) { struct data_blk *dblk; dblk = dblk_lookup(blk); /* * I doubt size mismatches can happen in practice but it is trivial * to handle. */ if (size != dblk->db_size) { if (dblk->db_buf) free(dblk->db_buf); dblk->db_buf = errmalloc(size); dblk->db_size = size; if (bread(disk, fsbtodb(fs, blk), dblk->db_buf, size) == -1) err_suj("Failed to read data block %jd\n", blk); } return (dblk->db_buf); } static void dblk_dirty(ufs2_daddr_t blk) { struct data_blk *dblk; dblk = dblk_lookup(blk); dblk->db_dirty = 1; } static void dblk_write(void) { struct data_blk *dblk; int i; for (i = 0; i < SUJ_HASHSIZE; i++) { LIST_FOREACH(dblk, &dbhash[i], db_next) { if (dblk->db_dirty == 0 || dblk->db_size == 0) continue; if (bwrite(disk, fsbtodb(fs, dblk->db_blk), dblk->db_buf, dblk->db_size) == -1) err_suj("Unable to write block %jd\n", dblk->db_blk); } } } static union dinode * ino_read(ino_t ino) { struct ino_blk *iblk; struct iblkhd *hd; struct suj_cg *sc; ufs2_daddr_t blk; int off; blk = ino_to_fsba(fs, ino); sc = cg_lookup(ino_to_cg(fs, ino)); iblk = sc->sc_lastiblk; if (iblk && iblk->ib_blk == blk) goto found; hd = &sc->sc_iblkhash[SUJ_HASH(fragstoblks(fs, blk))]; LIST_FOREACH(iblk, hd, ib_next) if (iblk->ib_blk == blk) goto found; /* * The inode block wasn't located, allocate a new one. */ iblk = errmalloc(sizeof(*iblk)); bzero(iblk, sizeof(*iblk)); iblk->ib_buf = errmalloc(fs->fs_bsize); iblk->ib_blk = blk; LIST_INSERT_HEAD(hd, iblk, ib_next); if (bread(disk, fsbtodb(fs, blk), iblk->ib_buf, fs->fs_bsize) == -1) err_suj("Failed to read inode block %jd\n", blk); found: sc->sc_lastiblk = iblk; off = ino_to_fsbo(fs, ino); if (fs->fs_magic == FS_UFS1_MAGIC) return (union dinode *)&((struct ufs1_dinode *)iblk->ib_buf)[off]; else return (union dinode *)&((struct ufs2_dinode *)iblk->ib_buf)[off]; } static void ino_dirty(ino_t ino) { struct ino_blk *iblk; struct iblkhd *hd; struct suj_cg *sc; ufs2_daddr_t blk; blk = ino_to_fsba(fs, ino); sc = cg_lookup(ino_to_cg(fs, ino)); iblk = sc->sc_lastiblk; if (iblk && iblk->ib_blk == blk) { iblk->ib_dirty = 1; return; } hd = &sc->sc_iblkhash[SUJ_HASH(fragstoblks(fs, blk))]; LIST_FOREACH(iblk, hd, ib_next) { if (iblk->ib_blk == blk) { iblk->ib_dirty = 1; return; } } ino_read(ino); ino_dirty(ino); } static void iblk_write(struct ino_blk *iblk) { if (iblk->ib_dirty == 0) return; if (bwrite(disk, fsbtodb(fs, iblk->ib_blk), iblk->ib_buf, fs->fs_bsize) == -1) err_suj("Failed to write inode block %jd\n", iblk->ib_blk); } static int blk_overlaps(struct jblkrec *brec, ufs2_daddr_t start, int frags) { ufs2_daddr_t bstart; ufs2_daddr_t bend; ufs2_daddr_t end; end = start + frags; bstart = brec->jb_blkno + brec->jb_oldfrags; bend = bstart + brec->jb_frags; if (start < bend && end > bstart) return (1); return (0); } static int blk_equals(struct jblkrec *brec, ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t start, int frags) { if (brec->jb_ino != ino || brec->jb_lbn != lbn) return (0); if (brec->jb_blkno + brec->jb_oldfrags != start) return (0); if (brec->jb_frags != frags) return (0); return (1); } static void blk_setmask(struct jblkrec *brec, int *mask) { int i; for (i = brec->jb_oldfrags; i < brec->jb_oldfrags + brec->jb_frags; i++) *mask |= 1 << i; } /* * Determine whether a given block has been reallocated to a new location. * Returns a mask of overlapping bits if any frags have been reused or * zero if the block has not been re-used and the contents can be trusted. * * This is used to ensure that an orphaned pointer due to truncate is safe * to be freed. The mask value can be used to free partial blocks. */ static int blk_freemask(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags) { struct suj_blk *sblk; struct suj_rec *srec; struct jblkrec *brec; int mask; int off; /* * To be certain we're not freeing a reallocated block we lookup * this block in the blk hash and see if there is an allocation * journal record that overlaps with any fragments in the block * we're concerned with. If any fragments have ben reallocated * the block has already been freed and re-used for another purpose. */ mask = 0; sblk = blk_lookup(blknum(fs, blk), 0); if (sblk == NULL) return (0); off = blk - sblk->sb_blk; TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) { brec = (struct jblkrec *)srec->sr_rec; /* * If the block overlaps but does not match * exactly it's a new allocation. If it matches * exactly this record refers to the current * location. */ if (blk_overlaps(brec, blk, frags) == 0) continue; if (blk_equals(brec, ino, lbn, blk, frags) == 1) mask = 0; else blk_setmask(brec, &mask); } if (debug) printf("blk_freemask: blk %jd sblk %jd off %d mask 0x%X\n", blk, sblk->sb_blk, off, mask); return (mask >> off); } /* * Determine whether it is safe to follow an indirect. It is not safe * if any part of the indirect has been reallocated or the last journal * entry was an allocation. Just allocated indirects may not have valid * pointers yet and all of their children will have their own records. * It is also not safe to follow an indirect if the cg bitmap has been * cleared as a new allocation may write to the block prior to the journal * being written. * * Returns 1 if it's safe to follow the indirect and 0 otherwise. */ static int blk_isindir(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn) { struct suj_blk *sblk; struct jblkrec *brec; sblk = blk_lookup(blk, 0); if (sblk == NULL) return (1); if (TAILQ_EMPTY(&sblk->sb_recs)) return (1); brec = (struct jblkrec *)TAILQ_LAST(&sblk->sb_recs, srechd)->sr_rec; if (blk_equals(brec, ino, lbn, blk, fs->fs_frag)) if (brec->jb_op == JOP_FREEBLK) return (!blk_isfree(blk)); return (0); } /* * Clear an inode from the cg bitmap. If the inode was already clear return * 0 so the caller knows it does not have to check the inode contents. */ static int ino_free(ino_t ino, int mode) { struct suj_cg *sc; uint8_t *inosused; struct cg *cgp; int cg; cg = ino_to_cg(fs, ino); ino = ino % fs->fs_ipg; sc = cg_lookup(cg); cgp = sc->sc_cgp; inosused = cg_inosused(cgp); /* * The bitmap may never have made it to the disk so we have to * conditionally clear. We can avoid writing the cg in this case. */ if (isclr(inosused, ino)) return (0); freeinos++; clrbit(inosused, ino); if (ino < cgp->cg_irotor) cgp->cg_irotor = ino; cgp->cg_cs.cs_nifree++; if ((mode & IFMT) == IFDIR) { freedir++; cgp->cg_cs.cs_ndir--; } sc->sc_dirty = 1; return (1); } /* * Free 'frags' frags starting at filesystem block 'bno' skipping any frags * set in the mask. */ static void blk_free(ufs2_daddr_t bno, int mask, int frags) { ufs1_daddr_t fragno, cgbno; struct suj_cg *sc; struct cg *cgp; int i, cg; uint8_t *blksfree; if (debug) printf("Freeing %d frags at blk %jd\n", frags, bno); cg = dtog(fs, bno); sc = cg_lookup(cg); cgp = sc->sc_cgp; cgbno = dtogd(fs, bno); blksfree = cg_blksfree(cgp); /* * If it's not allocated we only wrote the journal entry * and never the bitmaps. Here we unconditionally clear and * resolve the cg summary later. */ if (frags == fs->fs_frag && mask == 0) { fragno = fragstoblks(fs, cgbno); ffs_setblock(fs, blksfree, fragno); freeblocks++; } else { /* * deallocate the fragment */ for (i = 0; i < frags; i++) if ((mask & (1 << i)) == 0 && isclr(blksfree, cgbno +i)) { freefrags++; setbit(blksfree, cgbno + i); } } sc->sc_dirty = 1; } /* * Returns 1 if the whole block starting at 'bno' is marked free and 0 * otherwise. */ static int blk_isfree(ufs2_daddr_t bno) { struct suj_cg *sc; sc = cg_lookup(dtog(fs, bno)); return ffs_isblock(fs, cg_blksfree(sc->sc_cgp), dtogd(fs, bno)); } /* * Fetch an indirect block to find the block at a given lbn. The lbn * may be negative to fetch a specific indirect block pointer or positive * to fetch a specific block. */ static ufs2_daddr_t indir_blkatoff(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t cur, ufs_lbn_t lbn) { ufs2_daddr_t *bap2; ufs2_daddr_t *bap1; ufs_lbn_t lbnadd; ufs_lbn_t base; int level; int i; if (blk == 0) return (0); level = lbn_level(cur); if (level == -1) err_suj("Invalid indir lbn %jd\n", lbn); if (level == 0 && lbn < 0) err_suj("Invalid lbn %jd\n", lbn); bap2 = (void *)dblk_read(blk, fs->fs_bsize); bap1 = (void *)bap2; lbnadd = 1; base = -(cur + level); for (i = level; i > 0; i--) lbnadd *= NINDIR(fs); if (lbn > 0) i = (lbn - base) / lbnadd; else i = (-lbn - base) / lbnadd; if (i < 0 || i >= NINDIR(fs)) err_suj("Invalid indirect index %d produced by lbn %jd\n", i, lbn); if (level == 0) cur = base + (i * lbnadd); else cur = -(base + (i * lbnadd)) - (level - 1); if (fs->fs_magic == FS_UFS1_MAGIC) blk = bap1[i]; else blk = bap2[i]; if (cur == lbn) return (blk); if (level == 0) err_suj("Invalid lbn %jd at level 0\n", lbn); return indir_blkatoff(blk, ino, cur, lbn); } /* * Finds the disk block address at the specified lbn within the inode * specified by ip. This follows the whole tree and honors di_size and * di_extsize so it is a true test of reachability. The lbn may be * negative if an extattr or indirect block is requested. */ static ufs2_daddr_t ino_blkatoff(union dinode *ip, ino_t ino, ufs_lbn_t lbn, int *frags) { ufs_lbn_t tmpval; ufs_lbn_t cur; ufs_lbn_t next; int i; /* * Handle extattr blocks first. */ if (lbn < 0 && lbn >= -NXADDR) { lbn = -1 - lbn; if (lbn > lblkno(fs, ip->dp2.di_extsize - 1)) return (0); *frags = numfrags(fs, sblksize(fs, ip->dp2.di_extsize, lbn)); return (ip->dp2.di_extb[lbn]); } /* * Now direct and indirect. */ if (DIP(ip, di_mode) == IFLNK && DIP(ip, di_size) < fs->fs_maxsymlinklen) return (0); if (lbn >= 0 && lbn < NDADDR) { *frags = numfrags(fs, sblksize(fs, DIP(ip, di_size), lbn)); return (DIP(ip, di_db[lbn])); } *frags = fs->fs_frag; for (i = 0, tmpval = NINDIR(fs), cur = NDADDR; i < NIADDR; i++, tmpval *= NINDIR(fs), cur = next) { next = cur + tmpval; if (lbn == -cur - i) return (DIP(ip, di_ib[i])); /* * Determine whether the lbn in question is within this tree. */ if (lbn < 0 && -lbn >= next) continue; if (lbn > 0 && lbn >= next) continue; return indir_blkatoff(DIP(ip, di_ib[i]), ino, -cur - i, lbn); } err_suj("lbn %jd not in ino\n", lbn); /* NOTREACHED */ } /* * Determine whether a block exists at a particular lbn in an inode. * Returns 1 if found, 0 if not. lbn may be negative for indirects * or ext blocks. */ static int blk_isat(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int *frags) { union dinode *ip; ufs2_daddr_t nblk; ip = ino_read(ino); if (DIP(ip, di_nlink) == 0 || DIP(ip, di_mode) == 0) return (0); nblk = ino_blkatoff(ip, ino, lbn, frags); return (nblk == blk); } /* * Clear the directory entry at diroff that should point to child. Minimal * checking is done and it is assumed that this path was verified with isat. */ static void ino_clrat(ino_t parent, off_t diroff, ino_t child) { union dinode *dip; struct direct *dp; ufs2_daddr_t blk; uint8_t *block; ufs_lbn_t lbn; int blksize; int frags; int doff; if (debug) printf("Clearing inode %d from parent %d at offset %jd\n", child, parent, diroff); lbn = lblkno(fs, diroff); doff = blkoff(fs, diroff); dip = ino_read(parent); blk = ino_blkatoff(dip, parent, lbn, &frags); blksize = sblksize(fs, DIP(dip, di_size), lbn); block = dblk_read(blk, blksize); dp = (struct direct *)&block[doff]; if (dp->d_ino != child) errx(1, "Inode %d does not exist in %d at %jd", child, parent, diroff); dp->d_ino = 0; dblk_dirty(blk); /* * The actual .. reference count will already have been removed * from the parent by the .. remref record. */ } /* * Determines whether a pointer to an inode exists within a directory * at a specified offset. Returns the mode of the found entry. */ static int ino_isat(ino_t parent, off_t diroff, ino_t child, int *mode, int *isdot) { union dinode *dip; struct direct *dp; ufs2_daddr_t blk; uint8_t *block; ufs_lbn_t lbn; int blksize; int frags; int dpoff; int doff; *isdot = 0; dip = ino_read(parent); *mode = DIP(dip, di_mode); if ((*mode & IFMT) != IFDIR) { if (debug) { /* * This can happen if the parent inode * was reallocated. */ if (*mode != 0) printf("Directory %d has bad mode %o\n", parent, *mode); else printf("Directory %d zero inode\n", parent); } return (0); } lbn = lblkno(fs, diroff); doff = blkoff(fs, diroff); blksize = sblksize(fs, DIP(dip, di_size), lbn); if (diroff + DIRECTSIZ(1) > DIP(dip, di_size) || doff >= blksize) { if (debug) printf("ino %d absent from %d due to offset %jd" " exceeding size %jd\n", child, parent, diroff, DIP(dip, di_size)); return (0); } blk = ino_blkatoff(dip, parent, lbn, &frags); if (blk <= 0) { if (debug) printf("Sparse directory %d", parent); return (0); } block = dblk_read(blk, blksize); /* * Walk through the records from the start of the block to be * certain we hit a valid record and not some junk in the middle * of a file name. Stop when we reach or pass the expected offset. */ dpoff = (doff / DIRBLKSIZ) * DIRBLKSIZ; do { dp = (struct direct *)&block[dpoff]; if (dpoff == doff) break; if (dp->d_reclen == 0) break; dpoff += dp->d_reclen; } while (dpoff <= doff); if (dpoff > fs->fs_bsize) err_suj("Corrupt directory block in dir ino %d\n", parent); /* Not found. */ if (dpoff != doff) { if (debug) printf("ino %d not found in %d, lbn %jd, dpoff %d\n", child, parent, lbn, dpoff); return (0); } /* * We found the item in question. Record the mode and whether it's * a . or .. link for the caller. */ if (dp->d_ino == child) { if (child == parent) *isdot = 1; else if (dp->d_namlen == 2 && dp->d_name[0] == '.' && dp->d_name[1] == '.') *isdot = 1; *mode = DTTOIF(dp->d_type); return (1); } if (debug) printf("ino %d doesn't match dirent ino %d in parent %d\n", child, dp->d_ino, parent); return (0); } #define VISIT_INDIR 0x0001 #define VISIT_EXT 0x0002 #define VISIT_ROOT 0x0004 /* Operation came via root & valid pointers. */ /* * Read an indirect level which may or may not be linked into an inode. */ static void indir_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, uint64_t *frags, ino_visitor visitor, int flags) { ufs2_daddr_t *bap2; ufs1_daddr_t *bap1; ufs_lbn_t lbnadd; ufs2_daddr_t nblk; ufs_lbn_t nlbn; int level; int i; /* * Don't visit indirect blocks with contents we can't trust. This * should only happen when indir_visit() is called to complete a * truncate that never finished and not when a pointer is found via * an inode. */ if (blk == 0) return; level = lbn_level(lbn); if (level == -1) err_suj("Invalid level for lbn %jd\n", lbn); if ((flags & VISIT_ROOT) == 0 && blk_isindir(blk, ino, lbn) == 0) { if (debug) printf("blk %jd ino %d lbn %jd(%d) is not indir.\n", blk, ino, lbn, level); goto out; } lbnadd = 1; for (i = level; i > 0; i--) lbnadd *= NINDIR(fs); bap1 = (void *)dblk_read(blk, fs->fs_bsize); bap2 = (void *)bap1; for (i = 0; i < NINDIR(fs); i++) { if (fs->fs_magic == FS_UFS1_MAGIC) nblk = *bap1++; else nblk = *bap2++; if (nblk == 0) continue; if (level == 0) { nlbn = -lbn + i * lbnadd; (*frags) += fs->fs_frag; visitor(ino, nlbn, nblk, fs->fs_frag); } else { nlbn = (lbn + 1) - (i * lbnadd); indir_visit(ino, nlbn, nblk, frags, visitor, flags); } } out: if (flags & VISIT_INDIR) { (*frags) += fs->fs_frag; visitor(ino, lbn, blk, fs->fs_frag); } } /* * Visit each block in an inode as specified by 'flags' and call a * callback function. The callback may inspect or free blocks. The * count of frags found according to the size in the file is returned. * This is not valid for sparse files but may be used to determine * the correct di_blocks for a file. */ static uint64_t ino_visit(union dinode *ip, ino_t ino, ino_visitor visitor, int flags) { ufs_lbn_t nextlbn; ufs_lbn_t tmpval; ufs_lbn_t lbn; uint64_t size; uint64_t fragcnt; int mode; int frags; int i; size = DIP(ip, di_size); mode = DIP(ip, di_mode) & IFMT; fragcnt = 0; if ((flags & VISIT_EXT) && fs->fs_magic == FS_UFS2_MAGIC && ip->dp2.di_extsize) { for (i = 0; i < NXADDR; i++) { if (ip->dp2.di_extb[i] == 0) continue; frags = sblksize(fs, ip->dp2.di_extsize, i); frags = numfrags(fs, frags); fragcnt += frags; visitor(ino, -1 - i, ip->dp2.di_extb[i], frags); } } /* Skip datablocks for short links and devices. */ if (mode == IFBLK || mode == IFCHR || (mode == IFLNK && size < fs->fs_maxsymlinklen)) return (fragcnt); for (i = 0; i < NDADDR; i++) { if (DIP(ip, di_db[i]) == 0) continue; frags = sblksize(fs, size, i); frags = numfrags(fs, frags); fragcnt += frags; visitor(ino, i, DIP(ip, di_db[i]), frags); } /* * We know the following indirects are real as we're following * real pointers to them. */ flags |= VISIT_ROOT; for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; i++, lbn = nextlbn) { nextlbn = lbn + tmpval; tmpval *= NINDIR(fs); if (DIP(ip, di_ib[i]) == 0) continue; indir_visit(ino, -lbn - i, DIP(ip, di_ib[i]), &fragcnt, visitor, flags); } return (fragcnt); } /* * Null visitor function used when we just want to count blocks and * record the lbn. */ ufs_lbn_t visitlbn; static void null_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) { if (lbn > 0) visitlbn = lbn; } /* * Recalculate di_blocks when we discover that a block allocation or * free was not successfully completed. The kernel does not roll this back * because it would be too expensive to compute which indirects were * reachable at the time the inode was written. */ static void ino_adjblks(struct suj_ino *sino) { union dinode *ip; uint64_t blocks; uint64_t frags; off_t isize; off_t size; ino_t ino; ino = sino->si_ino; ip = ino_read(ino); /* No need to adjust zero'd inodes. */ if (DIP(ip, di_mode) == 0) return; /* * Visit all blocks and count them as well as recording the last * valid lbn in the file. If the file size doesn't agree with the * last lbn we need to truncate to fix it. Otherwise just adjust * the blocks count. */ visitlbn = 0; frags = ino_visit(ip, ino, null_visit, VISIT_INDIR | VISIT_EXT); blocks = fsbtodb(fs, frags); /* * We assume the size and direct block list is kept coherent by * softdep. For files that have extended into indirects we truncate * to the size in the inode or the maximum size permitted by * populated indirects. */ if (visitlbn >= NDADDR) { isize = DIP(ip, di_size); size = lblktosize(fs, visitlbn + 1); if (isize > size) isize = size; /* Always truncate to free any unpopulated indirects. */ ino_trunc(sino->si_ino, isize); return; } if (blocks == DIP(ip, di_blocks)) return; if (debug) printf("ino %d adjusting block count from %jd to %jd\n", ino, DIP(ip, di_blocks), blocks); DIP_SET(ip, di_blocks, blocks); ino_dirty(ino); } static void blk_free_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) { int mask; mask = blk_freemask(blk, ino, lbn, frags); if (debug) printf("blk %jd freemask 0x%X\n", blk, mask); blk_free(blk, mask, frags); } /* * Free a block or tree of blocks that was previously rooted in ino at * the given lbn. If the lbn is an indirect all children are freed * recursively. */ static void blk_free_lbn(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags, int follow) { uint64_t resid; int mask; mask = blk_freemask(blk, ino, lbn, frags); if (debug) printf("blk %jd freemask 0x%X\n", blk, mask); resid = 0; if (lbn <= -NDADDR && follow && mask == 0) indir_visit(ino, lbn, blk, &resid, blk_free_visit, VISIT_INDIR); else blk_free(blk, mask, frags); } static void ino_setskip(struct suj_ino *sino, ino_t parent) { int isdot; int mode; if (ino_isat(sino->si_ino, DOTDOT_OFFSET, parent, &mode, &isdot)) sino->si_skipparent = 1; } static void ino_remref(ino_t parent, ino_t child, uint64_t diroff, int isdotdot) { struct suj_ino *sino; struct suj_rec *srec; struct jrefrec *rrec; /* * Lookup this inode to see if we have a record for it. */ sino = ino_lookup(child, 0); /* * Tell any child directories we've already removed their * parent link cnt. Don't try to adjust our link down again. */ if (sino != NULL && isdotdot == 0) ino_setskip(sino, parent); /* * No valid record for this inode. Just drop the on-disk * link by one. */ if (sino == NULL || sino->si_hasrecs == 0) { ino_decr(child); return; } /* * Use ino_adjust() if ino_check() has already processed this * child. If we lose the last non-dot reference to a * directory it will be discarded. */ if (sino->si_linkadj) { sino->si_nlink--; if (isdotdot) sino->si_dotlinks--; ino_adjust(sino); return; } /* * If we haven't yet processed this inode we need to make * sure we will successfully discover the lost path. If not * use nlinkadj to remember. */ TAILQ_FOREACH(srec, &sino->si_recs, sr_next) { rrec = (struct jrefrec *)srec->sr_rec; if (rrec->jr_parent == parent && rrec->jr_diroff == diroff) return; } sino->si_nlinkadj++; } /* * Free the children of a directory when the directory is discarded. */ static void ino_free_children(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) { struct suj_ino *sino; struct direct *dp; off_t diroff; uint8_t *block; int skipparent; int isdotdot; int dpoff; int size; sino = ino_lookup(ino, 0); if (sino) skipparent = sino->si_skipparent; else skipparent = 0; size = lfragtosize(fs, frags); block = dblk_read(blk, size); dp = (struct direct *)&block[0]; for (dpoff = 0; dpoff < size && dp->d_reclen; dpoff += dp->d_reclen) { dp = (struct direct *)&block[dpoff]; if (dp->d_ino == 0 || dp->d_ino == WINO) continue; if (dp->d_namlen == 1 && dp->d_name[0] == '.') continue; isdotdot = dp->d_namlen == 2 && dp->d_name[0] == '.' && dp->d_name[1] == '.'; if (isdotdot && skipparent == 1) continue; if (debug) printf("Directory %d removing ino %d name %s\n", ino, dp->d_ino, dp->d_name); diroff = lblktosize(fs, lbn) + dpoff; ino_remref(ino, dp->d_ino, diroff, isdotdot); } } /* * Reclaim an inode, freeing all blocks and decrementing all children's * link counts. Free the inode back to the cg. */ static void ino_reclaim(union dinode *ip, ino_t ino, int mode) { uint32_t gen; if (ino == ROOTINO) err_suj("Attempting to free ROOTINO\n"); if (debug) printf("Truncating and freeing ino %d, nlink %d, mode %o\n", ino, DIP(ip, di_nlink), DIP(ip, di_mode)); /* We are freeing an inode or directory. */ if ((DIP(ip, di_mode) & IFMT) == IFDIR) ino_visit(ip, ino, ino_free_children, 0); DIP_SET(ip, di_nlink, 0); ino_visit(ip, ino, blk_free_visit, VISIT_EXT | VISIT_INDIR); /* Here we have to clear the inode and release any blocks it holds. */ gen = DIP(ip, di_gen); if (fs->fs_magic == FS_UFS1_MAGIC) bzero(ip, sizeof(struct ufs1_dinode)); else bzero(ip, sizeof(struct ufs2_dinode)); DIP_SET(ip, di_gen, gen); ino_dirty(ino); ino_free(ino, mode); return; } /* * Adjust an inode's link count down by one when a directory goes away. */ static void ino_decr(ino_t ino) { union dinode *ip; int reqlink; int nlink; int mode; ip = ino_read(ino); nlink = DIP(ip, di_nlink); mode = DIP(ip, di_mode); if (nlink < 1) err_suj("Inode %d link count %d invalid\n", ino, nlink); if (mode == 0) err_suj("Inode %d has a link of %d with 0 mode\n", ino, nlink); nlink--; if ((mode & IFMT) == IFDIR) reqlink = 2; else reqlink = 1; if (nlink < reqlink) { if (debug) printf("ino %d not enough links to live %d < %d\n", ino, nlink, reqlink); ino_reclaim(ip, ino, mode); return; } DIP_SET(ip, di_nlink, nlink); ino_dirty(ino); } /* * Adjust the inode link count to 'nlink'. If the count reaches zero * free it. */ static void ino_adjust(struct suj_ino *sino) { struct jrefrec *rrec; struct suj_rec *srec; struct suj_ino *stmp; union dinode *ip; nlink_t nlink; int recmode; int reqlink; int isdot; int mode; ino_t ino; nlink = sino->si_nlink; ino = sino->si_ino; mode = sino->si_mode & IFMT; /* * If it's a directory with no dot links, it was truncated before * the name was cleared. We need to clear the dirent that * points at it. */ if (mode == IFDIR && nlink == 1 && sino->si_dotlinks == 0) { sino->si_nlink = nlink = 0; TAILQ_FOREACH(srec, &sino->si_recs, sr_next) { rrec = (struct jrefrec *)srec->sr_rec; if (ino_isat(rrec->jr_parent, rrec->jr_diroff, ino, &recmode, &isdot) == 0) continue; ino_clrat(rrec->jr_parent, rrec->jr_diroff, ino); break; } if (srec == NULL) errx(1, "Directory %d name not found", ino); } /* * If it's a directory with no real names pointing to it go ahead * and truncate it. This will free any children. */ if (mode == IFDIR && nlink - sino->si_dotlinks == 0) { sino->si_nlink = nlink = 0; /* * Mark any .. links so they know not to free this inode * when they are removed. */ TAILQ_FOREACH(srec, &sino->si_recs, sr_next) { rrec = (struct jrefrec *)srec->sr_rec; if (rrec->jr_diroff == DOTDOT_OFFSET) { stmp = ino_lookup(rrec->jr_parent, 0); if (stmp) ino_setskip(stmp, ino); } } } ip = ino_read(ino); mode = DIP(ip, di_mode) & IFMT; if (nlink > LINK_MAX) err_suj( "ino %d nlink manipulation error, new link %d, old link %d\n", ino, nlink, DIP(ip, di_nlink)); if (debug) printf("Adjusting ino %d, nlink %d, old link %d lastmode %o\n", ino, nlink, DIP(ip, di_nlink), sino->si_mode); if (mode == 0) { if (debug) printf("ino %d, zero inode freeing bitmap\n", ino); ino_free(ino, sino->si_mode); return; } /* XXX Should be an assert? */ if (mode != sino->si_mode && debug) printf("ino %d, mode %o != %o\n", ino, mode, sino->si_mode); if ((mode & IFMT) == IFDIR) reqlink = 2; else reqlink = 1; /* If the inode doesn't have enough links to live, free it. */ if (nlink < reqlink) { if (debug) printf("ino %d not enough links to live %d < %d\n", ino, nlink, reqlink); ino_reclaim(ip, ino, mode); return; } /* If required write the updated link count. */ if (DIP(ip, di_nlink) == nlink) { if (debug) printf("ino %d, link matches, skipping.\n", ino); return; } DIP_SET(ip, di_nlink, nlink); ino_dirty(ino); } /* * Truncate some or all blocks in an indirect, freeing any that are required * and zeroing the indirect. */ static void indir_trunc(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, ufs_lbn_t lastlbn) { ufs2_daddr_t *bap2; ufs1_daddr_t *bap1; ufs_lbn_t lbnadd; ufs2_daddr_t nblk; ufs_lbn_t next; ufs_lbn_t nlbn; int dirty; int level; int i; if (blk == 0) return; dirty = 0; level = lbn_level(lbn); if (level == -1) err_suj("Invalid level for lbn %jd\n", lbn); lbnadd = 1; for (i = level; i > 0; i--) lbnadd *= NINDIR(fs); bap1 = (void *)dblk_read(blk, fs->fs_bsize); bap2 = (void *)bap1; for (i = 0; i < NINDIR(fs); i++) { if (fs->fs_magic == FS_UFS1_MAGIC) nblk = *bap1++; else nblk = *bap2++; if (nblk == 0) continue; if (level != 0) { nlbn = (lbn + 1) - (i * lbnadd); /* * Calculate the lbn of the next indirect to * determine if any of this indirect must be * reclaimed. */ next = -(lbn + level) + ((i+1) * lbnadd); if (next <= lastlbn) continue; indir_trunc(ino, nlbn, nblk, lastlbn); /* If all of this indirect was reclaimed, free it. */ nlbn = next - lbnadd; if (nlbn < lastlbn) continue; } else { nlbn = -lbn + i * lbnadd; if (nlbn < lastlbn) continue; } dirty = 1; blk_free(nblk, 0, fs->fs_frag); if (fs->fs_magic == FS_UFS1_MAGIC) *(bap1 - 1) = 0; else *(bap2 - 1) = 0; } if (dirty) dblk_dirty(blk); } /* * Truncate an inode to the minimum of the given size or the last populated * block after any over size have been discarded. The kernel would allocate * the last block in the file but fsck does not and neither do we. This * code never extends files, only shrinks them. */ static void ino_trunc(ino_t ino, off_t size) { union dinode *ip; ufs2_daddr_t bn; uint64_t totalfrags; ufs_lbn_t nextlbn; ufs_lbn_t lastlbn; ufs_lbn_t tmpval; ufs_lbn_t lbn; ufs_lbn_t i; int frags; off_t cursize; off_t off; int mode; ip = ino_read(ino); mode = DIP(ip, di_mode) & IFMT; cursize = DIP(ip, di_size); if (debug) printf("Truncating ino %d, mode %o to size %jd from size %jd\n", ino, mode, size, cursize); /* Skip datablocks for short links and devices. */ if (mode == 0 || mode == IFBLK || mode == IFCHR || (mode == IFLNK && cursize < fs->fs_maxsymlinklen)) return; /* Don't extend. */ if (size > cursize) size = cursize; lastlbn = lblkno(fs, blkroundup(fs, size)); for (i = lastlbn; i < NDADDR; i++) { if (DIP(ip, di_db[i]) == 0) continue; frags = sblksize(fs, cursize, i); frags = numfrags(fs, frags); blk_free(DIP(ip, di_db[i]), 0, frags); DIP_SET(ip, di_db[i], 0); } /* * Follow indirect blocks, freeing anything required. */ for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; i++, lbn = nextlbn) { nextlbn = lbn + tmpval; tmpval *= NINDIR(fs); /* If we're not freeing any in this indirect range skip it. */ if (lastlbn >= nextlbn) continue; if (DIP(ip, di_ib[i]) == 0) continue; indir_trunc(ino, -lbn - i, DIP(ip, di_ib[i]), lastlbn); /* If we freed everything in this indirect free the indir. */ if (lastlbn > lbn) continue; blk_free(DIP(ip, di_ib[i]), 0, frags); DIP_SET(ip, di_ib[i], 0); } ino_dirty(ino); /* * Now that we've freed any whole blocks that exceed the desired * truncation size, figure out how many blocks remain and what the * last populated lbn is. We will set the size to this last lbn * rather than worrying about allocating the final lbn as the kernel * would've done. This is consistent with normal fsck behavior. */ visitlbn = 0; totalfrags = ino_visit(ip, ino, null_visit, VISIT_INDIR | VISIT_EXT); if (size > lblktosize(fs, visitlbn + 1)) size = lblktosize(fs, visitlbn + 1); /* * If we're truncating direct blocks we have to adjust frags * accordingly. */ if (visitlbn < NDADDR && totalfrags) { long oldspace, newspace; bn = DIP(ip, di_db[visitlbn]); if (bn == 0) err_suj("Bad blk at ino %d lbn %jd\n", ino, visitlbn); oldspace = sblksize(fs, cursize, visitlbn); newspace = sblksize(fs, size, visitlbn); if (oldspace != newspace) { bn += numfrags(fs, newspace); frags = numfrags(fs, oldspace - newspace); blk_free(bn, 0, frags); totalfrags -= frags; } } DIP_SET(ip, di_blocks, fsbtodb(fs, totalfrags)); DIP_SET(ip, di_size, size); /* * If we've truncated into the middle of a block or frag we have * to zero it here. Otherwise the file could extend into * uninitialized space later. */ off = blkoff(fs, size); if (off) { uint8_t *buf; long clrsize; bn = ino_blkatoff(ip, ino, visitlbn, &frags); if (bn == 0) err_suj("Block missing from ino %d at lbn %jd\n", ino, visitlbn); clrsize = frags * fs->fs_fsize; buf = dblk_read(bn, clrsize); clrsize -= off; buf += off; bzero(buf, clrsize); dblk_dirty(bn); } return; } /* * Process records available for one inode and determine whether the * link count is correct or needs adjusting. */ static void ino_check(struct suj_ino *sino) { struct suj_rec *srec; struct jrefrec *rrec; nlink_t dotlinks; int newlinks; int removes; int nlink; ino_t ino; int isdot; int isat; int mode; if (sino->si_hasrecs == 0) return; ino = sino->si_ino; rrec = (struct jrefrec *)TAILQ_FIRST(&sino->si_recs)->sr_rec; nlink = rrec->jr_nlink; newlinks = 0; dotlinks = 0; removes = sino->si_nlinkadj; TAILQ_FOREACH(srec, &sino->si_recs, sr_next) { rrec = (struct jrefrec *)srec->sr_rec; isat = ino_isat(rrec->jr_parent, rrec->jr_diroff, rrec->jr_ino, &mode, &isdot); if (isat && (mode & IFMT) != (rrec->jr_mode & IFMT)) err_suj("Inode mode/directory type mismatch %o != %o\n", mode, rrec->jr_mode); if (debug) printf("jrefrec: op %d ino %d, nlink %d, parent %d, " "diroff %jd, mode %o, isat %d, isdot %d\n", rrec->jr_op, rrec->jr_ino, rrec->jr_nlink, rrec->jr_parent, rrec->jr_diroff, rrec->jr_mode, isat, isdot); mode = rrec->jr_mode & IFMT; if (rrec->jr_op == JOP_REMREF) removes++; newlinks += isat; if (isdot) dotlinks += isat; } /* * The number of links that remain are the starting link count * subtracted by the total number of removes with the total * links discovered back in. An incomplete remove thus * makes no change to the link count but an add increases * by one. */ if (debug) printf("ino %d nlink %d newlinks %d removes %d dotlinks %d\n", ino, nlink, newlinks, removes, dotlinks); nlink += newlinks; nlink -= removes; sino->si_linkadj = 1; sino->si_nlink = nlink; sino->si_dotlinks = dotlinks; sino->si_mode = mode; ino_adjust(sino); } /* * Process records available for one block and determine whether it is * still allocated and whether the owning inode needs to be updated or * a free completed. */ static void blk_check(struct suj_blk *sblk) { struct suj_rec *srec; struct jblkrec *brec; struct suj_ino *sino; ufs2_daddr_t blk; int mask; int frags; int isat; /* * Each suj_blk actually contains records for any fragments in that * block. As a result we must evaluate each record individually. */ sino = NULL; TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) { brec = (struct jblkrec *)srec->sr_rec; frags = brec->jb_frags; blk = brec->jb_blkno + brec->jb_oldfrags; isat = blk_isat(brec->jb_ino, brec->jb_lbn, blk, &frags); if (sino == NULL || sino->si_ino != brec->jb_ino) { sino = ino_lookup(brec->jb_ino, 1); sino->si_blkadj = 1; } if (debug) printf("op %d blk %jd ino %d lbn %jd frags %d isat %d (%d)\n", brec->jb_op, blk, brec->jb_ino, brec->jb_lbn, brec->jb_frags, isat, frags); /* * If we found the block at this address we still have to * determine if we need to free the tail end that was * added by adding contiguous fragments from the same block. */ if (isat == 1) { if (frags == brec->jb_frags) continue; mask = blk_freemask(blk, brec->jb_ino, brec->jb_lbn, brec->jb_frags); mask >>= frags; blk += frags; frags = brec->jb_frags - frags; blk_free(blk, mask, frags); continue; } /* * The block wasn't found, attempt to free it. It won't be * freed if it was actually reallocated. If this was an * allocation we don't want to follow indirects as they * may not be written yet. Any children of the indirect will * have their own records. If it's a free we need to * recursively free children. */ blk_free_lbn(blk, brec->jb_ino, brec->jb_lbn, brec->jb_frags, brec->jb_op == JOP_FREEBLK); } } /* * Walk the list of inode records for this cg and resolve moved and duplicate * inode references now that we have a complete picture. */ static void cg_build(struct suj_cg *sc) { struct suj_ino *sino; int i; for (i = 0; i < SUJ_HASHSIZE; i++) LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) ino_build(sino); } /* * Handle inodes requiring truncation. This must be done prior to * looking up any inodes in directories. */ static void cg_trunc(struct suj_cg *sc) { struct suj_ino *sino; int i; for (i = 0; i < SUJ_HASHSIZE; i++) LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) if (sino->si_trunc) { ino_trunc(sino->si_ino, sino->si_trunc->jt_size); sino->si_trunc = NULL; } } /* * Free any partially allocated blocks and then resolve inode block * counts. */ static void cg_check_blk(struct suj_cg *sc) { struct suj_ino *sino; struct suj_blk *sblk; int i; for (i = 0; i < SUJ_HASHSIZE; i++) LIST_FOREACH(sblk, &sc->sc_blkhash[i], sb_next) blk_check(sblk); /* * Now that we've freed blocks which are not referenced we * make a second pass over all inodes to adjust their block * counts. */ for (i = 0; i < SUJ_HASHSIZE; i++) LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) if (sino->si_blkadj) ino_adjblks(sino); } /* * Walk the list of inode records for this cg, recovering any * changes which were not complete at the time of crash. */ static void cg_check_ino(struct suj_cg *sc) { struct suj_ino *sino; int i; for (i = 0; i < SUJ_HASHSIZE; i++) LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) ino_check(sino); } /* * Write a potentially dirty cg. Recalculate the summary information and * update the superblock summary. */ static void cg_write(struct suj_cg *sc) { ufs1_daddr_t fragno, cgbno, maxbno; u_int8_t *blksfree; struct cg *cgp; int blk; int i; if (sc->sc_dirty == 0) return; /* * Fix the frag and cluster summary. */ cgp = sc->sc_cgp; cgp->cg_cs.cs_nbfree = 0; cgp->cg_cs.cs_nffree = 0; bzero(&cgp->cg_frsum, sizeof(cgp->cg_frsum)); maxbno = fragstoblks(fs, fs->fs_fpg); if (fs->fs_contigsumsize > 0) { for (i = 1; i <= fs->fs_contigsumsize; i++) cg_clustersum(cgp)[i] = 0; bzero(cg_clustersfree(cgp), howmany(maxbno, CHAR_BIT)); } blksfree = cg_blksfree(cgp); for (cgbno = 0; cgbno < maxbno; cgbno++) { if (ffs_isfreeblock(fs, blksfree, cgbno)) continue; if (ffs_isblock(fs, blksfree, cgbno)) { ffs_clusteracct(fs, cgp, cgbno, 1); cgp->cg_cs.cs_nbfree++; continue; } fragno = blkstofrags(fs, cgbno); blk = blkmap(fs, blksfree, fragno); ffs_fragacct(fs, blk, cgp->cg_frsum, 1); for (i = 0; i < fs->fs_frag; i++) if (isset(blksfree, fragno + i)) cgp->cg_cs.cs_nffree++; } /* * Update the superblock cg summary from our now correct values * before writing the block. */ fs->fs_cs(fs, sc->sc_cgx) = cgp->cg_cs; if (bwrite(disk, fsbtodb(fs, cgtod(fs, sc->sc_cgx)), sc->sc_cgbuf, fs->fs_bsize) == -1) err_suj("Unable to write cylinder group %d\n", sc->sc_cgx); } /* * Write out any modified inodes. */ static void cg_write_inos(struct suj_cg *sc) { struct ino_blk *iblk; int i; for (i = 0; i < SUJ_HASHSIZE; i++) LIST_FOREACH(iblk, &sc->sc_iblkhash[i], ib_next) if (iblk->ib_dirty) iblk_write(iblk); } static void cg_apply(void (*apply)(struct suj_cg *)) { struct suj_cg *scg; int i; for (i = 0; i < SUJ_HASHSIZE; i++) LIST_FOREACH(scg, &cghash[i], sc_next) apply(scg); } /* * Process the unlinked but referenced file list. Freeing all inodes. */ static void ino_unlinked(void) { union dinode *ip; uint16_t mode; ino_t inon; ino_t ino; ino = fs->fs_sujfree; fs->fs_sujfree = 0; while (ino != 0) { ip = ino_read(ino); mode = DIP(ip, di_mode) & IFMT; inon = DIP(ip, di_freelink); DIP_SET(ip, di_freelink, 0); /* * XXX Should this be an errx? */ if (DIP(ip, di_nlink) == 0) { if (debug) printf("Freeing unlinked ino %d mode %o\n", ino, mode); ino_reclaim(ip, ino, mode); } else if (debug) printf("Skipping ino %d mode %o with link %d\n", ino, mode, DIP(ip, di_nlink)); ino = inon; } } /* * Append a new record to the list of records requiring processing. */ static void ino_append(union jrec *rec) { struct jrefrec *refrec; struct jmvrec *mvrec; struct suj_ino *sino; struct suj_rec *srec; mvrec = &rec->rec_jmvrec; refrec = &rec->rec_jrefrec; if (debug && mvrec->jm_op == JOP_MVREF) printf("ino move: ino %d, parent %d, diroff %jd, oldoff %jd\n", mvrec->jm_ino, mvrec->jm_parent, mvrec->jm_newoff, mvrec->jm_oldoff); else if (debug && (refrec->jr_op == JOP_ADDREF || refrec->jr_op == JOP_REMREF)) printf("ino ref: op %d, ino %d, nlink %d, " "parent %d, diroff %jd\n", refrec->jr_op, refrec->jr_ino, refrec->jr_nlink, refrec->jr_parent, refrec->jr_diroff); /* * Lookup the ino and clear truncate if one is found. Partial * truncates are always done synchronously so if we discover * an operation that requires a lock the truncation has completed * and can be discarded. */ sino = ino_lookup(((struct jrefrec *)rec)->jr_ino, 1); sino->si_trunc = NULL; sino->si_hasrecs = 1; srec = errmalloc(sizeof(*srec)); srec->sr_rec = rec; TAILQ_INSERT_TAIL(&sino->si_newrecs, srec, sr_next); } /* * Add a reference adjustment to the sino list and eliminate dups. The * primary loop in ino_build_ref() checks for dups but new ones may be * created as a result of offset adjustments. */ static void ino_add_ref(struct suj_ino *sino, struct suj_rec *srec) { struct jrefrec *refrec; struct suj_rec *srn; struct jrefrec *rrn; refrec = (struct jrefrec *)srec->sr_rec; /* * We walk backwards so that the oldest link count is preserved. If * an add record conflicts with a remove keep the remove. Redundant * removes are eliminated in ino_build_ref. Otherwise we keep the * oldest record at a given location. */ for (srn = TAILQ_LAST(&sino->si_recs, srechd); srn; srn = TAILQ_PREV(srn, srechd, sr_next)) { rrn = (struct jrefrec *)srn->sr_rec; if (rrn->jr_parent != refrec->jr_parent || rrn->jr_diroff != refrec->jr_diroff) continue; if (rrn->jr_op == JOP_REMREF || refrec->jr_op == JOP_ADDREF) { rrn->jr_mode = refrec->jr_mode; return; } /* * Adding a remove. * * Replace the record in place with the old nlink in case * we replace the head of the list. Abandon srec as a dup. */ refrec->jr_nlink = rrn->jr_nlink; srn->sr_rec = srec->sr_rec; return; } TAILQ_INSERT_TAIL(&sino->si_recs, srec, sr_next); } /* * Create a duplicate of a reference at a previous location. */ static void ino_dup_ref(struct suj_ino *sino, struct jrefrec *refrec, off_t diroff) { struct jrefrec *rrn; struct suj_rec *srn; rrn = errmalloc(sizeof(*refrec)); *rrn = *refrec; rrn->jr_op = JOP_ADDREF; rrn->jr_diroff = diroff; srn = errmalloc(sizeof(*srn)); srn->sr_rec = (union jrec *)rrn; ino_add_ref(sino, srn); } /* * Add a reference to the list at all known locations. We follow the offset * changes for a single instance and create duplicate add refs at each so * that we can tolerate any version of the directory block. Eliminate * removes which collide with adds that are seen in the journal. They should * not adjust the link count down. */ static void ino_build_ref(struct suj_ino *sino, struct suj_rec *srec) { struct jrefrec *refrec; struct jmvrec *mvrec; struct suj_rec *srp; struct suj_rec *srn; struct jrefrec *rrn; off_t diroff; refrec = (struct jrefrec *)srec->sr_rec; /* * Search for a mvrec that matches this offset. Whether it's an add * or a remove we can delete the mvref after creating a dup record in * the old location. */ if (!TAILQ_EMPTY(&sino->si_movs)) { diroff = refrec->jr_diroff; for (srn = TAILQ_LAST(&sino->si_movs, srechd); srn; srn = srp) { srp = TAILQ_PREV(srn, srechd, sr_next); mvrec = (struct jmvrec *)srn->sr_rec; if (mvrec->jm_parent != refrec->jr_parent || mvrec->jm_newoff != diroff) continue; diroff = mvrec->jm_oldoff; TAILQ_REMOVE(&sino->si_movs, srn, sr_next); free(srn); ino_dup_ref(sino, refrec, diroff); } } /* * If a remove wasn't eliminated by an earlier add just append it to * the list. */ if (refrec->jr_op == JOP_REMREF) { ino_add_ref(sino, srec); return; } /* * Walk the list of records waiting to be added to the list. We * must check for moves that apply to our current offset and remove * them from the list. Remove any duplicates to eliminate removes * with corresponding adds. */ TAILQ_FOREACH_SAFE(srn, &sino->si_newrecs, sr_next, srp) { switch (srn->sr_rec->rec_jrefrec.jr_op) { case JOP_ADDREF: /* * This should actually be an error we should * have a remove for every add journaled. */ rrn = (struct jrefrec *)srn->sr_rec; if (rrn->jr_parent != refrec->jr_parent || rrn->jr_diroff != refrec->jr_diroff) break; TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next); break; case JOP_REMREF: /* * Once we remove the current iteration of the * record at this address we're done. */ rrn = (struct jrefrec *)srn->sr_rec; if (rrn->jr_parent != refrec->jr_parent || rrn->jr_diroff != refrec->jr_diroff) break; TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next); ino_add_ref(sino, srec); return; case JOP_MVREF: /* * Update our diroff based on any moves that match * and remove the move. */ mvrec = (struct jmvrec *)srn->sr_rec; if (mvrec->jm_parent != refrec->jr_parent || mvrec->jm_oldoff != refrec->jr_diroff) break; ino_dup_ref(sino, refrec, mvrec->jm_oldoff); refrec->jr_diroff = mvrec->jm_newoff; TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next); break; default: err_suj("ino_build_ref: Unknown op %d\n", srn->sr_rec->rec_jrefrec.jr_op); } } ino_add_ref(sino, srec); } /* * Walk the list of new records and add them in-order resolving any * dups and adjusted offsets. */ static void ino_build(struct suj_ino *sino) { struct suj_rec *srec; while ((srec = TAILQ_FIRST(&sino->si_newrecs)) != NULL) { TAILQ_REMOVE(&sino->si_newrecs, srec, sr_next); switch (srec->sr_rec->rec_jrefrec.jr_op) { case JOP_ADDREF: case JOP_REMREF: ino_build_ref(sino, srec); break; case JOP_MVREF: /* * Add this mvrec to the queue of pending mvs. */ TAILQ_INSERT_TAIL(&sino->si_movs, srec, sr_next); break; default: err_suj("ino_build: Unknown op %d\n", srec->sr_rec->rec_jrefrec.jr_op); } } if (TAILQ_EMPTY(&sino->si_recs)) sino->si_hasrecs = 0; } /* * Modify journal records so they refer to the base block number * and a start and end frag range. This is to facilitate the discovery * of overlapping fragment allocations. */ static void blk_build(struct jblkrec *blkrec) { struct suj_rec *srec; struct suj_blk *sblk; struct jblkrec *blkrn; struct suj_ino *sino; ufs2_daddr_t blk; off_t foff; int frag; if (debug) printf("blk_build: op %d blkno %jd frags %d oldfrags %d " "ino %d lbn %jd\n", blkrec->jb_op, blkrec->jb_blkno, blkrec->jb_frags, blkrec->jb_oldfrags, blkrec->jb_ino, blkrec->jb_lbn); /* * Look up the inode and clear the truncate if any lbns after the * truncate lbn are freed or allocated. */ sino = ino_lookup(blkrec->jb_ino, 0); if (sino && sino->si_trunc) { foff = lblktosize(fs, blkrec->jb_lbn); foff += lfragtosize(fs, blkrec->jb_frags); if (foff > sino->si_trunc->jt_size) sino->si_trunc = NULL; } blk = blknum(fs, blkrec->jb_blkno); frag = fragnum(fs, blkrec->jb_blkno); sblk = blk_lookup(blk, 1); /* * Rewrite the record using oldfrags to indicate the offset into * the block. Leave jb_frags as the actual allocated count. */ blkrec->jb_blkno -= frag; blkrec->jb_oldfrags = frag; if (blkrec->jb_oldfrags + blkrec->jb_frags > fs->fs_frag) err_suj("Invalid fragment count %d oldfrags %d\n", blkrec->jb_frags, frag); /* * Detect dups. If we detect a dup we always discard the oldest * record as it is superseded by the new record. This speeds up * later stages but also eliminates free records which are used * to indicate that the contents of indirects can be trusted. */ TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) { blkrn = (struct jblkrec *)srec->sr_rec; if (blkrn->jb_ino != blkrec->jb_ino || blkrn->jb_lbn != blkrec->jb_lbn || blkrn->jb_blkno != blkrec->jb_blkno || blkrn->jb_frags != blkrec->jb_frags || blkrn->jb_oldfrags != blkrec->jb_oldfrags) continue; if (debug) printf("Removed dup.\n"); /* Discard the free which is a dup with an alloc. */ if (blkrec->jb_op == JOP_FREEBLK) return; TAILQ_REMOVE(&sblk->sb_recs, srec, sr_next); free(srec); break; } srec = errmalloc(sizeof(*srec)); srec->sr_rec = (union jrec *)blkrec; TAILQ_INSERT_TAIL(&sblk->sb_recs, srec, sr_next); } static void ino_build_trunc(struct jtrncrec *rec) { struct suj_ino *sino; if (debug) printf("ino_build_trunc: ino %d, size %jd\n", rec->jt_ino, rec->jt_size); sino = ino_lookup(rec->jt_ino, 1); sino->si_trunc = rec; } /* * Build up tables of the operations we need to recover. */ static void suj_build(void) { struct suj_seg *seg; union jrec *rec; int off; int i; TAILQ_FOREACH(seg, &allsegs, ss_next) { if (debug) printf("seg %jd has %d records, oldseq %jd.\n", seg->ss_rec.jsr_seq, seg->ss_rec.jsr_cnt, seg->ss_rec.jsr_oldest); off = 0; rec = (union jrec *)seg->ss_blk; for (i = 0; i < seg->ss_rec.jsr_cnt; off += JREC_SIZE, rec++) { /* skip the segrec. */ if ((off % DEV_BSIZE) == 0) continue; switch (rec->rec_jrefrec.jr_op) { case JOP_ADDREF: case JOP_REMREF: case JOP_MVREF: ino_append(rec); break; case JOP_NEWBLK: case JOP_FREEBLK: blk_build((struct jblkrec *)rec); break; case JOP_TRUNC: ino_build_trunc((struct jtrncrec *)rec); break; default: err_suj("Unknown journal operation %d (%d)\n", rec->rec_jrefrec.jr_op, off); } i++; } } } /* * Prune the journal segments to those we care about based on the * oldest sequence in the newest segment. Order the segment list * based on sequence number. */ static void suj_prune(void) { struct suj_seg *seg; struct suj_seg *segn; uint64_t newseq; int discard; if (debug) printf("Pruning up to %jd\n", oldseq); /* First free the expired segments. */ TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) { if (seg->ss_rec.jsr_seq >= oldseq) continue; TAILQ_REMOVE(&allsegs, seg, ss_next); free(seg->ss_blk); free(seg); } /* Next ensure that segments are ordered properly. */ seg = TAILQ_FIRST(&allsegs); if (seg == NULL) { if (debug) printf("Empty journal\n"); return; } newseq = seg->ss_rec.jsr_seq; for (;;) { seg = TAILQ_LAST(&allsegs, seghd); if (seg->ss_rec.jsr_seq >= newseq) break; TAILQ_REMOVE(&allsegs, seg, ss_next); TAILQ_INSERT_HEAD(&allsegs, seg, ss_next); newseq = seg->ss_rec.jsr_seq; } if (newseq != oldseq) { err_suj("Journal file sequence mismatch %jd != %jd\n", newseq, oldseq); } /* * The kernel may asynchronously write segments which can create * gaps in the sequence space. Throw away any segments after the * gap as the kernel guarantees only those that are contiguously * reachable are marked as completed. */ discard = 0; TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) { if (!discard && newseq++ == seg->ss_rec.jsr_seq) { jrecs += seg->ss_rec.jsr_cnt; jbytes += seg->ss_rec.jsr_blocks * DEV_BSIZE; continue; } discard = 1; if (debug) printf("Journal order mismatch %jd != %jd pruning\n", newseq-1, seg->ss_rec.jsr_seq); TAILQ_REMOVE(&allsegs, seg, ss_next); free(seg->ss_blk); free(seg); } if (debug) printf("Processing journal segments from %jd to %jd\n", oldseq, newseq-1); } /* * Verify the journal inode before attempting to read records. */ static int suj_verifyino(union dinode *ip) { if (DIP(ip, di_nlink) != 1) { printf("Invalid link count %d for journal inode %d\n", DIP(ip, di_nlink), sujino); return (-1); } if ((DIP(ip, di_flags) & (SF_IMMUTABLE | SF_NOUNLINK)) != (SF_IMMUTABLE | SF_NOUNLINK)) { printf("Invalid flags 0x%X for journal inode %d\n", DIP(ip, di_flags), sujino); return (-1); } if (DIP(ip, di_mode) != (IFREG | IREAD)) { printf("Invalid mode %o for journal inode %d\n", DIP(ip, di_mode), sujino); return (-1); } if (DIP(ip, di_size) < SUJ_MIN || DIP(ip, di_size) > SUJ_MAX) { printf("Invalid size %jd for journal inode %d\n", DIP(ip, di_size), sujino); return (-1); } if (DIP(ip, di_modrev) != fs->fs_mtime) { printf("Journal timestamp does not match fs mount time\n"); return (-1); } return (0); } struct jblocks { struct jextent *jb_extent; /* Extent array. */ int jb_avail; /* Available extents. */ int jb_used; /* Last used extent. */ int jb_head; /* Allocator head. */ int jb_off; /* Allocator extent offset. */ }; struct jextent { ufs2_daddr_t je_daddr; /* Disk block address. */ int je_blocks; /* Disk block count. */ }; struct jblocks *suj_jblocks; static struct jblocks * jblocks_create(void) { struct jblocks *jblocks; int size; jblocks = errmalloc(sizeof(*jblocks)); jblocks->jb_avail = 10; jblocks->jb_used = 0; jblocks->jb_head = 0; jblocks->jb_off = 0; size = sizeof(struct jextent) * jblocks->jb_avail; jblocks->jb_extent = errmalloc(size); bzero(jblocks->jb_extent, size); return (jblocks); } /* * Return the next available disk block and the amount of contiguous * free space it contains. */ static ufs2_daddr_t jblocks_next(struct jblocks *jblocks, int bytes, int *actual) { struct jextent *jext; ufs2_daddr_t daddr; int freecnt; int blocks; blocks = bytes / DEV_BSIZE; jext = &jblocks->jb_extent[jblocks->jb_head]; freecnt = jext->je_blocks - jblocks->jb_off; if (freecnt == 0) { jblocks->jb_off = 0; if (++jblocks->jb_head > jblocks->jb_used) return (0); jext = &jblocks->jb_extent[jblocks->jb_head]; freecnt = jext->je_blocks; } if (freecnt > blocks) freecnt = blocks; *actual = freecnt * DEV_BSIZE; daddr = jext->je_daddr + jblocks->jb_off; return (daddr); } /* * Advance the allocation head by a specified number of bytes, consuming * one journal segment. */ static void jblocks_advance(struct jblocks *jblocks, int bytes) { jblocks->jb_off += bytes / DEV_BSIZE; } static void jblocks_destroy(struct jblocks *jblocks) { free(jblocks->jb_extent); free(jblocks); } static void jblocks_add(struct jblocks *jblocks, ufs2_daddr_t daddr, int blocks) { struct jextent *jext; int size; jext = &jblocks->jb_extent[jblocks->jb_used]; /* Adding the first block. */ if (jext->je_daddr == 0) { jext->je_daddr = daddr; jext->je_blocks = blocks; return; } /* Extending the last extent. */ if (jext->je_daddr + jext->je_blocks == daddr) { jext->je_blocks += blocks; return; } /* Adding a new extent. */ if (++jblocks->jb_used == jblocks->jb_avail) { jblocks->jb_avail *= 2; size = sizeof(struct jextent) * jblocks->jb_avail; jext = errmalloc(size); bzero(jext, size); bcopy(jblocks->jb_extent, jext, sizeof(struct jextent) * jblocks->jb_used); free(jblocks->jb_extent); jblocks->jb_extent = jext; } jext = &jblocks->jb_extent[jblocks->jb_used]; jext->je_daddr = daddr; jext->je_blocks = blocks; return; } /* * Add a file block from the journal to the extent map. We can't read * each file block individually because the kernel treats it as a circular * buffer and segments may span mutliple contiguous blocks. */ static void suj_add_block(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) { jblocks_add(suj_jblocks, fsbtodb(fs, blk), fsbtodb(fs, frags)); } static void suj_read(void) { uint8_t block[1 * 1024 * 1024]; struct suj_seg *seg; struct jsegrec *recn; struct jsegrec *rec; ufs2_daddr_t blk; int readsize; int blocks; int recsize; int size; int i; /* * Read records until we exhaust the journal space. If we find * an invalid record we start searching for a valid segment header * at the next block. This is because we don't have a head/tail * pointer and must recover the information indirectly. At the gap * between the head and tail we won't necessarily have a valid * segment. */ restart: for (;;) { size = sizeof(block); blk = jblocks_next(suj_jblocks, size, &readsize); if (blk == 0) return; size = readsize; /* * Read 1MB at a time and scan for records within this block. */ if (bread(disk, blk, &block, size) == -1) { err_suj("Error reading journal block %jd\n", (intmax_t)blk); } for (rec = (void *)block; size; size -= recsize, rec = (struct jsegrec *)((uintptr_t)rec + recsize)) { recsize = DEV_BSIZE; if (rec->jsr_time != fs->fs_mtime) { if (debug) printf("Rec time %jd != fs mtime %jd\n", rec->jsr_time, fs->fs_mtime); jblocks_advance(suj_jblocks, recsize); continue; } if (rec->jsr_cnt == 0) { if (debug) printf("Found illegal count %d\n", rec->jsr_cnt); jblocks_advance(suj_jblocks, recsize); continue; } blocks = rec->jsr_blocks; recsize = blocks * DEV_BSIZE; if (recsize > size) { /* * We may just have run out of buffer, restart * the loop to re-read from this spot. */ if (size < fs->fs_bsize && size != readsize && recsize <= fs->fs_bsize) goto restart; if (debug) printf("Found invalid segsize %d > %d\n", recsize, size); recsize = DEV_BSIZE; jblocks_advance(suj_jblocks, recsize); continue; } /* * Verify that all blocks in the segment are present. */ for (i = 1; i < blocks; i++) { recn = (void *) ((uintptr_t)rec) + i * DEV_BSIZE; if (recn->jsr_seq == rec->jsr_seq && recn->jsr_time == rec->jsr_time) continue; if (debug) printf("Incomplete record %jd (%d)\n", rec->jsr_seq, i); recsize = i * DEV_BSIZE; jblocks_advance(suj_jblocks, recsize); goto restart; } seg = errmalloc(sizeof(*seg)); seg->ss_blk = errmalloc(recsize); seg->ss_rec = *rec; bcopy((void *)rec, seg->ss_blk, recsize); if (rec->jsr_oldest > oldseq) oldseq = rec->jsr_oldest; TAILQ_INSERT_TAIL(&allsegs, seg, ss_next); jblocks_advance(suj_jblocks, recsize); } } } /* * Search a directory block for the SUJ_FILE. */ static void suj_find(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) { char block[MAXBSIZE]; struct direct *dp; int bytes; int off; if (sujino) return; bytes = lfragtosize(fs, frags); if (bread(disk, fsbtodb(fs, blk), block, bytes) <= 0) err_suj("Failed to read ROOTINO directory block %jd\n", blk); for (off = 0; off < bytes; off += dp->d_reclen) { dp = (struct direct *)&block[off]; if (dp->d_reclen == 0) break; if (dp->d_ino == 0) continue; if (dp->d_namlen != strlen(SUJ_FILE)) continue; if (bcmp(dp->d_name, SUJ_FILE, dp->d_namlen) != 0) continue; sujino = dp->d_ino; return; } } /* * Orchestrate the verification of a filesystem via the softupdates journal. */ int suj_check(const char *filesys) { union dinode *jip; union dinode *ip; uint64_t blocks; int retval; struct suj_seg *seg; struct suj_seg *segn; opendisk(filesys); TAILQ_INIT(&allsegs); /* * Set an exit point when SUJ check failed */ retval = setjmp(jmpbuf); if (retval != 0) { pwarn("UNEXPECTED SU+J INCONSISTENCY\n"); TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) { TAILQ_REMOVE(&allsegs, seg, ss_next); free(seg->ss_blk); free(seg); } if (reply("FALLBACK TO FULL FSCK") == 0) { ckfini(0); exit(EEXIT); } else return (-1); } /* * Find the journal inode. */ ip = ino_read(ROOTINO); sujino = 0; ino_visit(ip, ROOTINO, suj_find, 0); if (sujino == 0) { printf("Journal inode removed. Use tunefs to re-create.\n"); sblock.fs_flags &= ~FS_SUJ; sblock.fs_sujfree = 0; return (-1); } /* * Fetch the journal inode and verify it. */ jip = ino_read(sujino); printf("** SU+J Recovering %s\n", filesys); if (suj_verifyino(jip) != 0) return (-1); /* * Build a list of journal blocks in jblocks before parsing the * available journal blocks in with suj_read(). */ printf("** Reading %jd byte journal from inode %d.\n", DIP(jip, di_size), sujino); suj_jblocks = jblocks_create(); blocks = ino_visit(jip, sujino, suj_add_block, 0); if (blocks != numfrags(fs, DIP(jip, di_size))) { printf("Sparse journal inode %d.\n", sujino); return (-1); } suj_read(); jblocks_destroy(suj_jblocks); suj_jblocks = NULL; if (preen || reply("RECOVER")) { printf("** Building recovery table.\n"); suj_prune(); suj_build(); cg_apply(cg_build); printf("** Resolving unreferenced inode list.\n"); ino_unlinked(); printf("** Processing journal entries.\n"); cg_apply(cg_trunc); cg_apply(cg_check_blk); cg_apply(cg_check_ino); } if (preen == 0 && (jrecs > 0 || jbytes > 0) && reply("WRITE CHANGES") == 0) return (0); /* * To remain idempotent with partial truncations the free bitmaps * must be written followed by indirect blocks and lastly inode * blocks. This preserves access to the modified pointers until * they are freed. */ cg_apply(cg_write); dblk_write(); cg_apply(cg_write_inos); /* Write back superblock. */ closedisk(filesys); if (jrecs > 0 || jbytes > 0) { printf("** %jd journal records in %jd bytes for %.2f%% utilization\n", jrecs, jbytes, ((float)jrecs / (float)(jbytes / JREC_SIZE)) * 100); printf("** Freed %jd inodes (%jd dirs) %jd blocks, and %jd frags.\n", freeinos, freedir, freeblocks, freefrags); } return (0); }