/* * Copyright (c) 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95 * $Id: lfs_segment.c,v 1.21 1997/03/23 00:45:17 bde Exp $ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern int count_lock_queue __P((void)); static caddr_t lfs_alloc_buffer __P((int size)); static void lfs_reclaim_buffers __P((void)); #define MAX_ACTIVE 10 #define MAX_IO_BUFS 256 #define MAX_IO_SIZE (1024*512) static int lfs_total_io_size; static int lfs_total_io_count; static volatile int lfs_total_free_count; static int lfs_free_needed; static int lfs_in_buffer_reclaim; static struct lfs_freebuf { int size; caddr_t address; } lfs_freebufs[MAX_IO_BUFS]; void lfs_free_buffer( caddr_t address, int size) { lfs_freebufs[lfs_total_free_count].address = address; lfs_freebufs[lfs_total_free_count].size = size; ++lfs_total_free_count; if( lfs_free_needed) { wakeup((caddr_t) &lfs_free_needed); lfs_free_needed = 0; } } static void lfs_reclaim_buffers() { int i,s; int reclaimed = 0; if( lfs_in_buffer_reclaim) return; lfs_in_buffer_reclaim = 1; s = splhigh(); for(i=0;i= MAX_IO_BUFS) || (lfs_total_io_size >= MAX_IO_SIZE)) { lfs_free_needed = 1; tsleep(&lfs_free_needed, PRIBIO, "lfsalc", 0); splx(s); lfs_reclaim_buffers(); s = splhigh(); } splx(s); lfs_total_io_size += size; lfs_total_io_count += 1; rtval = malloc(size, M_SEGMENT, M_WAITOK); return rtval; } /* * Determine if it's OK to start a partial in this segment, or if we need * to go on to a new segment. */ #define LFS_PARTIAL_FITS(fs) \ ((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \ 1 << (fs)->lfs_fsbtodb) static void lfs_callback __P((struct buf *)); static void lfs_gather __P((struct lfs *, struct segment *, struct vnode *, int (*) __P((struct lfs *, struct buf *)))); void lfs_iset __P((struct inode *, ufs_daddr_t, time_t)); static int lfs_match_data __P((struct lfs *, struct buf *)); static int lfs_match_dindir __P((struct lfs *, struct buf *)); static int lfs_match_indir __P((struct lfs *, struct buf *)); #ifdef TRIPLE static int lfs_match_tindir __P((struct lfs *, struct buf *)); #endif static void lfs_newseg __P((struct lfs *)); static void lfs_shellsort __P((struct buf **, ufs_daddr_t *, register int)); static void lfs_supercallback __P((struct buf *)); static void lfs_writefile __P((struct lfs *, struct segment *, struct vnode *)); static void lfs_writevnodes __P((struct lfs *fs, struct mount *mp, struct segment *sp, int dirops)); /* Statistics Counters */ #define DOSTATS struct lfs_stats lfs_stats; /* op values to lfs_writevnodes */ #define VN_REG 0 #define VN_DIROP 1 #define VN_EMPTY 2 /* * Ifile and meta data blocks are not marked busy, so segment writes MUST be * single threaded. Currently, there are two paths into lfs_segwrite, sync() * and getnewbuf(). They both mark the file system busy. Lfs_vflush() * explicitly marks the file system busy. So lfs_segwrite is safe. I think. */ int lfs_vflush(vp) struct vnode *vp; { struct inode *ip; struct lfs *fs; struct segment *sp; int error; fs = VFSTOUFS(vp->v_mount)->um_lfs; /* XXX * lfs_segwrite uses lfs_writevnodes to flush dirty vnodes. * lfs_writevnodes (by way of a check with lfs_vref) passes over * locked vnodes. Since we usually come here with vp locked, anytime * we just happen to call lfs_vflush and we are past the "MAX_ACTIVE" * threshold, we used to call lfs_seqwrite and assume it would take * care of the problem... but of course it didn't. Now the question * remains, is this the right thing to do, or should lfs_seqwrite or * lfs_writevnodes be fixed to handle locked vnodes?? */ if (fs->lfs_nactive > MAX_ACTIVE){ error = lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP); if(error) return(error); } lfs_seglock(fs, SEGM_SYNC); sp = fs->lfs_sp; ip = VTOI(vp); if (vp->v_dirtyblkhd.lh_first == NULL) lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY); do { do { if (vp->v_dirtyblkhd.lh_first != NULL) lfs_writefile(fs, sp, vp); } while (lfs_writeinode(fs, sp, ip)); } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM); if (vp->v_dirtyblkhd.lh_first != NULL) panic("lfs_vflush: dirty bufs!!!"); #ifdef DOSTATS ++lfs_stats.nwrites; if (sp->seg_flags & SEGM_SYNC) ++lfs_stats.nsync_writes; if (sp->seg_flags & SEGM_CKP) ++lfs_stats.ncheckpoints; #endif lfs_segunlock(fs); return (0); } static void lfs_writevnodes(fs, mp, sp, op) struct lfs *fs; struct mount *mp; struct segment *sp; int op; { struct inode *ip; struct vnode *vp; /* BEGIN HACK */ #define VN_OFFSET (((void *)&vp->v_mntvnodes.le_next) - (void *)vp) #define BACK_VP(VP) ((struct vnode *)(((void *)VP->v_mntvnodes.le_prev) - VN_OFFSET)) #define BEG_OF_VLIST ((struct vnode *)(((void *)&mp->mnt_vnodelist.lh_first) - VN_OFFSET)) /* Find last vnode. */ loop: for (vp = mp->mnt_vnodelist.lh_first; vp && vp->v_mntvnodes.le_next != NULL; vp = vp->v_mntvnodes.le_next); for (; vp && vp != BEG_OF_VLIST; vp = BACK_VP(vp)) { /* END HACK */ /* loop: for (vp = mp->mnt_vnodelist.lh_first; vp != NULL; vp = vp->v_mntvnodes.le_next) { */ /* * If the vnode that we are about to sync is no longer * associated with this mount point, start over. */ if (vp->v_mount != mp) goto loop; /* XXX ignore dirops for now if (op == VN_DIROP && !(vp->v_flag & VDIROP) || op != VN_DIROP && (vp->v_flag & VDIROP)) continue; */ if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first) continue; if (vp->v_type == VNON) continue; if (lfs_vref(vp)) continue; /* * Write the inode/file if dirty and it's not the * the IFILE. */ ip = VTOI(vp); if ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE) || vp->v_dirtyblkhd.lh_first != NULL) && ip->i_number != LFS_IFILE_INUM) { if (vp->v_dirtyblkhd.lh_first != NULL) lfs_writefile(fs, sp, vp); (void) lfs_writeinode(fs, sp, ip); } vp->v_flag &= ~VDIROP; lfs_vunref(vp); } } int lfs_segwrite(mp, flags) struct mount *mp; int flags; /* Do a checkpoint. */ { struct proc *p = curproc; /* XXX */ struct buf *bp; struct inode *ip; struct lfs *fs; struct segment *sp; struct vnode *vp; SEGUSE *segusep; ufs_daddr_t ibno; CLEANERINFO *cip; int clean, do_ckp, error, i; fs = VFSTOUFS(mp)->um_lfs; /* * If we have fewer than 2 clean segments, wait until cleaner * writes. */ do { LFS_CLEANERINFO(cip, fs, bp); clean = cip->clean; brelse(bp); if (clean <= 2 || fs->lfs_avail <= 0) { printf("lfs_segwrite: ran out of clean segments, waiting for cleaner\n"); wakeup(&lfs_allclean_wakeup); wakeup(&fs->lfs_nextseg); if (error = tsleep(&fs->lfs_avail, PRIBIO + 1, "lfs writer", 0)) return (error); } } while (clean <= 2 || fs->lfs_avail <= 0); /* * Allocate a segment structure and enough space to hold pointers to * the maximum possible number of buffers which can be described in a * single summary block. */ do_ckp = flags & SEGM_CKP || fs->lfs_nactive > MAX_ACTIVE; lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0)); sp = fs->lfs_sp; lfs_writevnodes(fs, mp, sp, VN_REG); /* XXX ignore ordering of dirops for now */ /* XXX fs->lfs_writer = 1; if (fs->lfs_dirops && (error = tsleep(&fs->lfs_writer, PRIBIO + 1, "lfs writer", 0))) { free(sp->bpp, M_SEGMENT); free(sp, M_SEGMENT); fs->lfs_writer = 0; return (error); } lfs_writevnodes(fs, mp, sp, VN_DIROP); */ /* * If we are doing a checkpoint, mark everything since the * last checkpoint as no longer ACTIVE. */ if (do_ckp) for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz; --ibno >= fs->lfs_cleansz; ) { if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp)) panic("lfs: ifile read"); segusep = (SEGUSE *)bp->b_data; for (i = fs->lfs_sepb; i--; segusep++) segusep->su_flags &= ~SEGUSE_ACTIVE; error = VOP_BWRITE(bp); } if (do_ckp || fs->lfs_doifile) { redo: vp = fs->lfs_ivnode; while (vget(vp, LK_EXCLUSIVE, p)) continue; ip = VTOI(vp); if (vp->v_dirtyblkhd.lh_first != NULL) lfs_writefile(fs, sp, vp); (void)lfs_writeinode(fs, sp, ip); vput(vp); if (lfs_writeseg(fs, sp) && do_ckp) goto redo; } else (void) lfs_writeseg(fs, sp); /* * If the I/O count is non-zero, sleep until it reaches zero. At the * moment, the user's process hangs around so we can sleep. */ /* XXX ignore dirops for now fs->lfs_writer = 0; fs->lfs_doifile = 0; wakeup(&fs->lfs_dirops); */ #ifdef DOSTATS ++lfs_stats.nwrites; if (sp->seg_flags & SEGM_SYNC) ++lfs_stats.nsync_writes; if (sp->seg_flags & SEGM_CKP) ++lfs_stats.ncheckpoints; #endif lfs_segunlock(fs); return (0); } /* * Write the dirty blocks associated with a vnode. */ static void lfs_writefile(fs, sp, vp) struct lfs *fs; struct segment *sp; struct vnode *vp; { struct buf *bp; struct finfo *fip; IFILE *ifp; if (sp->seg_bytes_left < fs->lfs_bsize || sp->sum_bytes_left < sizeof(struct finfo)) (void) lfs_writeseg(fs, sp); sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t); ++((SEGSUM *)(sp->segsum))->ss_nfinfo; fip = sp->fip; fip->fi_nblocks = 0; fip->fi_ino = VTOI(vp)->i_number; LFS_IENTRY(ifp, fs, fip->fi_ino, bp); fip->fi_version = ifp->if_version; brelse(bp); /* * It may not be necessary to write the meta-data blocks at this point, * as the roll-forward recovery code should be able to reconstruct the * list. */ lfs_gather(fs, sp, vp, lfs_match_data); lfs_gather(fs, sp, vp, lfs_match_indir); lfs_gather(fs, sp, vp, lfs_match_dindir); #ifdef TRIPLE lfs_gather(fs, sp, vp, lfs_match_tindir); #endif fip = sp->fip; if (fip->fi_nblocks != 0) { sp->fip = (struct finfo *)((caddr_t)fip + sizeof(struct finfo) + sizeof(ufs_daddr_t) * (fip->fi_nblocks - 1)); sp->start_lbp = &sp->fip->fi_blocks[0]; } else { sp->sum_bytes_left += sizeof(struct finfo) - sizeof(ufs_daddr_t); --((SEGSUM *)(sp->segsum))->ss_nfinfo; } } int lfs_writeinode(fs, sp, ip) struct lfs *fs; struct segment *sp; struct inode *ip; { struct buf *bp, *ibp; IFILE *ifp; SEGUSE *sup; ufs_daddr_t daddr; ino_t ino; int error, i, ndx; int redo_ifile = 0; if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE))) return(0); /* Allocate a new inode block if necessary. */ if (sp->ibp == NULL) { /* Allocate a new segment if necessary. */ if (sp->seg_bytes_left < fs->lfs_bsize || sp->sum_bytes_left < sizeof(ufs_daddr_t)) (void) lfs_writeseg(fs, sp); /* Get next inode block. */ daddr = fs->lfs_offset; fs->lfs_offset += fsbtodb(fs, 1); sp->ibp = *sp->cbpp++ = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr, fs->lfs_bsize); /* Zero out inode numbers */ for (i = 0; i < INOPB(fs); ++i) ((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0; ++sp->start_bpp; fs->lfs_avail -= fsbtodb(fs, 1); /* Set remaining space counters. */ sp->seg_bytes_left -= fs->lfs_bsize; sp->sum_bytes_left -= sizeof(ufs_daddr_t); ndx = LFS_SUMMARY_SIZE / sizeof(ufs_daddr_t) - sp->ninodes / INOPB(fs) - 1; ((ufs_daddr_t *)(sp->segsum))[ndx] = daddr; } /* Update the inode times and copy the inode onto the inode page. */ if (ip->i_flag & IN_MODIFIED) --fs->lfs_uinodes; ITIMES(ip, &time, &time); ip->i_flag &= ~(IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE); bp = sp->ibp; ((struct dinode *)bp->b_data)[sp->ninodes % INOPB(fs)] = ip->i_din; /* Increment inode count in segment summary block. */ ++((SEGSUM *)(sp->segsum))->ss_ninos; /* If this page is full, set flag to allocate a new page. */ if (++sp->ninodes % INOPB(fs) == 0) sp->ibp = NULL; /* * If updating the ifile, update the super-block. Update the disk * address and access times for this inode in the ifile. */ ino = ip->i_number; if (ino == LFS_IFILE_INUM) { daddr = fs->lfs_idaddr; fs->lfs_idaddr = bp->b_blkno; } else { LFS_IENTRY(ifp, fs, ino, ibp); daddr = ifp->if_daddr; ifp->if_daddr = bp->b_blkno; error = VOP_BWRITE(ibp); } /* * No need to update segment usage if there was no former inode address * or if the last inode address is in the current partial segment. */ if (daddr != LFS_UNUSED_DADDR && !(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) { LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp); #ifdef DIAGNOSTIC if (sup->su_nbytes < sizeof(struct dinode)) { /* XXX -- Change to a panic. */ printf("lfs: negative bytes (segment %ld)\n", datosn(fs, daddr)); panic("negative bytes"); } #endif sup->su_nbytes -= sizeof(struct dinode); redo_ifile = (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED)); error = VOP_BWRITE(bp); } return (redo_ifile); } int lfs_gatherblock(sp, bp, sptr) struct segment *sp; struct buf *bp; int *sptr; { struct lfs *fs; int version; /* * If full, finish this segment. We may be doing I/O, so * release and reacquire the splbio(). */ #ifdef DIAGNOSTIC if (sp->vp == NULL) panic ("lfs_gatherblock: Null vp in segment"); #endif fs = sp->fs; if (sp->sum_bytes_left < sizeof(ufs_daddr_t) || sp->seg_bytes_left < bp->b_bcount) { if (sptr) splx(*sptr); lfs_updatemeta(sp); version = sp->fip->fi_version; (void) lfs_writeseg(fs, sp); sp->fip->fi_version = version; sp->fip->fi_ino = VTOI(sp->vp)->i_number; /* Add the current file to the segment summary. */ ++((SEGSUM *)(sp->segsum))->ss_nfinfo; sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t); if (sptr) *sptr = splbio(); return(1); } /* Insert into the buffer list, update the FINFO block. */ bp->b_flags |= B_GATHERED; *sp->cbpp++ = bp; sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno; sp->sum_bytes_left -= sizeof(ufs_daddr_t); sp->seg_bytes_left -= bp->b_bcount; return(0); } static void lfs_gather(fs, sp, vp, match) struct lfs *fs; struct segment *sp; struct vnode *vp; int (*match) __P((struct lfs *, struct buf *)); { struct buf *bp; int s; sp->vp = vp; s = splbio(); /* This is a hack to see if ordering the blocks in LFS makes a difference. */ /* BEGIN HACK */ #define BUF_OFFSET (((void *)&bp->b_vnbufs.le_next) - (void *)bp) #define BACK_BUF(BP) ((struct buf *)(((void *)BP->b_vnbufs.le_prev) - BUF_OFFSET)) #define BEG_OF_LIST ((struct buf *)(((void *)&vp->v_dirtyblkhd.lh_first) - BUF_OFFSET)) /*loop: for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {*/ /* Find last buffer. */ loop: for (bp = vp->v_dirtyblkhd.lh_first; bp && bp->b_vnbufs.le_next != NULL; bp = bp->b_vnbufs.le_next); for (; bp && bp != BEG_OF_LIST; bp = BACK_BUF(bp)) { /* END HACK */ if (bp->b_flags & B_BUSY || !match(fs, bp) || bp->b_flags & B_GATHERED) continue; #ifdef DIAGNOSTIC if (!(bp->b_flags & B_DELWRI)) panic("lfs_gather: bp not B_DELWRI"); if (!(bp->b_flags & B_LOCKED)) panic("lfs_gather: bp not B_LOCKED"); #endif if (lfs_gatherblock(sp, bp, &s)) goto loop; } splx(s); lfs_updatemeta(sp); sp->vp = NULL; } /* * Update the metadata that points to the blocks listed in the FINFO * array. */ void lfs_updatemeta(sp) struct segment *sp; { SEGUSE *sup; struct buf *bp; struct lfs *fs; struct vnode *vp; struct indir a[NIADDR + 2], *ap; struct inode *ip; ufs_daddr_t daddr, lbn, off; int error, i, nblocks, num; vp = sp->vp; nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp; if (nblocks < 0) panic("This is a bad thing\n"); if (vp == NULL || nblocks == 0) return; /* Sort the blocks. */ if (!(sp->seg_flags & SEGM_CLEAN)) lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks); /* * Record the length of the last block in case it's a fragment. * If there are indirect blocks present, they sort last. An * indirect block will be lfs_bsize and its presence indicates * that you cannot have fragments. */ sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount; /* * Assign disk addresses, and update references to the logical * block and the segment usage information. */ fs = sp->fs; for (i = nblocks; i--; ++sp->start_bpp) { lbn = *sp->start_lbp++; (*sp->start_bpp)->b_blkno = off = fs->lfs_offset; fs->lfs_offset += fragstodb(fs, numfrags(fs, (*sp->start_bpp)->b_bcount)); if (error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL)) panic("lfs_updatemeta: ufs_bmaparray %d", error); ip = VTOI(vp); switch (num) { case 0: ip->i_db[lbn] = off; break; case 1: ip->i_ib[a[0].in_off] = off; break; default: ap = &a[num - 1]; if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp)) panic("lfs_updatemeta: bread bno %d", ap->in_lbn); /* * Bread may create a new indirect block which needs * to get counted for the inode. */ if (bp->b_blkno == -1 && !(bp->b_flags & B_CACHE)) { ip->i_blocks += fsbtodb(fs, 1); fs->lfs_bfree -= fragstodb(fs, fs->lfs_frag); } ((ufs_daddr_t *)bp->b_data)[ap->in_off] = off; VOP_BWRITE(bp); } /* Update segment usage information. */ if (daddr != UNASSIGNED && !(daddr >= fs->lfs_lastpseg && daddr <= off)) { LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp); #ifdef DIAGNOSTIC if (sup->su_nbytes < (*sp->start_bpp)->b_bcount) { /* XXX -- Change to a panic. */ printf("lfs: negative bytes (segment %ld)\n", datosn(fs, daddr)); printf("lfs: bp = 0x%x, addr = 0x%x\n", bp, bp->b_un.b_addr); panic ("Negative Bytes"); } #endif sup->su_nbytes -= (*sp->start_bpp)->b_bcount; error = VOP_BWRITE(bp); } } } /* * Start a new segment. */ int lfs_initseg(fs) struct lfs *fs; { struct segment *sp; SEGUSE *sup; SEGSUM *ssp; struct buf *bp; int repeat; sp = fs->lfs_sp; repeat = 0; /* Advance to the next segment. */ if (!LFS_PARTIAL_FITS(fs)) { /* Wake up any cleaning procs waiting on this file system. */ wakeup(&lfs_allclean_wakeup); wakeup(&fs->lfs_nextseg); lfs_newseg(fs); repeat = 1; fs->lfs_offset = fs->lfs_curseg; sp->seg_number = datosn(fs, fs->lfs_curseg); sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE; /* * If the segment contains a superblock, update the offset * and summary address to skip over it. */ LFS_SEGENTRY(sup, fs, sp->seg_number, bp); if (sup->su_flags & SEGUSE_SUPERBLOCK) { fs->lfs_offset += LFS_SBPAD / DEV_BSIZE; sp->seg_bytes_left -= LFS_SBPAD; } brelse(bp); } else { sp->seg_number = datosn(fs, fs->lfs_curseg); sp->seg_bytes_left = (fs->lfs_dbpseg - (fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE; } fs->lfs_lastpseg = fs->lfs_offset; sp->fs = fs; sp->ibp = NULL; sp->ninodes = 0; /* Get a new buffer for SEGSUM and enter it into the buffer list. */ sp->cbpp = sp->bpp; *sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_offset, LFS_SUMMARY_SIZE); sp->segsum = (*sp->cbpp)->b_data; bzero(sp->segsum, LFS_SUMMARY_SIZE); sp->start_bpp = ++sp->cbpp; fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE; /* Set point to SEGSUM, initialize it. */ ssp = sp->segsum; ssp->ss_next = fs->lfs_nextseg; ssp->ss_nfinfo = ssp->ss_ninos = 0; ssp->ss_magic = SS_MAGIC; /* Set pointer to first FINFO, initialize it. */ sp->fip = (struct finfo *)((caddr_t)sp->segsum + sizeof(SEGSUM)); sp->fip->fi_nblocks = 0; sp->start_lbp = &sp->fip->fi_blocks[0]; sp->fip->fi_lastlength = 0; sp->seg_bytes_left -= LFS_SUMMARY_SIZE; sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM); return(repeat); } /* * Return the next segment to write. */ static void lfs_newseg(fs) struct lfs *fs; { CLEANERINFO *cip; SEGUSE *sup; struct buf *bp; int curseg, isdirty, sn; LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp); sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE; sup->su_nbytes = 0; sup->su_nsums = 0; sup->su_ninos = 0; (void) VOP_BWRITE(bp); LFS_CLEANERINFO(cip, fs, bp); --cip->clean; ++cip->dirty; (void) VOP_BWRITE(bp); fs->lfs_lastseg = fs->lfs_curseg; fs->lfs_curseg = fs->lfs_nextseg; for (sn = curseg = datosn(fs, fs->lfs_curseg);;) { sn = (sn + 1) % fs->lfs_nseg; if (sn == curseg) panic("lfs_nextseg: no clean segments"); LFS_SEGENTRY(sup, fs, sn, bp); isdirty = sup->su_flags & SEGUSE_DIRTY; brelse(bp); if (!isdirty) break; } ++fs->lfs_nactive; fs->lfs_nextseg = sntoda(fs, sn); #ifdef DOSTATS ++lfs_stats.segsused; #endif } int lfs_writeseg(fs, sp) struct lfs *fs; struct segment *sp; { struct buf **bpp, *bp, *cbp; SEGUSE *sup; SEGSUM *ssp; dev_t i_dev; u_long *datap, *dp; int do_again, i, nblocks, s; int (*strategy)__P((struct vop_strategy_args *)); struct vop_strategy_args vop_strategy_a; u_short ninos; char *p; /* * If there are no buffers other than the segment summary to write * and it is not a checkpoint, don't do anything. On a checkpoint, * even if there aren't any buffers, you need to write the superblock. */ if ((nblocks = sp->cbpp - sp->bpp) == 1) return (0); /* Update the segment usage information. */ LFS_SEGENTRY(sup, fs, sp->seg_number, bp); /* Loop through all blocks, except the segment summary. */ for (bpp = sp->bpp; ++bpp < sp->cbpp; ) sup->su_nbytes += (*bpp)->b_bcount; ssp = (SEGSUM *)sp->segsum; ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs); sup->su_nbytes += ssp->ss_ninos * sizeof(struct dinode); sup->su_nbytes += LFS_SUMMARY_SIZE; sup->su_lastmod = time.tv_sec; sup->su_ninos += ninos; ++sup->su_nsums; do_again = !(bp->b_flags & B_GATHERED); (void)VOP_BWRITE(bp); /* * Compute checksum across data and then across summary; the first * block (the summary block) is skipped. Set the create time here * so that it's guaranteed to be later than the inode mod times. * * XXX * Fix this to do it inline, instead of malloc/copy. */ datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK); for (bpp = sp->bpp, i = nblocks - 1; i--;) { if ((*++bpp)->b_flags & B_INVAL) { if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long))) panic("lfs_writeseg: copyin failed"); } else *dp++ = ((u_long *)(*bpp)->b_data)[0]; } ssp->ss_create = time.tv_sec; ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long)); ssp->ss_sumsum = cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum)); free(datap, M_SEGMENT); #ifdef DIAGNOSTIC if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE) panic("lfs_writeseg: No diskspace for summary"); #endif fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE); i_dev = VTOI(fs->lfs_ivnode)->i_dev; strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)]; /* * When we simply write the blocks we lose a rotation for every block * written. To avoid this problem, we allocate memory in chunks, copy * the buffers into the chunk and write the chunk. MAXPHYS is the * largest size I/O devices can handle. * When the data is copied to the chunk, turn off the the B_LOCKED bit * and brelse the buffer (which will move them to the LRU list). Add * the B_CALL flag to the buffer header so we can count I/O's for the * checkpoints and so we can release the allocated memory. * * XXX * This should be removed if the new virtual memory system allows us to * easily make the buffers contiguous in kernel memory and if that's * fast enough. */ for (bpp = sp->bpp, i = nblocks; i;) { cbp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, (*bpp)->b_blkno, MAXPHYS); cbp->b_dev = i_dev; cbp->b_flags |= B_ASYNC | B_BUSY; cbp->b_bcount = 0; s = splbio(); ++fs->lfs_iocount; for (p = cbp->b_data; i && cbp->b_bcount < MAXPHYS; i--) { bp = *bpp; if (bp->b_bcount > (MAXPHYS - cbp->b_bcount)) break; bpp++; /* * Fake buffers from the cleaner are marked as B_INVAL. * We need to copy the data from user space rather than * from the buffer indicated. * XXX == what do I do on an error? */ if (bp->b_flags & B_INVAL) { if (copyin(bp->b_saveaddr, p, bp->b_bcount)) panic("lfs_writeseg: copyin failed"); } else bcopy(bp->b_data, p, bp->b_bcount); p += bp->b_bcount; cbp->b_bcount += bp->b_bcount; if (bp->b_flags & B_LOCKED) --locked_queue_count; if (bp->b_flags & (B_DELWRI|B_LOCKED)) { --numdirtybuffers; if (needsbuffer) vfs_bio_need_satisfy(); } bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_LOCKED | B_GATHERED); if (bp->b_flags & B_CALL) { /* if B_CALL, it was created with newbuf */ if (!(bp->b_flags & B_INVAL)) lfs_free_buffer( bp->b_data, roundup( bp->b_bufsize, DEV_BSIZE)); relpbuf(bp); } else { bremfree(bp); bp->b_flags |= B_DONE; reassignbuf(bp, bp->b_vp); brelse(bp); } } ++cbp->b_vp->v_numoutput; splx(s); /* * XXXX This is a gross and disgusting hack. Since these * buffers are physically addressed, they hang off the * device vnode (devvp). As a result, they have no way * of getting to the LFS superblock or lfs structure to * keep track of the number of I/O's pending. So, I am * going to stuff the fs into the saveaddr field of * the buffer (yuk). */ cbp->b_saveaddr = (caddr_t)fs; vop_strategy_a.a_desc = VDESC(vop_strategy); vop_strategy_a.a_bp = cbp; (strategy)(&vop_strategy_a); } /* * XXX * Vinvalbuf can move locked buffers off the locked queue * and we have no way of knowing about this. So, after * doing a big write, we recalculate how many bufers are * really still left on the locked queue. */ locked_queue_count = count_lock_queue(); wakeup(&locked_queue_count); #ifdef DOSTATS ++lfs_stats.psegwrites; lfs_stats.blocktot += nblocks - 1; if (fs->lfs_sp->seg_flags & SEGM_SYNC) ++lfs_stats.psyncwrites; if (fs->lfs_sp->seg_flags & SEGM_CLEAN) { ++lfs_stats.pcleanwrites; lfs_stats.cleanblocks += nblocks - 1; } #endif return (lfs_initseg(fs) || do_again); } void lfs_writesuper(fs) struct lfs *fs; { struct buf *bp; dev_t i_dev; int (*strategy) __P((struct vop_strategy_args *)); int s; struct vop_strategy_args vop_strategy_a; i_dev = VTOI(fs->lfs_ivnode)->i_dev; strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)]; /* Checksum the superblock and copy it into a buffer. */ fs->lfs_cksum = cksum(fs, sizeof(struct lfs) - sizeof(fs->lfs_cksum)); bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_sboffs[0], LFS_SBPAD); *(struct lfs *)bp->b_data = *fs; /* XXX Toggle between first two superblocks; for now just write first */ bp->b_dev = i_dev; bp->b_flags |= B_BUSY | B_CALL | B_ASYNC; if (bp->b_flags & (B_DELWRI|B_LOCKED)) { --numdirtybuffers; if (needsbuffer) vfs_bio_need_satisfy(); } bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI); bp->b_iodone = lfs_supercallback; vop_strategy_a.a_desc = VDESC(vop_strategy); vop_strategy_a.a_bp = bp; s = splbio(); ++bp->b_vp->v_numoutput; splx(s); (strategy)(&vop_strategy_a); } /* * Logical block number match routines used when traversing the dirty block * chain. */ static int lfs_match_data(fs, bp) struct lfs *fs; struct buf *bp; { return (bp->b_lblkno >= 0); } static int lfs_match_indir(fs, bp) struct lfs *fs; struct buf *bp; { int lbn; lbn = bp->b_lblkno; return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0); } static int lfs_match_dindir(fs, bp) struct lfs *fs; struct buf *bp; { int lbn; lbn = bp->b_lblkno; return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1); } #ifdef TRIPLE static int lfs_match_tindir(fs, bp) struct lfs *fs; struct buf *bp; { int lbn; lbn = bp->b_lblkno; return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2); } #endif /* * Allocate a new buffer header. */ struct buf * lfs_newbuf(vp, daddr, size) struct vnode *vp; ufs_daddr_t daddr; size_t size; { struct buf *bp; size_t nbytes; nbytes = roundup(size, DEV_BSIZE); bp = getpbuf(); if (nbytes) bp->b_data = lfs_alloc_buffer( nbytes); bp->b_bufsize = size; bp->b_bcount = size; bp->b_lblkno = daddr; bp->b_blkno = daddr; bp->b_error = 0; bp->b_resid = 0; bp->b_iodone = lfs_callback; bp->b_flags |= B_BUSY | B_CALL | B_NOCACHE; return (bp); } static void lfs_callback(bp) struct buf *bp; { struct lfs *fs; fs = (struct lfs *)bp->b_saveaddr; #ifdef DIAGNOSTIC if (fs->lfs_iocount == 0) panic("lfs_callback: zero iocount"); #endif if (--fs->lfs_iocount == 0) wakeup(&fs->lfs_iocount); lfs_free_buffer( bp->b_data, roundup( bp->b_bufsize, DEV_BSIZE)); relpbuf(bp); } static void lfs_supercallback(bp) struct buf *bp; { if( bp->b_data) lfs_free_buffer( bp->b_data, roundup( bp->b_bufsize, DEV_BSIZE)); relpbuf(bp); } /* * Shellsort (diminishing increment sort) from Data Structures and * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290; * see also Knuth Vol. 3, page 84. The increments are selected from * formula (8), page 95. Roughly O(N^3/2). */ /* * This is our own private copy of shellsort because we want to sort * two parallel arrays (the array of buffer pointers and the array of * logical block numbers) simultaneously. Note that we cast the array * of logical block numbers to a unsigned in this routine so that the * negative block numbers (meta data blocks) sort AFTER the data blocks. */ static void lfs_shellsort(bp_array, lb_array, nmemb) struct buf **bp_array; ufs_daddr_t *lb_array; register int nmemb; { static int __rsshell_increments[] = { 4, 1, 0 }; register int incr, *incrp, t1, t2; struct buf *bp_temp; u_long lb_temp; for (incrp = __rsshell_increments; incr = *incrp++;) for (t1 = incr; t1 < nmemb; ++t1) for (t2 = t1 - incr; t2 >= 0;) if (lb_array[t2] > lb_array[t2 + incr]) { lb_temp = lb_array[t2]; lb_array[t2] = lb_array[t2 + incr]; lb_array[t2 + incr] = lb_temp; bp_temp = bp_array[t2]; bp_array[t2] = bp_array[t2 + incr]; bp_array[t2 + incr] = bp_temp; t2 -= incr; } else break; } /* * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it. */ int lfs_vref(vp) register struct vnode *vp; { struct proc *p = curproc; /* XXX */ if ((vp->v_flag & VXLOCK) || /* XXX */ (vp->v_usecount == 0 && vp->v_freelist.tqe_prev == (struct vnode **)0xdeadb)) return(1); return (vget(vp, 0, p)); } /* * This is vrele except that we do not want to VOP_INACTIVE this vnode. We * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end. */ void lfs_vunref(vp) register struct vnode *vp; { struct proc *p = curproc; /* XXX */ extern struct simplelock vnode_free_list_slock; /* XXX */ extern TAILQ_HEAD(freelst, vnode) vnode_free_list; /* XXX */ simple_lock(&vp->v_interlock); vp->v_usecount--; if (vp->v_usecount > 0) { simple_unlock(&vp->v_interlock); return; } /* * insert at tail of LRU list */ simple_lock(&vnode_free_list_slock); TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist); simple_unlock(&vnode_free_list_slock); simple_unlock(&vp->v_interlock); }