/* $FreeBSD$ */ /*- * Copyright (c) 2004, 2005 * Damien Bergamini . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /*- * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef IWI_DEBUG #define DPRINTF(x) do { if (iwi_debug > 0) printf x; } while (0) #define DPRINTFN(n, x) do { if (iwi_debug >= (n)) printf x; } while (0) int iwi_debug = 0; SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level"); #else #define DPRINTF(x) #define DPRINTFN(n, x) #endif MODULE_DEPEND(iwi, pci, 1, 1, 1); MODULE_DEPEND(iwi, wlan, 1, 1, 1); struct iwi_ident { uint16_t vendor; uint16_t device; const char *name; }; static const struct iwi_ident iwi_ident_table[] = { { 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" }, { 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" }, { 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" }, { 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" }, { 0, 0, NULL } }; static void iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int); static int iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *, int); static void iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); static void iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); static int iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *, int, bus_addr_t, bus_addr_t); static void iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); static void iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); static int iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *, int); static void iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); static void iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); static int iwi_media_change(struct ifnet *); static void iwi_media_status(struct ifnet *, struct ifmediareq *); static int iwi_newstate(struct ieee80211com *, enum ieee80211_state, int); static int iwi_wme_update(struct ieee80211com *); static uint16_t iwi_read_prom_word(struct iwi_softc *, uint8_t); static void iwi_fix_channel(struct ieee80211com *, struct mbuf *); static void iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int, struct iwi_frame *); static void iwi_notification_intr(struct iwi_softc *, struct iwi_notif *); static void iwi_rx_intr(struct iwi_softc *); static void iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *); static void iwi_intr(void *); static int iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t, int); static int iwi_tx_start(struct ifnet *, struct mbuf *, struct ieee80211_node *); static void iwi_start(struct ifnet *); static void iwi_watchdog(struct ifnet *); static int iwi_ioctl(struct ifnet *, u_long, caddr_t); static void iwi_stop_master(struct iwi_softc *); static int iwi_reset(struct iwi_softc *); static int iwi_load_ucode(struct iwi_softc *, void *, int); static int iwi_load_firmware(struct iwi_softc *, void *, int); static int iwi_cache_firmware(struct iwi_softc *, void *); static void iwi_free_firmware(struct iwi_softc *); static int iwi_config(struct iwi_softc *); static int iwi_set_chan(struct iwi_softc *, struct ieee80211_channel *); static int iwi_scan(struct iwi_softc *); static int iwi_auth_and_assoc(struct iwi_softc *); static void iwi_init(void *); static void iwi_stop(void *); static int iwi_sysctl_stats(SYSCTL_HANDLER_ARGS); static int iwi_sysctl_radio(SYSCTL_HANDLER_ARGS); static int iwi_probe(device_t); static int iwi_attach(device_t); static int iwi_detach(device_t); static int iwi_shutdown(device_t); static int iwi_suspend(device_t); static int iwi_resume(device_t); static device_method_t iwi_methods[] = { /* Device interface */ DEVMETHOD(device_probe, iwi_probe), DEVMETHOD(device_attach, iwi_attach), DEVMETHOD(device_detach, iwi_detach), DEVMETHOD(device_shutdown, iwi_shutdown), DEVMETHOD(device_suspend, iwi_suspend), DEVMETHOD(device_resume, iwi_resume), { 0, 0 } }; static driver_t iwi_driver = { "iwi", iwi_methods, sizeof (struct iwi_softc) }; static devclass_t iwi_devclass; DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, 0, 0); /* * Supported rates for 802.11a/b/g modes (in 500Kbps unit). */ static const struct ieee80211_rateset iwi_rateset_11a = { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; static const struct ieee80211_rateset iwi_rateset_11b = { 4, { 2, 4, 11, 22 } }; static const struct ieee80211_rateset iwi_rateset_11g = { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; static __inline uint8_t MEM_READ_1(struct iwi_softc *sc, uint32_t addr) { CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA); } static __inline uint32_t MEM_READ_4(struct iwi_softc *sc, uint32_t addr) { CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA); } static int iwi_probe(device_t dev) { const struct iwi_ident *ident; for (ident = iwi_ident_table; ident->name != NULL; ident++) { if (pci_get_vendor(dev) == ident->vendor && pci_get_device(dev) == ident->device) { device_set_desc(dev, ident->name); return 0; } } return ENXIO; } /* Base Address Register */ #define IWI_PCI_BAR0 0x10 static int iwi_attach(device_t dev) { struct iwi_softc *sc = device_get_softc(dev); struct ifnet *ifp; struct ieee80211com *ic = &sc->sc_ic; uint16_t val; int error, i; sc->sc_dev = dev; mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF | MTX_RECURSE); if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { device_printf(dev, "chip is in D%d power mode " "-- setting to D0\n", pci_get_powerstate(dev)); pci_set_powerstate(dev, PCI_POWERSTATE_D0); } pci_write_config(dev, 0x41, 0, 1); /* enable bus-mastering */ pci_enable_busmaster(dev); sc->mem_rid = IWI_PCI_BAR0; sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, RF_ACTIVE); if (sc->mem == NULL) { device_printf(dev, "could not allocate memory resource\n"); goto fail; } sc->sc_st = rman_get_bustag(sc->mem); sc->sc_sh = rman_get_bushandle(sc->mem); sc->irq_rid = 0; sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, RF_ACTIVE | RF_SHAREABLE); if (sc->irq == NULL) { device_printf(dev, "could not allocate interrupt resource\n"); goto fail; } if (iwi_reset(sc) != 0) { device_printf(dev, "could not reset adapter\n"); goto fail; } /* * Allocate rings. */ if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) { device_printf(dev, "could not allocate Cmd ring\n"); goto fail; } error = iwi_alloc_tx_ring(sc, &sc->txq[0], IWI_TX_RING_COUNT, IWI_CSR_TX1_RIDX, IWI_CSR_TX1_WIDX); if (error != 0) { device_printf(dev, "could not allocate Tx ring 1\n"); goto fail; } error = iwi_alloc_tx_ring(sc, &sc->txq[1], IWI_TX_RING_COUNT, IWI_CSR_TX2_RIDX, IWI_CSR_TX2_WIDX); if (error != 0) { device_printf(dev, "could not allocate Tx ring 2\n"); goto fail; } error = iwi_alloc_tx_ring(sc, &sc->txq[2], IWI_TX_RING_COUNT, IWI_CSR_TX3_RIDX, IWI_CSR_TX3_WIDX); if (error != 0) { device_printf(dev, "could not allocate Tx ring 3\n"); goto fail; } error = iwi_alloc_tx_ring(sc, &sc->txq[3], IWI_TX_RING_COUNT, IWI_CSR_TX4_RIDX, IWI_CSR_TX4_WIDX); if (error != 0) { device_printf(dev, "could not allocate Tx ring 4\n"); goto fail; } if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) { device_printf(dev, "could not allocate Rx ring\n"); goto fail; } ifp = sc->sc_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "can not if_alloc()\n"); goto fail; return (ENOSPC); } ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = iwi_init; ifp->if_ioctl = iwi_ioctl; ifp->if_start = iwi_start; ifp->if_watchdog = iwi_watchdog; IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; IFQ_SET_READY(&ifp->if_snd); ic->ic_ifp = ifp; ic->ic_wme.wme_update = iwi_wme_update; ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ ic->ic_state = IEEE80211_S_INIT; /* set device capabilities */ ic->ic_caps = IEEE80211_C_MONITOR | /* monitor mode supported */ IEEE80211_C_TXPMGT | /* tx power management */ IEEE80211_C_SHPREAMBLE | /* short preamble supported */ IEEE80211_C_WPA | /* 802.11i */ IEEE80211_C_WME; /* 802.11e */ /* read MAC address from EEPROM */ val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0); ic->ic_myaddr[0] = val >> 8; ic->ic_myaddr[1] = val & 0xff; val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1); ic->ic_myaddr[2] = val >> 8; ic->ic_myaddr[3] = val & 0xff; val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2); ic->ic_myaddr[4] = val >> 8; ic->ic_myaddr[5] = val & 0xff; #if 0 if (pci_get_device(dev) >= 0x4223) { /* set supported .11a rates (2915ABG only) */ ic->ic_sup_rates[IEEE80211_MODE_11A] = iwi_rateset_11a; /* set supported .11a channels */ for (i = 36; i <= 64; i += 4) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; } for (i = 149; i <= 165; i += 4) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; } } #endif /* set supported .11b and .11g rates */ ic->ic_sup_rates[IEEE80211_MODE_11B] = iwi_rateset_11b; ic->ic_sup_rates[IEEE80211_MODE_11G] = iwi_rateset_11g; /* set supported .11b and .11g channels (1 through 14) */ for (i = 1; i <= 14; i++) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; } ieee80211_ifattach(ic); /* override state transition machine */ sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = iwi_newstate; ieee80211_media_init(ic, iwi_media_change, iwi_media_status); bpfattach2(ifp, DLT_IEEE802_11_RADIO, sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf); sc->sc_rxtap_len = sizeof sc->sc_rxtapu; sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_present = htole32(IWI_RX_RADIOTAP_PRESENT); sc->sc_txtap_len = sizeof sc->sc_txtapu; sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_present = htole32(IWI_TX_RADIOTAP_PRESENT); /* * Add a few sysctl knobs. */ sc->dwelltime = 100; sc->bluetooth = 1; sc->antenna = 0; SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "radio", CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I", "radio transmitter switch state (0=off, 1=on)"); SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "stats", CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S", "statistics"); SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "dwell", CTLFLAG_RW, &sc->dwelltime, 0, "channel dwell time (ms) for AP/station scanning"); SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "bluetooth", CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence"); SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "antenna", CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)"); /* * Hook our interrupt after all initialization is complete. */ error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, iwi_intr, sc, &sc->sc_ih); if (error != 0) { device_printf(dev, "could not set up interrupt\n"); goto fail; } if (bootverbose) ieee80211_announce(ic); return 0; fail: iwi_detach(dev); return ENXIO; } static int iwi_detach(device_t dev) { struct iwi_softc *sc = device_get_softc(dev); struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = ic->ic_ifp; iwi_stop(sc); iwi_free_firmware(sc); if (ifp != NULL) bpfdetach(ifp); ieee80211_ifdetach(ic); if (ifp != NULL) if_free(ifp); iwi_free_cmd_ring(sc, &sc->cmdq); iwi_free_tx_ring(sc, &sc->txq[0]); iwi_free_tx_ring(sc, &sc->txq[1]); iwi_free_tx_ring(sc, &sc->txq[2]); iwi_free_tx_ring(sc, &sc->txq[3]); iwi_free_rx_ring(sc, &sc->rxq); if (sc->irq != NULL) { bus_teardown_intr(dev, sc->irq, sc->sc_ih); bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); } if (sc->mem != NULL) bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); mtx_destroy(&sc->sc_mtx); return 0; } static void iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) { if (error != 0) return; KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); *(bus_addr_t *)arg = segs[0].ds_addr; } static int iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count) { int error; ring->count = count; ring->queued = 0; ring->cur = ring->next = 0; error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create desc DMA tag\n"); goto fail; } error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); if (error != 0) { device_printf(sc->sc_dev, "could not allocate DMA memory\n"); goto fail; } error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not load desc DMA map\n"); goto fail; } return 0; fail: iwi_free_cmd_ring(sc, ring); return error; } static void iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) { ring->queued = 0; ring->cur = ring->next = 0; } static void iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) { if (ring->desc != NULL) { bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->desc_dmat, ring->desc_map); bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); } if (ring->desc_dmat != NULL) bus_dma_tag_destroy(ring->desc_dmat); } static int iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count, bus_addr_t csr_ridx, bus_addr_t csr_widx) { int i, error; ring->count = count; ring->queued = 0; ring->cur = ring->next = 0; ring->csr_ridx = csr_ridx; ring->csr_widx = csr_widx; error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, count * IWI_TX_DESC_SIZE, 1, count * IWI_TX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create desc DMA tag\n"); goto fail; } error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); if (error != 0) { device_printf(sc->sc_dev, "could not allocate DMA memory\n"); goto fail; } error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not load desc DMA map\n"); goto fail; } ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF, M_NOWAIT | M_ZERO); if (ring->data == NULL) { device_printf(sc->sc_dev, "could not allocate soft data\n"); error = ENOMEM; goto fail; } error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create data DMA tag\n"); goto fail; } for (i = 0; i < count; i++) { error = bus_dmamap_create(ring->data_dmat, 0, &ring->data[i].map); if (error != 0) { device_printf(sc->sc_dev, "could not create DMA map\n"); goto fail; } } return 0; fail: iwi_free_tx_ring(sc, ring); return error; } static void iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) { struct iwi_tx_data *data; int i; for (i = 0; i < ring->count; i++) { data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); data->m = NULL; } if (data->ni != NULL) { ieee80211_free_node(data->ni); data->ni = NULL; } } ring->queued = 0; ring->cur = ring->next = 0; } static void iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) { struct iwi_tx_data *data; int i; if (ring->desc != NULL) { bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->desc_dmat, ring->desc_map); bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); } if (ring->desc_dmat != NULL) bus_dma_tag_destroy(ring->desc_dmat); if (ring->data != NULL) { for (i = 0; i < ring->count; i++) { data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); } if (data->ni != NULL) ieee80211_free_node(data->ni); if (data->map != NULL) bus_dmamap_destroy(ring->data_dmat, data->map); } free(ring->data, M_DEVBUF); } if (ring->data_dmat != NULL) bus_dma_tag_destroy(ring->data_dmat); } static int iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count) { struct iwi_rx_data *data; int i, error; ring->count = count; ring->cur = 0; ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF, M_NOWAIT | M_ZERO); if (ring->data == NULL) { device_printf(sc->sc_dev, "could not allocate soft data\n"); error = ENOMEM; goto fail; } error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create data DMA tag\n"); goto fail; } for (i = 0; i < count; i++) { data = &ring->data[i]; error = bus_dmamap_create(ring->data_dmat, 0, &data->map); if (error != 0) { device_printf(sc->sc_dev, "could not create DMA map\n"); goto fail; } data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (data->m == NULL) { device_printf(sc->sc_dev, "could not allocate rx mbuf\n"); error = ENOMEM; goto fail; } error = bus_dmamap_load(ring->data_dmat, data->map, mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not load rx buf DMA map"); goto fail; } data->reg = IWI_CSR_RX_BASE + i * 4; } return 0; fail: iwi_free_rx_ring(sc, ring); return error; } static void iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) { ring->cur = 0; } static void iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) { struct iwi_rx_data *data; int i; if (ring->data != NULL) { for (i = 0; i < ring->count; i++) { data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); } if (data->map != NULL) bus_dmamap_destroy(ring->data_dmat, data->map); } free(ring->data, M_DEVBUF); } if (ring->data_dmat != NULL) bus_dma_tag_destroy(ring->data_dmat); } static int iwi_shutdown(device_t dev) { struct iwi_softc *sc = device_get_softc(dev); iwi_stop(sc); return 0; } static int iwi_suspend(device_t dev) { struct iwi_softc *sc = device_get_softc(dev); iwi_stop(sc); return 0; } static int iwi_resume(device_t dev) { struct iwi_softc *sc = device_get_softc(dev); struct ifnet *ifp = sc->sc_ic.ic_ifp; IWI_LOCK(sc); pci_write_config(dev, 0x41, 0, 1); if (ifp->if_flags & IFF_UP) { ifp->if_init(ifp->if_softc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) ifp->if_start(ifp); } IWI_UNLOCK(sc); return 0; } static int iwi_media_change(struct ifnet *ifp) { struct iwi_softc *sc = ifp->if_softc; int error; IWI_LOCK(sc); error = ieee80211_media_change(ifp); if (error != ENETRESET) { IWI_UNLOCK(sc); return error; } if ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) iwi_init(sc); IWI_UNLOCK(sc); return 0; } /* * The firmware automaticly adapt the transmit speed. We report the current * transmit speed here. */ static void iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr) { struct iwi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; #define N(a) (sizeof (a) / sizeof (a[0])) static const struct { uint32_t val; int rate; } rates[] = { { IWI_RATE_DS1, 2 }, { IWI_RATE_DS2, 4 }, { IWI_RATE_DS5, 11 }, { IWI_RATE_DS11, 22 }, { IWI_RATE_OFDM6, 12 }, { IWI_RATE_OFDM9, 18 }, { IWI_RATE_OFDM12, 24 }, { IWI_RATE_OFDM18, 36 }, { IWI_RATE_OFDM24, 48 }, { IWI_RATE_OFDM36, 72 }, { IWI_RATE_OFDM48, 96 }, { IWI_RATE_OFDM54, 108 }, }; uint32_t val; int rate, i; imr->ifm_status = IFM_AVALID; imr->ifm_active = IFM_IEEE80211; if (ic->ic_state == IEEE80211_S_RUN) imr->ifm_status |= IFM_ACTIVE; /* read current transmission rate from adapter */ val = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE); /* convert rate to 802.11 rate */ for (i = 0; i < N(rates) && rates[i].val != val; i++); rate = (i < N(rates)) ? rates[i].rate : 0; imr->ifm_active |= ieee80211_rate2media(ic, rate, ic->ic_curmode); switch (ic->ic_opmode) { case IEEE80211_M_STA: break; case IEEE80211_M_IBSS: imr->ifm_active |= IFM_IEEE80211_ADHOC; break; case IEEE80211_M_MONITOR: imr->ifm_active |= IFM_IEEE80211_MONITOR; break; case IEEE80211_M_AHDEMO: case IEEE80211_M_HOSTAP: /* should not get there */ break; } #undef N } static int iwi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct ifnet *ifp = ic->ic_ifp; struct iwi_softc *sc = ifp->if_softc; switch (nstate) { case IEEE80211_S_SCAN: if (sc->flags & IWI_FLAG_SCANNING) break; ieee80211_node_table_reset(&ic->ic_scan); ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN; sc->flags |= IWI_FLAG_SCANNING; iwi_scan(sc); break; case IEEE80211_S_AUTH: iwi_auth_and_assoc(sc); break; case IEEE80211_S_RUN: if (ic->ic_opmode == IEEE80211_M_IBSS) ieee80211_new_state(ic, IEEE80211_S_AUTH, -1); else if (ic->ic_opmode == IEEE80211_M_MONITOR) iwi_set_chan(sc, ic->ic_ibss_chan); return sc->sc_newstate(ic, nstate, IEEE80211_FC0_SUBTYPE_ASSOC_RESP); case IEEE80211_S_ASSOC: break; case IEEE80211_S_INIT: sc->flags &= ~IWI_FLAG_SCANNING; break; } ic->ic_state = nstate; return 0; } /* * WME parameters coming from IEEE 802.11e specification. These values are * already declared in ieee80211_proto.c, but they are static so they can't * be reused here. */ static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = { { 0, 3, 5, 7, 0 }, /* WME_AC_BE */ { 0, 3, 5, 10, 0 }, /* WME_AC_BK */ { 0, 2, 4, 5, 188 }, /* WME_AC_VI */ { 0, 2, 3, 4, 102 } /* WME_AC_VO */ }; static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = { { 0, 3, 4, 6, 0 }, /* WME_AC_BE */ { 0, 3, 4, 10, 0 }, /* WME_AC_BK */ { 0, 2, 3, 4, 94 }, /* WME_AC_VI */ { 0, 2, 2, 3, 47 } /* WME_AC_VO */ }; static int iwi_wme_update(struct ieee80211com *ic) { #define IWI_EXP2(v) htole16((1 << (v)) - 1) #define IWI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) struct iwi_softc *sc = ic->ic_ifp->if_softc; struct iwi_wme_params wme[3]; const struct wmeParams *wmep; int ac; /* * We shall not override firmware default WME values if WME is not * actually enabled. */ if (!(ic->ic_flags & IEEE80211_F_WME)) return 0; for (ac = 0; ac < WME_NUM_AC; ac++) { /* set WME values for current operating mode */ wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; wme[0].aifsn[ac] = wmep->wmep_aifsn; wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); wme[0].acm[ac] = wmep->wmep_acm; /* set WME values for CCK modulation */ wmep = &iwi_wme_cck_params[ac]; wme[1].aifsn[ac] = wmep->wmep_aifsn; wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); wme[1].acm[ac] = wmep->wmep_acm; /* set WME values for OFDM modulation */ wmep = &iwi_wme_ofdm_params[ac]; wme[2].aifsn[ac] = wmep->wmep_aifsn; wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); wme[2].acm[ac] = wmep->wmep_acm; } DPRINTF(("Setting WME parameters\n")); return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, wme, sizeof wme, 1); #undef IWI_USEC #undef IWI_EXP2 } /* * Read 16 bits at address 'addr' from the serial EEPROM. */ static uint16_t iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr) { uint32_t tmp; uint16_t val; int n; /* clock C once before the first command */ IWI_EEPROM_CTL(sc, 0); IWI_EEPROM_CTL(sc, IWI_EEPROM_S); IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); IWI_EEPROM_CTL(sc, IWI_EEPROM_S); /* write start bit (1) */ IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); /* write READ opcode (10) */ IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); IWI_EEPROM_CTL(sc, IWI_EEPROM_S); IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); /* write address A7-A0 */ for (n = 7; n >= 0; n--) { IWI_EEPROM_CTL(sc, IWI_EEPROM_S | (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D)); IWI_EEPROM_CTL(sc, IWI_EEPROM_S | (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C); } IWI_EEPROM_CTL(sc, IWI_EEPROM_S); /* read data Q15-Q0 */ val = 0; for (n = 15; n >= 0; n--) { IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); IWI_EEPROM_CTL(sc, IWI_EEPROM_S); tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL); val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n; } IWI_EEPROM_CTL(sc, 0); /* clear Chip Select and clock C */ IWI_EEPROM_CTL(sc, IWI_EEPROM_S); IWI_EEPROM_CTL(sc, 0); IWI_EEPROM_CTL(sc, IWI_EEPROM_C); return be16toh(val); } /* * XXX: Hack to set the current channel to the value advertised in beacons or * probe responses. Only used during AP detection. */ static void iwi_fix_channel(struct ieee80211com *ic, struct mbuf *m) { struct ieee80211_frame *wh; uint8_t subtype; uint8_t *frm, *efrm; wh = mtod(m, struct ieee80211_frame *); if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT) return; subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; if (subtype != IEEE80211_FC0_SUBTYPE_BEACON && subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP) return; frm = (uint8_t *)(wh + 1); efrm = mtod(m, uint8_t *) + m->m_len; frm += 12; /* skip tstamp, bintval and capinfo fields */ while (frm < efrm) { if (*frm == IEEE80211_ELEMID_DSPARMS) #if IEEE80211_CHAN_MAX < 255 if (frm[2] <= IEEE80211_CHAN_MAX) #endif ic->ic_curchan = &ic->ic_channels[frm[2]]; frm += frm[1] + 2; } } static void iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i, struct iwi_frame *frame) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = ic->ic_ifp; struct mbuf *m; struct ieee80211_frame *wh; struct ieee80211_node *ni; int error; DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u\n", le16toh(frame->len), frame->chan, frame->rssi_dbm)); if (le16toh(frame->len) < sizeof (struct ieee80211_frame)) return; bus_dmamap_unload(sc->rxq.data_dmat, data->map); /* finalize mbuf */ m = data->m; m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) + sizeof (struct iwi_frame) + le16toh(frame->len); m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame)); if (ic->ic_state == IEEE80211_S_SCAN) iwi_fix_channel(ic, m); if (sc->sc_drvbpf != NULL) { struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; tap->wr_rate = frame->rate; tap->wr_chan_freq = htole16(ic->ic_channels[frame->chan].ic_freq); tap->wr_chan_flags = htole16(ic->ic_channels[frame->chan].ic_flags); tap->wr_antsignal = frame->signal; tap->wr_antenna = frame->antenna; bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); } wh = mtod(m, struct ieee80211_frame *); ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); /* send the frame to the 802.11 layer */ ieee80211_input(ic, m, ni, frame->rssi_dbm, 0); /* node is no longer needed */ ieee80211_free_node(ni); data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (data->m == NULL) { device_printf(sc->sc_dev, "could not allocate rx mbuf\n"); return; } error = bus_dmamap_load(sc->rxq.data_dmat, data->map, mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not load rx buf DMA map\n"); m_freem(data->m); data->m = NULL; return; } CSR_WRITE_4(sc, data->reg, data->physaddr); } static void iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif) { struct ieee80211com *ic = &sc->sc_ic; struct iwi_notif_scan_channel *chan; struct iwi_notif_scan_complete *scan; struct iwi_notif_authentication *auth; struct iwi_notif_association *assoc; switch (notif->type) { case IWI_NOTIF_TYPE_SCAN_CHANNEL: chan = (struct iwi_notif_scan_channel *)(notif + 1); DPRINTFN(2, ("Scanning channel (%u)\n", chan->nchan)); break; case IWI_NOTIF_TYPE_SCAN_COMPLETE: scan = (struct iwi_notif_scan_complete *)(notif + 1); DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan, scan->status)); /* monitor mode uses scan to set the channel ... */ if (ic->ic_opmode != IEEE80211_M_MONITOR) { sc->flags &= ~IWI_FLAG_SCANNING; ieee80211_end_scan(ic); } else iwi_set_chan(sc, ic->ic_ibss_chan); break; case IWI_NOTIF_TYPE_AUTHENTICATION: auth = (struct iwi_notif_authentication *)(notif + 1); DPRINTFN(2, ("Authentication (%u)\n", auth->state)); switch (auth->state) { case IWI_AUTHENTICATED: ieee80211_node_authorize(ic->ic_bss); ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1); break; case IWI_DEAUTHENTICATED: break; default: device_printf(sc->sc_dev, "unknown authentication state %u\n", auth->state); } break; case IWI_NOTIF_TYPE_ASSOCIATION: assoc = (struct iwi_notif_association *)(notif + 1); DPRINTFN(2, ("Association (%u, %u)\n", assoc->state, assoc->status)); switch (assoc->state) { case IWI_AUTHENTICATED: /* re-association, do nothing */ break; case IWI_ASSOCIATED: ieee80211_new_state(ic, IEEE80211_S_RUN, -1); break; case IWI_DEASSOCIATED: ieee80211_begin_scan(ic, 1); break; default: device_printf(sc->sc_dev, "unknown association state %u\n", assoc->state); } break; case IWI_NOTIF_TYPE_CALIBRATION: case IWI_NOTIF_TYPE_BEACON: case IWI_NOTIF_TYPE_NOISE: DPRINTFN(5, ("Notification (%u)\n", notif->type)); break; default: device_printf(sc->sc_dev, "unknown notification type %u\n", notif->type); } } static void iwi_rx_intr(struct iwi_softc *sc) { struct iwi_rx_data *data; struct iwi_hdr *hdr; uint32_t hw; hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX); for (; sc->rxq.cur != hw;) { data = &sc->rxq.data[sc->rxq.cur]; bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); hdr = mtod(data->m, struct iwi_hdr *); switch (hdr->type) { case IWI_HDR_TYPE_FRAME: iwi_frame_intr(sc, data, sc->rxq.cur, (struct iwi_frame *)(hdr + 1)); break; case IWI_HDR_TYPE_NOTIF: iwi_notification_intr(sc, (struct iwi_notif *)(hdr + 1)); break; default: device_printf(sc->sc_dev, "unknown hdr type %u\n", hdr->type); } DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur)); sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT; } /* tell the firmware what we have processed */ hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1; CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw); } static void iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = ic->ic_ifp; struct iwi_tx_data *data; uint32_t hw; hw = CSR_READ_4(sc, txq->csr_ridx); for (; txq->next != hw;) { data = &txq->data[txq->next]; bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(txq->data_dmat, data->map); m_freem(data->m); data->m = NULL; ieee80211_free_node(data->ni); data->ni = NULL; DPRINTFN(15, ("tx done idx=%u\n", txq->next)); ifp->if_opackets++; txq->queued--; txq->next = (txq->next + 1) % IWI_TX_RING_COUNT; } sc->sc_tx_timer = 0; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; iwi_start(ifp); } static void iwi_intr(void *arg) { struct iwi_softc *sc = arg; uint32_t r; IWI_LOCK(sc); if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) { IWI_UNLOCK(sc); return; } /* disable interrupts */ CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0); if (r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR)) { device_printf(sc->sc_dev, "fatal error\n"); sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP; iwi_stop(sc); } if (r & IWI_INTR_FW_INITED) { if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR))) wakeup(sc); } if (r & IWI_INTR_RADIO_OFF) { DPRINTF(("radio transmitter turned off\n")); sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP; iwi_stop(sc); } if (r & IWI_INTR_CMD_DONE) wakeup(sc); if (r & IWI_INTR_TX1_DONE) iwi_tx_intr(sc, &sc->txq[0]); if (r & IWI_INTR_TX2_DONE) iwi_tx_intr(sc, &sc->txq[1]); if (r & IWI_INTR_TX3_DONE) iwi_tx_intr(sc, &sc->txq[2]); if (r & IWI_INTR_TX4_DONE) iwi_tx_intr(sc, &sc->txq[3]); if (r & IWI_INTR_RX_DONE) iwi_rx_intr(sc); /* acknowledge interrupts */ CSR_WRITE_4(sc, IWI_CSR_INTR, r); /* re-enable interrupts */ CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK); IWI_UNLOCK(sc); } static int iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len, int async) { struct iwi_cmd_desc *desc; desc = &sc->cmdq.desc[sc->cmdq.cur]; desc->hdr.type = IWI_HDR_TYPE_COMMAND; desc->hdr.flags = IWI_HDR_FLAG_IRQ; desc->type = type; desc->len = len; memcpy(desc->data, data, len); bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map, BUS_DMASYNC_PREWRITE); DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur, type, len)); sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT; CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); return async ? 0 : msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz); } static int iwi_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni) { struct iwi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_frame *wh; struct ieee80211_key *k; const struct chanAccParams *cap; struct iwi_tx_ring *txq; struct iwi_tx_data *data; struct iwi_tx_desc *desc; struct mbuf *mnew; bus_dma_segment_t segs[IWI_MAX_NSEG]; int error, nsegs, hdrlen, ac, i, noack = 0; wh = mtod(m0, struct ieee80211_frame *); if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) { hdrlen = sizeof (struct ieee80211_qosframe); ac = M_WME_GETAC(m0); cap = &ic->ic_wme.wme_chanParams; noack = cap->cap_wmeParams[ac].wmep_noackPolicy; } else { hdrlen = sizeof (struct ieee80211_frame); ac = WME_AC_BE; } txq = &sc->txq[ac]; if (txq->queued >= IWI_TX_RING_COUNT - 4) { /* * There is no place left in this ring. Perhaps in 802.11e, * we should try to fallback to a lowest priority ring? */ ifp->if_drv_flags |= IFF_DRV_OACTIVE; m_freem(m0); return 0; } if (wh->i_fc[1] & IEEE80211_FC1_WEP) { k = ieee80211_crypto_encap(ic, ni, m0); if (k == NULL) { m_freem(m0); return ENOBUFS; } /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } if (sc->sc_drvbpf != NULL) { struct iwi_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags); bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); } data = &txq->data[txq->cur]; desc = &txq->desc[txq->cur]; /* save and trim IEEE802.11 header */ m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh); m_adj(m0, hdrlen); error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs, &nsegs, 0); if (error != 0 && error != EFBIG) { device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m0); return error; } if (error != 0) { mnew = m_defrag(m0, M_DONTWAIT); if (mnew == NULL) { device_printf(sc->sc_dev, "could not defragment mbuf\n"); m_freem(m0); return ENOBUFS; } m0 = mnew; error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs, &nsegs, 0); if (error != 0) { device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m0); return error; } } data->m = m0; data->ni = ni; desc->hdr.type = IWI_HDR_TYPE_DATA; desc->hdr.flags = IWI_HDR_FLAG_IRQ; desc->cmd = IWI_DATA_CMD_TX; desc->len = htole16(m0->m_pkthdr.len); desc->flags = 0; desc->xflags = 0; if (!noack && !IEEE80211_IS_MULTICAST(desc->wh.i_addr1)) desc->flags |= IWI_DATA_FLAG_NEED_ACK; #if 0 if (ic->ic_flags & IEEE80211_F_PRIVACY) { desc->wh.i_fc[1] |= IEEE80211_FC1_WEP; desc->wep_txkey = ic->ic_crypto.cs_def_txkey; } else #endif desc->flags |= IWI_DATA_FLAG_NO_WEP; if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) desc->flags |= IWI_DATA_FLAG_SHPREAMBLE; if (desc->wh.i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) desc->xflags |= IWI_DATA_XFLAG_QOS; desc->nseg = htole32(nsegs); for (i = 0; i < nsegs; i++) { desc->seg_addr[i] = htole32(segs[i].ds_addr); desc->seg_len[i] = htole32(segs[i].ds_len); } bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE); DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n", ac, txq->cur, desc->len, desc->nseg)); txq->queued++; txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT; CSR_WRITE_4(sc, txq->csr_widx, txq->cur); return 0; } static void iwi_start(struct ifnet *ifp) { struct iwi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct mbuf *m0; struct ether_header *eh; struct ieee80211_node *ni; IWI_LOCK(sc); if (ic->ic_state != IEEE80211_S_RUN) { IWI_UNLOCK(sc); return; } for (;;) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m0); if (m0 == NULL) break; if (m0->m_len < sizeof (struct ether_header) && (m0 = m_pullup(m0, sizeof (struct ether_header))) == NULL) continue; eh = mtod(m0, struct ether_header *); ni = ieee80211_find_txnode(ic, eh->ether_dhost); if (ni == NULL) { m_freem(m0); continue; } if (ieee80211_classify(ic, m0, ni) != 0) { m_freem(m0); continue; } BPF_MTAP(ifp, m0); m0 = ieee80211_encap(ic, m0, ni); if (m0 == NULL) { ieee80211_free_node(ni); continue; } if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m0); if (iwi_tx_start(ifp, m0, ni) != 0) { ieee80211_free_node(ni); ifp->if_oerrors++; break; } sc->sc_tx_timer = 5; ifp->if_timer = 1; } IWI_UNLOCK(sc); } static void iwi_watchdog(struct ifnet *ifp) { struct iwi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; IWI_LOCK(sc); ifp->if_timer = 0; if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { if_printf(ifp, "device timeout\n"); ifp->if_oerrors++; ifp->if_flags &= ~IFF_UP; iwi_stop(sc); IWI_UNLOCK(sc); return; } ifp->if_timer = 1; } ieee80211_watchdog(ic); IWI_UNLOCK(sc); } static int iwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct iwi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ifreq *ifr; int error = 0; IWI_LOCK(sc); switch (cmd) { case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) iwi_init(sc); } else { if (ifp->if_drv_flags & IFF_DRV_RUNNING) iwi_stop(sc); } break; case SIOCSLOADFW: /* only super-user can do that! */ if ((error = suser(curthread)) != 0) break; ifr = (struct ifreq *)data; error = iwi_cache_firmware(sc, ifr->ifr_data); break; case SIOCSKILLFW: /* only super-user can do that! */ if ((error = suser(curthread)) != 0) break; ifp->if_flags &= ~IFF_UP; iwi_stop(sc); iwi_free_firmware(sc); break; default: error = ieee80211_ioctl(ic, cmd, data); } if (error == ENETRESET) { if ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING) && (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)) iwi_init(sc); error = 0; } IWI_UNLOCK(sc); return error; } static void iwi_stop_master(struct iwi_softc *sc) { uint32_t tmp; int ntries; /* disable interrupts */ CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0); CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER); for (ntries = 0; ntries < 5; ntries++) { if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) break; DELAY(10); } if (ntries == 5) device_printf(sc->sc_dev, "timeout waiting for master\n"); tmp = CSR_READ_4(sc, IWI_CSR_RST); CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET); sc->flags &= ~IWI_FLAG_FW_INITED; } static int iwi_reset(struct iwi_softc *sc) { uint32_t tmp; int i, ntries; iwi_stop_master(sc); tmp = CSR_READ_4(sc, IWI_CSR_CTL); CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST); /* wait for clock stabilization */ for (ntries = 0; ntries < 1000; ntries++) { if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY) break; DELAY(200); } if (ntries == 1000) { device_printf(sc->sc_dev, "timeout waiting for clock stabilization\n"); return EIO; } tmp = CSR_READ_4(sc, IWI_CSR_RST); CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET); DELAY(10); tmp = CSR_READ_4(sc, IWI_CSR_CTL); CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); /* clear NIC memory */ CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0); for (i = 0; i < 0xc000; i++) CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); return 0; } static int iwi_load_ucode(struct iwi_softc *sc, void *uc, int size) { uint32_t tmp; uint16_t *w; int ntries, i; CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) | IWI_RST_STOP_MASTER); for (ntries = 0; ntries < 5; ntries++) { if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) break; DELAY(10); } if (ntries == 5) { device_printf(sc->sc_dev, "timeout waiting for master\n"); return EIO; } MEM_WRITE_4(sc, 0x3000e0, 0x80000000); DELAY(5000); tmp = CSR_READ_4(sc, IWI_CSR_RST); tmp &= ~IWI_RST_PRINCETON_RESET; CSR_WRITE_4(sc, IWI_CSR_RST, tmp); DELAY(5000); MEM_WRITE_4(sc, 0x3000e0, 0); DELAY(1000); MEM_WRITE_4(sc, 0x300004, 1); DELAY(1000); MEM_WRITE_4(sc, 0x300004, 0); DELAY(1000); MEM_WRITE_1(sc, 0x200000, 0x00); MEM_WRITE_1(sc, 0x200000, 0x40); DELAY(1000); /* write microcode into adapter memory */ for (w = uc; size > 0; w++, size -= 2) MEM_WRITE_2(sc, 0x200010, *w); MEM_WRITE_1(sc, 0x200000, 0x00); MEM_WRITE_1(sc, 0x200000, 0x80); /* wait until we get an answer */ for (ntries = 0; ntries < 100; ntries++) { if (MEM_READ_1(sc, 0x200000) & 1) break; DELAY(100); } if (ntries == 100) { device_printf(sc->sc_dev, "timeout waiting for ucode to initialize\n"); return EIO; } /* read the answer or the firmware will not initialize properly */ for (i = 0; i < 7; i++) MEM_READ_4(sc, 0x200004); MEM_WRITE_1(sc, 0x200000, 0x00); return 0; } /* macro to handle unaligned little endian data in firmware image */ #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) static int iwi_load_firmware(struct iwi_softc *sc, void *fw, int size) { bus_dma_tag_t dmat; bus_dmamap_t map; bus_addr_t physaddr; void *virtaddr; u_char *p, *end; uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp; int ntries, error = 0; /* allocate DMA memory for mapping firmware image */ error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size, 1, size, 0, NULL, NULL, &dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create firmware DMA tag\n"); goto fail1; } error = bus_dmamem_alloc(dmat, &virtaddr, BUS_DMA_NOWAIT, &map); if (error != 0) { device_printf(sc->sc_dev, "could not allocate firmware DMA memory\n"); goto fail2; } error = bus_dmamap_load(dmat, map, virtaddr, size, iwi_dma_map_addr, &physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not load firmware DMA map\n"); goto fail3; } /* copy firmware image to DMA memory */ memcpy(virtaddr, fw, size); /* make sure the adapter will get up-to-date values */ bus_dmamap_sync(dmat, map, BUS_DMASYNC_PREWRITE); /* tell the adapter where the command blocks are stored */ MEM_WRITE_4(sc, 0x3000a0, 0x27000); /* * Store command blocks into adapter's internal memory using register * indirections. The adapter will read the firmware image through DMA * using information stored in command blocks. */ src = physaddr; p = virtaddr; end = p + size; CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000); while (p < end) { dst = GETLE32(p); p += 4; src += 4; len = GETLE32(p); p += 4; src += 4; p += len; while (len > 0) { mlen = min(len, IWI_CB_MAXDATALEN); ctl = IWI_CB_DEFAULT_CTL | mlen; sum = ctl ^ src ^ dst; /* write a command block */ CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl); CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src); CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst); CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum); src += mlen; dst += mlen; len -= mlen; } } /* write a fictive final command block (sentinel) */ sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR); CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); tmp = CSR_READ_4(sc, IWI_CSR_RST); tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER); CSR_WRITE_4(sc, IWI_CSR_RST, tmp); /* tell the adapter to start processing command blocks */ MEM_WRITE_4(sc, 0x3000a4, 0x540100); /* wait until the adapter reach the sentinel */ for (ntries = 0; ntries < 400; ntries++) { if (MEM_READ_4(sc, 0x3000d0) >= sentinel) break; DELAY(100); } if (ntries == 400) { device_printf(sc->sc_dev, "timeout processing command blocks\n"); error = EIO; goto fail4; } /* we're done with command blocks processing */ MEM_WRITE_4(sc, 0x3000a4, 0x540c00); /* allow interrupts so we know when the firmware is inited */ CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK); /* tell the adapter to initialize the firmware */ CSR_WRITE_4(sc, IWI_CSR_RST, 0); tmp = CSR_READ_4(sc, IWI_CSR_CTL); CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY); /* wait at most one second for firmware initialization to complete */ if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) { device_printf(sc->sc_dev, "timeout waiting for firmware " "initialization to complete\n"); goto fail4; } fail4: bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(dmat, map); fail3: bus_dmamem_free(dmat, virtaddr, map); fail2: bus_dma_tag_destroy(dmat); fail1: return error; } /* * Store firmware into kernel memory so we can download it when we need to, * e.g when the adapter wakes up from suspend mode. */ static int iwi_cache_firmware(struct iwi_softc *sc, void *data) { struct iwi_firmware *kfw = &sc->fw; struct iwi_firmware ufw; int error; iwi_free_firmware(sc); IWI_UNLOCK(sc); if ((error = copyin(data, &ufw, sizeof ufw)) != 0) goto fail1; kfw->boot_size = ufw.boot_size; kfw->ucode_size = ufw.ucode_size; kfw->main_size = ufw.main_size; kfw->boot = malloc(kfw->boot_size, M_DEVBUF, M_NOWAIT); if (kfw->boot == NULL) { error = ENOMEM; goto fail1; } kfw->ucode = malloc(kfw->ucode_size, M_DEVBUF, M_NOWAIT); if (kfw->ucode == NULL) { error = ENOMEM; goto fail2; } kfw->main = malloc(kfw->main_size, M_DEVBUF, M_NOWAIT); if (kfw->main == NULL) { error = ENOMEM; goto fail3; } if ((error = copyin(ufw.boot, kfw->boot, kfw->boot_size)) != 0) goto fail4; if ((error = copyin(ufw.ucode, kfw->ucode, kfw->ucode_size)) != 0) goto fail4; if ((error = copyin(ufw.main, kfw->main, kfw->main_size)) != 0) goto fail4; DPRINTF(("Firmware cached: boot %u, ucode %u, main %u\n", kfw->boot_size, kfw->ucode_size, kfw->main_size)); IWI_LOCK(sc); sc->flags |= IWI_FLAG_FW_CACHED; return 0; fail4: free(kfw->boot, M_DEVBUF); fail3: free(kfw->ucode, M_DEVBUF); fail2: free(kfw->main, M_DEVBUF); fail1: IWI_LOCK(sc); return error; } static void iwi_free_firmware(struct iwi_softc *sc) { if (!(sc->flags & IWI_FLAG_FW_CACHED)) return; free(sc->fw.boot, M_DEVBUF); free(sc->fw.ucode, M_DEVBUF); free(sc->fw.main, M_DEVBUF); sc->flags &= ~IWI_FLAG_FW_CACHED; } static int iwi_config(struct iwi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = ic->ic_ifp; struct iwi_configuration config; struct iwi_rateset rs; struct iwi_txpower power; struct ieee80211_key *wk; struct iwi_wep_key wepkey; uint32_t data; int error, i; IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp)); DPRINTF(("Setting MAC address to %6D\n", ic->ic_myaddr, ":")); error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, ic->ic_myaddr, IEEE80211_ADDR_LEN, 0); if (error != 0) return error; memset(&config, 0, sizeof config); config.bluetooth_coexistence = sc->bluetooth; config.antenna = sc->antenna; config.multicast_enabled = 1; config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0; config.disable_unicast_decryption = 1; config.disable_multicast_decryption = 1; DPRINTF(("Configuring adapter\n")); error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config, 0); if (error != 0) return error; data = htole32(IWI_POWER_MODE_CAM); DPRINTF(("Setting power mode to %u\n", le32toh(data))); error = iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data, 0); if (error != 0) return error; data = htole32(ic->ic_rtsthreshold); DPRINTF(("Setting RTS threshold to %u\n", le32toh(data))); error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data, 0); if (error != 0) return error; data = htole32(ic->ic_fragthreshold); DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data))); error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data, 0); if (error != 0) return error; if (ic->ic_opmode == IEEE80211_M_IBSS) { power.mode = IWI_MODE_11B; power.nchan = 11; for (i = 0; i < 11; i++) { power.chan[i].chan = i + 1; power.chan[i].power = IWI_TXPOWER_MAX; } DPRINTF(("Setting .11b channels tx power\n")); error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power, 0); if (error != 0) return error; power.mode = IWI_MODE_11G; DPRINTF(("Setting .11g channels tx power\n")); error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power, 0); if (error != 0) return error; } rs.mode = IWI_MODE_11G; rs.type = IWI_RATESET_TYPE_SUPPORTED; rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates; memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates, rs.nrates); DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates)); error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs, 0); if (error != 0) return error; rs.mode = IWI_MODE_11A; rs.type = IWI_RATESET_TYPE_SUPPORTED; rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates; memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates, rs.nrates); DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates)); error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs, 0); if (error != 0) return error; data = htole32(arc4random()); DPRINTF(("Setting initialization vector to %u\n", le32toh(data))); error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data, 0); if (error != 0) return error; for (i = 0; i < IEEE80211_WEP_NKID; i++) { wk = &ic->ic_crypto.cs_nw_keys[i]; wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY; wepkey.idx = i; wepkey.len = wk->wk_keylen; memset(wepkey.key, 0, sizeof wepkey.key); memcpy(wepkey.key, wk->wk_key, wk->wk_keylen); DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx, wepkey.len)); error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey, sizeof wepkey, 0); if (error != 0) return error; } /* enable adapter */ DPRINTF(("Enabling adapter\n")); return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0, 0); } static int iwi_set_chan(struct iwi_softc *sc, struct ieee80211_channel *chan) { struct ieee80211com *ic = &sc->sc_ic; struct iwi_scan scan; memset(&scan, 0, sizeof scan); scan.type = IWI_SCAN_TYPE_PASSIVE; scan.dwelltime = htole16(2000); scan.channels[0] = 1 | (IEEE80211_IS_CHAN_5GHZ(chan) ? IWI_CHAN_5GHZ : IWI_CHAN_2GHZ); scan.channels[1] = ieee80211_chan2ieee(ic, chan); DPRINTF(("Setting channel to %u\n", ieee80211_chan2ieee(ic, chan))); return iwi_cmd(sc, IWI_CMD_SCAN, &scan, sizeof scan, 1); } static int iwi_scan(struct iwi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct iwi_scan scan; uint8_t *p; int i, count; memset(&scan, 0, sizeof scan); scan.type = IWI_SCAN_TYPE_BROADCAST; scan.dwelltime = htole16(sc->dwelltime); p = scan.channels; count = 0; for (i = 0; i <= IEEE80211_CHAN_MAX; i++) { if (IEEE80211_IS_CHAN_5GHZ(&ic->ic_channels[i]) && isset(ic->ic_chan_active, i)) { *++p = i; count++; } } *(p - count) = IWI_CHAN_5GHZ | count; count = 0; for (i = 0; i <= IEEE80211_CHAN_MAX; i++) { if (IEEE80211_IS_CHAN_2GHZ(&ic->ic_channels[i]) && isset(ic->ic_chan_active, i)) { *++p = i; count++; } } *(p - count) = IWI_CHAN_2GHZ | count; DPRINTF(("Start scanning\n")); return iwi_cmd(sc, IWI_CMD_SCAN, &scan, sizeof scan, 1); } static int iwi_auth_and_assoc(struct iwi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = ic->ic_ifp; struct ieee80211_node *ni = ic->ic_bss; struct ieee80211_wme_info wme; struct iwi_configuration config; struct iwi_associate assoc; struct iwi_rateset rs; uint16_t capinfo; uint32_t data; int error; if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { memset(&config, 0, sizeof config); config.bluetooth_coexistence = sc->bluetooth; config.antenna = sc->antenna; config.multicast_enabled = 1; config.use_protection = 1; config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0; config.disable_unicast_decryption = 1; config.disable_multicast_decryption = 1; DPRINTF(("Configuring adapter\n")); error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config, 1); if (error != 0) return error; } #ifdef IWI_DEBUG if (iwi_debug > 0) { printf("Setting ESSID to "); ieee80211_print_essid(ni->ni_essid, ni->ni_esslen); printf("\n"); } #endif error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen, 1); if (error != 0) return error; /* the rate set has already been "negociated" */ rs.mode = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? IWI_MODE_11A : IWI_MODE_11G; rs.type = IWI_RATESET_TYPE_NEGOCIATED; rs.nrates = ni->ni_rates.rs_nrates; memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates); DPRINTF(("Setting negociated rates (%u)\n", rs.nrates)); error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs, 1); if (error != 0) return error; if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) { wme.wme_id = IEEE80211_ELEMID_VENDOR; wme.wme_len = sizeof (struct ieee80211_wme_info) - 2; wme.wme_oui[0] = 0x00; wme.wme_oui[1] = 0x50; wme.wme_oui[2] = 0xf2; wme.wme_type = WME_OUI_TYPE; wme.wme_subtype = WME_INFO_OUI_SUBTYPE; wme.wme_version = WME_VERSION; wme.wme_info = 0; DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len)); error = iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme, 1); if (error != 0) return error; } if (ic->ic_opt_ie != NULL) { DPRINTF(("Setting optional IE (len=%u)\n", ic->ic_opt_ie_len)); error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ic->ic_opt_ie, ic->ic_opt_ie_len, 1); if (error != 0) return error; } data = htole32(ni->ni_rssi); DPRINTF(("Setting sensitivity to %d\n", (int8_t)ni->ni_rssi)); error = iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &data, sizeof data, 1); if (error != 0) return error; memset(&assoc, 0, sizeof assoc); assoc.mode = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? IWI_MODE_11A : IWI_MODE_11G; assoc.chan = ieee80211_chan2ieee(ic, ni->ni_chan); if (ni->ni_authmode == IEEE80211_AUTH_SHARED) assoc.auth = ic->ic_crypto.cs_def_txkey << 4 | IWI_AUTH_SHARED; if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) assoc.policy |= htole16(IWI_POLICY_WME); if (ic->ic_opt_ie != NULL) assoc.policy |= htole16(IWI_POLICY_WPA); memcpy(assoc.tstamp, ni->ni_tstamp.data, 8); if (ic->ic_opmode == IEEE80211_M_IBSS) capinfo = IEEE80211_CAPINFO_IBSS; else capinfo = IEEE80211_CAPINFO_ESS; if (ic->ic_flags & IEEE80211_F_PRIVACY) capinfo |= IEEE80211_CAPINFO_PRIVACY; if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; if (ic->ic_flags & IEEE80211_F_SHSLOT) capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; assoc.capinfo = htole16(capinfo); assoc.lintval = htole16(ic->ic_lintval); assoc.intval = htole16(ni->ni_intval); IEEE80211_ADDR_COPY(assoc.bssid, ni->ni_bssid); if (ic->ic_opmode == IEEE80211_M_IBSS) IEEE80211_ADDR_COPY(assoc.dst, ifp->if_broadcastaddr); else IEEE80211_ADDR_COPY(assoc.dst, ni->ni_bssid); DPRINTF(("Trying to associate to %6D channel %u auth %u\n", assoc.bssid, ":", assoc.chan, assoc.auth)); return iwi_cmd(sc, IWI_CMD_ASSOCIATE, &assoc, sizeof assoc, 1); } static void iwi_init(void *priv) { struct iwi_softc *sc = priv; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = ic->ic_ifp; struct iwi_firmware *fw = &sc->fw; struct iwi_rx_data *data; int i; /* exit immediately if firmware has not been ioctl'd */ if (!(sc->flags & IWI_FLAG_FW_CACHED)) { if (!(sc->flags & IWI_FLAG_FW_WARNED)) device_printf(sc->sc_dev, "Please load firmware\n"); sc->flags |= IWI_FLAG_FW_WARNED; ifp->if_flags &= ~IFF_UP; return; } iwi_stop(sc); if (iwi_reset(sc) != 0) { device_printf(sc->sc_dev, "could not reset adapter\n"); goto fail; } if (iwi_load_firmware(sc, fw->boot, fw->boot_size) != 0) { device_printf(sc->sc_dev, "could not load boot firmware\n"); goto fail; } if (iwi_load_ucode(sc, fw->ucode, fw->ucode_size) != 0) { device_printf(sc->sc_dev, "could not load microcode\n"); goto fail; } iwi_stop_master(sc); CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr); CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count); CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr); CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count); CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur); CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr); CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count); CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur); CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr); CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count); CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur); CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr); CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count); CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur); for (i = 0; i < sc->rxq.count; i++) { data = &sc->rxq.data[i]; CSR_WRITE_4(sc, data->reg, data->physaddr); } CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1); if (iwi_load_firmware(sc, fw->main, fw->main_size) != 0) { device_printf(sc->sc_dev, "could not load main firmware\n"); goto fail; } sc->flags |= IWI_FLAG_FW_INITED; if (iwi_config(sc) != 0) { device_printf(sc->sc_dev, "device configuration failed\n"); goto fail; } if (ic->ic_opmode != IEEE80211_M_MONITOR) { if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); } else ieee80211_new_state(ic, IEEE80211_S_RUN, -1); ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; ifp->if_drv_flags |= IFF_DRV_RUNNING; return; fail: ifp->if_flags &= ~IFF_UP; iwi_stop(sc); } static void iwi_stop(void *priv) { struct iwi_softc *sc = priv; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = ic->ic_ifp; iwi_stop_master(sc); CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET); /* reset rings */ iwi_reset_cmd_ring(sc, &sc->cmdq); iwi_reset_tx_ring(sc, &sc->txq[0]); iwi_reset_tx_ring(sc, &sc->txq[1]); iwi_reset_tx_ring(sc, &sc->txq[2]); iwi_reset_tx_ring(sc, &sc->txq[3]); iwi_reset_rx_ring(sc, &sc->rxq); sc->sc_tx_timer = 0; ifp->if_timer = 0; ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); ieee80211_new_state(ic, IEEE80211_S_INIT, -1); } static int iwi_sysctl_stats(SYSCTL_HANDLER_ARGS) { struct iwi_softc *sc = arg1; uint32_t size, buf[128]; if (!(sc->flags & IWI_FLAG_FW_INITED)) { memset(buf, 0, sizeof buf); return SYSCTL_OUT(req, buf, sizeof buf); } size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1); CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size); return SYSCTL_OUT(req, buf, sizeof buf); } static int iwi_sysctl_radio(SYSCTL_HANDLER_ARGS) { struct iwi_softc *sc = arg1; int val; val = (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) ? 1 : 0; return SYSCTL_OUT(req, &val, sizeof val); }