/*- * Copyright (c) 2002-2004 M. Warner Losh. * Copyright (c) 2000-2001 Jonathan Chen. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ /*- * Copyright (c) 1998, 1999 and 2000 * HAYAKAWA Koichi. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by HAYAKAWA Koichi. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Driver for PCI to CardBus Bridge chips * and PCI to PCMCIA Bridge chips * and ISA to PCMCIA host adapters * and C Bus to PCMCIA host adapters * * References: * TI Datasheets: * http://www-s.ti.com/cgi-bin/sc/generic2.cgi?family=PCI+CARDBUS+CONTROLLERS * * Written by Jonathan Chen * The author would like to acknowledge: * * HAYAKAWA Koichi: Author of the NetBSD code for the same thing * * Warner Losh: Newbus/newcard guru and author of the pccard side of things * * YAMAMOTO Shigeru: Author of another FreeBSD cardbus driver * * David Cross: Author of the initial ugly hack for a specific cardbus card */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "power_if.h" #include "card_if.h" #include "pcib_if.h" #define DPRINTF(x) do { if (cbb_debug) printf x; } while (0) #define DEVPRINTF(x) do { if (cbb_debug) device_printf x; } while (0) #define PCI_MASK_CONFIG(DEV,REG,MASK,SIZE) \ pci_write_config(DEV, REG, pci_read_config(DEV, REG, SIZE) MASK, SIZE) #define PCI_MASK2_CONFIG(DEV,REG,MASK1,MASK2,SIZE) \ pci_write_config(DEV, REG, ( \ pci_read_config(DEV, REG, SIZE) MASK1) MASK2, SIZE) #define CBB_CARD_PRESENT(s) ((s & CBB_STATE_CD) == 0) #define CBB_START_MEM 0x88000000 #define CBB_START_32_IO 0x1000 #define CBB_START_16_IO 0x100 devclass_t cbb_devclass; /* sysctl vars */ SYSCTL_NODE(_hw, OID_AUTO, cbb, CTLFLAG_RD, 0, "CBB parameters"); /* There's no way to say TUNEABLE_LONG to get the right types */ u_long cbb_start_mem = CBB_START_MEM; TUNABLE_INT("hw.cbb.start_memory", (int *)&cbb_start_mem); SYSCTL_ULONG(_hw_cbb, OID_AUTO, start_memory, CTLFLAG_RW, &cbb_start_mem, CBB_START_MEM, "Starting address for memory allocations"); u_long cbb_start_16_io = CBB_START_16_IO; TUNABLE_INT("hw.cbb.start_16_io", (int *)&cbb_start_16_io); SYSCTL_ULONG(_hw_cbb, OID_AUTO, start_16_io, CTLFLAG_RW, &cbb_start_16_io, CBB_START_16_IO, "Starting ioport for 16-bit cards"); u_long cbb_start_32_io = CBB_START_32_IO; TUNABLE_INT("hw.cbb.start_32_io", (int *)&cbb_start_32_io); SYSCTL_ULONG(_hw_cbb, OID_AUTO, start_32_io, CTLFLAG_RW, &cbb_start_32_io, CBB_START_32_IO, "Starting ioport for 32-bit cards"); int cbb_debug = 0; TUNABLE_INT("hw.cbb.debug", &cbb_debug); SYSCTL_ULONG(_hw_cbb, OID_AUTO, debug, CTLFLAG_RW, &cbb_debug, 0, "Verbose cardbus bridge debugging"); static void cbb_insert(struct cbb_softc *sc); static void cbb_removal(struct cbb_softc *sc); static uint32_t cbb_detect_voltage(device_t brdev); static void cbb_cardbus_reset(device_t brdev); static int cbb_cardbus_io_open(device_t brdev, int win, uint32_t start, uint32_t end); static int cbb_cardbus_mem_open(device_t brdev, int win, uint32_t start, uint32_t end); static void cbb_cardbus_auto_open(struct cbb_softc *sc, int type); static int cbb_cardbus_activate_resource(device_t brdev, device_t child, int type, int rid, struct resource *res); static int cbb_cardbus_deactivate_resource(device_t brdev, device_t child, int type, int rid, struct resource *res); static struct resource *cbb_cardbus_alloc_resource(device_t brdev, device_t child, int type, int *rid, u_long start, u_long end, u_long count, u_int flags); static int cbb_cardbus_release_resource(device_t brdev, device_t child, int type, int rid, struct resource *res); static int cbb_cardbus_power_enable_socket(device_t brdev, device_t child); static void cbb_cardbus_power_disable_socket(device_t brdev, device_t child); static void cbb_func_intr(void *arg); static void cbb_remove_res(struct cbb_softc *sc, struct resource *res) { struct cbb_reslist *rle; SLIST_FOREACH(rle, &sc->rl, link) { if (rle->res == res) { SLIST_REMOVE(&sc->rl, rle, cbb_reslist, link); free(rle, M_DEVBUF); return; } } } static struct resource * cbb_find_res(struct cbb_softc *sc, int type, int rid) { struct cbb_reslist *rle; SLIST_FOREACH(rle, &sc->rl, link) if (SYS_RES_MEMORY == rle->type && rid == rle->rid) return (rle->res); return (NULL); } static void cbb_insert_res(struct cbb_softc *sc, struct resource *res, int type, int rid) { struct cbb_reslist *rle; /* * Need to record allocated resource so we can iterate through * it later. */ rle = malloc(sizeof(struct cbb_reslist), M_DEVBUF, M_NOWAIT); if (rle == NULL) panic("cbb_cardbus_alloc_resource: can't record entry!"); rle->res = res; rle->type = type; rle->rid = rid; SLIST_INSERT_HEAD(&sc->rl, rle, link); } static void cbb_destroy_res(struct cbb_softc *sc) { struct cbb_reslist *rle; while ((rle = SLIST_FIRST(&sc->rl)) != NULL) { device_printf(sc->dev, "Danger Will Robinson: Resource " "left allocated! This is a bug... " "(rid=%x, type=%d, addr=%lx)\n", rle->rid, rle->type, rman_get_start(rle->res)); SLIST_REMOVE_HEAD(&sc->rl, link); free(rle, M_DEVBUF); } } /* * Disable function interrupts by telling the bridge to generate IRQ1 * interrupts. These interrupts aren't really generated by the chip, since * IRQ1 is reserved. Some chipsets assert INTA# inappropriately during * initialization, so this helps to work around the problem. * * XXX We can't do this workaround for all chipsets, because this * XXX causes interference with the keyboard because somechipsets will * XXX actually signal IRQ1 over their serial interrupt connections to * XXX the south bridge. Disable it it for now. */ void cbb_disable_func_intr(struct cbb_softc *sc) { #if 0 uint8_t reg; reg = (exca_getb(&sc->exca[0], EXCA_INTR) & ~EXCA_INTR_IRQ_MASK) | EXCA_INTR_IRQ_RESERVED1; exca_putb(&sc->exca[0], EXCA_INTR, reg); #endif } /* * Enable function interrupts. We turn on function interrupts when the card * requests an interrupt. The PCMCIA standard says that we should set * the lower 4 bits to 0 to route via PCI. Note: we call this for both * CardBus and R2 (PC Card) cases, but it should have no effect on CardBus * cards. */ static void cbb_enable_func_intr(struct cbb_softc *sc) { uint8_t reg; reg = (exca_getb(&sc->exca[0], EXCA_INTR) & ~EXCA_INTR_IRQ_MASK) | EXCA_INTR_IRQ_NONE; exca_putb(&sc->exca[0], EXCA_INTR, reg); } int cbb_detach(device_t brdev) { struct cbb_softc *sc = device_get_softc(brdev); int numdevs; device_t *devlist; int tmp; int error; device_get_children(brdev, &devlist, &numdevs); error = 0; for (tmp = 0; tmp < numdevs; tmp++) { if (device_detach(devlist[tmp]) == 0) device_delete_child(brdev, devlist[tmp]); else error++; } free(devlist, M_TEMP); if (error > 0) return (ENXIO); mtx_lock(&sc->mtx); /* * XXX do we teardown all the ones still registered to guard against * XXX buggy client drivers? */ bus_teardown_intr(brdev, sc->irq_res, sc->intrhand); sc->flags |= CBB_KTHREAD_DONE; if (sc->flags & CBB_KTHREAD_RUNNING) { cv_broadcast(&sc->cv); msleep(sc->event_thread, &sc->mtx, PWAIT, "cbbun", 0); } mtx_unlock(&sc->mtx); bus_release_resource(brdev, SYS_RES_IRQ, 0, sc->irq_res); bus_release_resource(brdev, SYS_RES_MEMORY, CBBR_SOCKBASE, sc->base_res); mtx_destroy(&sc->mtx); cv_destroy(&sc->cv); cv_destroy(&sc->powercv); return (0); } int cbb_shutdown(device_t brdev) { struct cbb_softc *sc = (struct cbb_softc *)device_get_softc(brdev); /* properly reset everything at shutdown */ PCI_MASK_CONFIG(brdev, CBBR_BRIDGECTRL, |CBBM_BRIDGECTRL_RESET, 2); exca_clrb(&sc->exca[0], EXCA_INTR, EXCA_INTR_RESET); cbb_set(sc, CBB_SOCKET_MASK, 0); cbb_power(brdev, CARD_OFF); exca_putb(&sc->exca[0], EXCA_ADDRWIN_ENABLE, 0); pci_write_config(brdev, CBBR_MEMBASE0, 0, 4); pci_write_config(brdev, CBBR_MEMLIMIT0, 0, 4); pci_write_config(brdev, CBBR_MEMBASE1, 0, 4); pci_write_config(brdev, CBBR_MEMLIMIT1, 0, 4); pci_write_config(brdev, CBBR_IOBASE0, 0, 4); pci_write_config(brdev, CBBR_IOLIMIT0, 0, 4); pci_write_config(brdev, CBBR_IOBASE1, 0, 4); pci_write_config(brdev, CBBR_IOLIMIT1, 0, 4); pci_write_config(brdev, PCIR_COMMAND, 0, 2); return (0); } int cbb_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, driver_intr_t *intr, void *arg, void **cookiep) { struct cbb_intrhand *ih; struct cbb_softc *sc = device_get_softc(dev); int err; /* * Well, this is no longer strictly true. You can have multiple * FAST ISRs, but can't mix fast and slow, so we have to assume * least common denominator until the base system supports mixing * and matching better. */ if ((flags & INTR_FAST) != 0) return (EINVAL); ih = malloc(sizeof(struct cbb_intrhand), M_DEVBUF, M_NOWAIT); if (ih == NULL) return (ENOMEM); *cookiep = ih; ih->intr = intr; ih->arg = arg; ih->sc = sc; /* * XXX need to turn on ISA interrupts, if we ever support them, but * XXX for now that's all we need to do. */ err = BUS_SETUP_INTR(device_get_parent(dev), child, irq, flags, cbb_func_intr, ih, &ih->cookie); if (err != 0) { free(ih, M_DEVBUF); return (err); } STAILQ_INSERT_TAIL(&sc->intr_handlers, ih, entries); cbb_enable_func_intr(sc); sc->flags |= CBB_CARD_OK; return 0; } int cbb_teardown_intr(device_t dev, device_t child, struct resource *irq, void *cookie) { struct cbb_intrhand *ih; struct cbb_softc *sc = device_get_softc(dev); int err; /* XXX Need to do different things for ISA interrupts. */ ih = (struct cbb_intrhand *) cookie; err = BUS_TEARDOWN_INTR(device_get_parent(dev), child, irq, ih->cookie); if (err != 0) return (err); STAILQ_REMOVE(&sc->intr_handlers, ih, cbb_intrhand, entries); free(ih, M_DEVBUF); return (0); } void cbb_driver_added(device_t brdev, driver_t *driver) { struct cbb_softc *sc = device_get_softc(brdev); device_t *devlist; device_t dev; int tmp; int numdevs; int wake = 0; DEVICE_IDENTIFY(driver, brdev); device_get_children(brdev, &devlist, &numdevs); for (tmp = 0; tmp < numdevs; tmp++) { dev = devlist[tmp]; if (device_get_state(dev) == DS_NOTPRESENT && device_probe_and_attach(dev) == 0) wake++; } free(devlist, M_TEMP); if (wake > 0) { mtx_lock(&sc->mtx); cv_signal(&sc->cv); mtx_unlock(&sc->mtx); } } void cbb_child_detached(device_t brdev, device_t child) { struct cbb_softc *sc = device_get_softc(brdev); if (child != sc->cbdev && child != sc->exca[0].pccarddev) device_printf(brdev, "Unknown child detached: %s\n", device_get_nameunit(child)); } /************************************************************************/ /* Kthreads */ /************************************************************************/ void cbb_event_thread(void *arg) { struct cbb_softc *sc = arg; uint32_t status; int err; int not_a_card = 0; sc->flags |= CBB_KTHREAD_RUNNING; while ((sc->flags & CBB_KTHREAD_DONE) == 0) { /* * We take out Giant here because we need it deep, * down in the bowels of the vm system for mapping the * memory we need to read the CIS. In addition, since * we are adding/deleting devices from the dev tree, * and that code isn't MP safe, we have to hold Giant. */ mtx_lock(&Giant); status = cbb_get(sc, CBB_SOCKET_STATE); DPRINTF(("Status is 0x%x\n", status)); if (!CBB_CARD_PRESENT(status)) { not_a_card = 0; /* We know card type */ cbb_removal(sc); } else if (status & CBB_STATE_NOT_A_CARD) { /* * Up to 20 times, try to rescan the card when we * see NOT_A_CARD. */ if (not_a_card++ < 20) { DEVPRINTF((sc->dev, "Not a card bit set, rescanning\n")); cbb_setb(sc, CBB_SOCKET_FORCE, CBB_FORCE_CV_TEST); } else { device_printf(sc->dev, "Can't determine card type\n"); } } else { not_a_card = 0; /* We know card type */ cbb_insert(sc); } mtx_unlock(&Giant); /* * Wait until it has been 1s since the last time we * get an interrupt. We handle the rest of the interrupt * at the top of the loop. Although we clear the bit in the * ISR, we signal sc->cv from the detach path after we've * set the CBB_KTHREAD_DONE bit, so we can't do a simple * 1s sleep here. * * In our ISR, we turn off the card changed interrupt. Turn * them back on here before we wait for them to happen. We * turn them on/off so that we can tolerate a large latency * between the time we signal cbb_event_thread and it gets * a chance to run. */ mtx_lock(&sc->mtx); cbb_setb(sc, CBB_SOCKET_MASK, CBB_SOCKET_MASK_CD); cv_wait(&sc->cv, &sc->mtx); err = 0; while (err != EWOULDBLOCK && (sc->flags & CBB_KTHREAD_DONE) == 0) err = cv_timedwait(&sc->cv, &sc->mtx, 1 * hz); mtx_unlock(&sc->mtx); } sc->flags &= ~CBB_KTHREAD_RUNNING; kthread_exit(0); } /************************************************************************/ /* Insert/removal */ /************************************************************************/ static void cbb_insert(struct cbb_softc *sc) { uint32_t sockevent, sockstate; sockevent = cbb_get(sc, CBB_SOCKET_EVENT); sockstate = cbb_get(sc, CBB_SOCKET_STATE); DEVPRINTF((sc->dev, "card inserted: event=0x%08x, state=%08x\n", sockevent, sockstate)); if (sockstate & CBB_STATE_R2_CARD) { if (sc->exca[0].pccarddev) { sc->flags |= CBB_16BIT_CARD; exca_insert(&sc->exca[0]); } else { device_printf(sc->dev, "16-bit card inserted, but no pccard bus.\n"); } } else if (sockstate & CBB_STATE_CB_CARD) { if (sc->cbdev != NULL) { sc->flags &= ~CBB_16BIT_CARD; CARD_ATTACH_CARD(sc->cbdev); } else { device_printf(sc->dev, "CardBus card inserted, but no cardbus bus.\n"); } } else { /* * We should power the card down, and try again a couple of * times if this happens. XXX */ device_printf(sc->dev, "Unsupported card type detected\n"); } } static void cbb_removal(struct cbb_softc *sc) { sc->flags &= ~CBB_CARD_OK; if (sc->flags & CBB_16BIT_CARD) { exca_removal(&sc->exca[0]); } else { if (sc->cbdev != NULL) CARD_DETACH_CARD(sc->cbdev); } cbb_destroy_res(sc); } /************************************************************************/ /* Interrupt Handler */ /************************************************************************/ /* * Since we touch hardware in the worst case, we don't need to use atomic * ops on the CARD_OK tests. They would save us a trip to the hardware * if CARD_OK was recently cleared and the caches haven't updated yet. * However, an atomic op costs between 100-200 CPU cycles. On a 3GHz * machine, this is about 33-66ns, whereas a trip the the hardware * is about that. On slower machines, the cost is even higher, so the * trip to the hardware is cheaper and achieves the same ends that * a fully locked operation would give us. * * This is a separate routine because we'd have to use locking and/or * other synchronization in cbb_intr to do this there. That would be * even more expensive. * * I need to investigate what this means for a SMP machine with multiple * CPUs servicing the ISR when an eject happens. In the case of a dirty * eject, CD glitches and we might read 'card present' from the hardware * due to this jitter. If we assumed that cbb_intr() ran before * cbb_func_intr(), we could just check the SOCKET_MASK register and if * CD changes were clear there, then we'd know the card was gone. */ static void cbb_func_intr(void *arg) { struct cbb_intrhand *ih = (struct cbb_intrhand *)arg; struct cbb_softc *sc = ih->sc; /* * Make sure that the card is really there. */ if ((sc->flags & CBB_CARD_OK) == 0) return; if (!CBB_CARD_PRESENT(cbb_get(sc, CBB_SOCKET_STATE))) { sc->flags &= ~CBB_CARD_OK; return; } /* * nb: don't have to check for giant or not, since that's done * in the ISR dispatch */ (*ih->intr)(ih->arg); } void cbb_intr(void *arg) { struct cbb_softc *sc = arg; uint32_t sockevent; sockevent = cbb_get(sc, CBB_SOCKET_EVENT); if (sockevent != 0) { /* ack the interrupt */ cbb_set(sc, CBB_SOCKET_EVENT, sockevent); /* * If anything has happened to the socket, we assume that * the card is no longer OK, and we shouldn't call its * ISR. We set CARD_OK as soon as we've attached the * card. This helps in a noisy eject, which happens * all too often when users are ejecting their PC Cards. * * We use this method in preference to checking to see if * the card is still there because the check suffers from * a race condition in the bouncing case. Prior versions * of the pccard software used a similar trick and achieved * excellent results. */ if (sockevent & CBB_SOCKET_EVENT_CD) { mtx_lock(&sc->mtx); cbb_clrb(sc, CBB_SOCKET_MASK, CBB_SOCKET_MASK_CD); sc->flags &= ~CBB_CARD_OK; cbb_disable_func_intr(sc); cv_signal(&sc->cv); mtx_unlock(&sc->mtx); } /* * If we get a power interrupt, wakeup anybody that might * be waiting for one. */ if (sockevent & CBB_SOCKET_EVENT_POWER) { mtx_lock(&sc->mtx); sc->powerintr++; cv_signal(&sc->powercv); mtx_unlock(&sc->mtx); } } /* * Some chips also require us to read the old ExCA registe for * card status change when we route CSC vis PCI. This isn't supposed * to be required, but it clears the interrupt state on some chipsets. * Maybe there's a setting that would obviate its need. Maybe we * should test the status bits and deal with them, but so far we've * not found any machines that don't also give us the socket status * indication above. * * We have to call this unconditionally because some bridges deliver * the even independent of the CBB_SOCKET_EVENT_CD above. */ exca_getb(&sc->exca[0], EXCA_CSC); } /************************************************************************/ /* Generic Power functions */ /************************************************************************/ static uint32_t cbb_detect_voltage(device_t brdev) { struct cbb_softc *sc = device_get_softc(brdev); uint32_t psr; uint32_t vol = CARD_UKN_CARD; psr = cbb_get(sc, CBB_SOCKET_STATE); if (psr & CBB_STATE_5VCARD) vol |= CARD_5V_CARD; if (psr & CBB_STATE_3VCARD) vol |= CARD_3V_CARD; if (psr & CBB_STATE_XVCARD) vol |= CARD_XV_CARD; if (psr & CBB_STATE_YVCARD) vol |= CARD_YV_CARD; return (vol); } static uint8_t cbb_o2micro_power_hack(struct cbb_softc *sc) { uint8_t reg; /* * Issue #2: INT# not qualified with IRQ Routing Bit. An * unexpected PCI INT# may be generated during PC-Card * initialization even with the IRQ Routing Bit Set with some * PC-Cards. * * This is a two part issue. The first part is that some of * our older controllers have an issue in which the slot's PCI * INT# is NOT qualified by the IRQ routing bit (PCI reg. 3Eh * bit 7). Regardless of the IRQ routing bit, if NO ISA IRQ * is selected (ExCA register 03h bits 3:0, of the slot, are * cleared) we will generate INT# if IREQ# is asserted. The * second part is because some PC-Cards prematurally assert * IREQ# before the ExCA registers are fully programmed. This * in turn asserts INT# because ExCA register 03h bits 3:0 * (ISA IRQ Select) are not yet programmed. * * The fix for this issue, which will work for any controller * (old or new), is to set ExCA register 03h bits 3:0 = 0001b * (select IRQ1), of the slot, before turning on slot power. * Selecting IRQ1 will result in INT# NOT being asserted * (because IRQ1 is selected), and IRQ1 won't be asserted * because our controllers don't generate IRQ1. * * Other, non O2Micro controllers will generate irq 1 in some * situations, so we can't do this hack for everybody. Reports of * keyboard controller's interrupts being suppressed occurred when * we did this. */ reg = exca_getb(&sc->exca[0], EXCA_INTR); exca_putb(&sc->exca[0], EXCA_INTR, (reg & 0xf0) | 1); return (reg); } /* * Restore the damage that cbb_o2micro_power_hack does to EXCA_INTR so * we don't have an interrupt storm on power on. This has the efect of * disabling card status change interrupts for the duration of poweron. */ static void cbb_o2micro_power_hack2(struct cbb_softc *sc, uint8_t reg) { exca_putb(&sc->exca[0], EXCA_INTR, reg); } int cbb_power(device_t brdev, int volts) { uint32_t status, sock_ctrl, mask; struct cbb_softc *sc = device_get_softc(brdev); int cnt, sane; int retval = 0; int on = 0; uint8_t reg = 0; sock_ctrl = cbb_get(sc, CBB_SOCKET_CONTROL); sock_ctrl &= ~CBB_SOCKET_CTRL_VCCMASK; switch (volts & CARD_VCCMASK) { case 5: sock_ctrl |= CBB_SOCKET_CTRL_VCC_5V; on++; break; case 3: sock_ctrl |= CBB_SOCKET_CTRL_VCC_3V; on++; break; case XV: sock_ctrl |= CBB_SOCKET_CTRL_VCC_XV; on++; break; case YV: sock_ctrl |= CBB_SOCKET_CTRL_VCC_YV; on++; break; case 0: break; default: return (0); /* power NEVER changed */ } /* VPP == VCC */ sock_ctrl &= ~CBB_SOCKET_CTRL_VPPMASK; sock_ctrl |= ((sock_ctrl >> 4) & 0x07); if (cbb_get(sc, CBB_SOCKET_CONTROL) == sock_ctrl) return (1); /* no change necessary */ DEVPRINTF((sc->dev, "cbb_power: %dV\n", volts)); if (volts != 0 && sc->chipset == CB_O2MICRO) reg = cbb_o2micro_power_hack(sc); /* * We have to mask the card change detect interrupt while we're * messing with the power. It is allowed to bounce while we're * messing with power as things settle down. In addition, we mask off * the card's function interrupt by routing it via the ISA bus. This * bit generally only affects 16bit cards. Some bridges allow one to * set another bit to have it also affect 32bit cards. Since 32bit * cards are required to be better behaved, we don't bother to get * into those bridge specific features. */ mask = cbb_get(sc, CBB_SOCKET_MASK); mask |= CBB_SOCKET_MASK_POWER; mask &= ~CBB_SOCKET_MASK_CD; cbb_set(sc, CBB_SOCKET_MASK, mask); PCI_MASK_CONFIG(brdev, CBBR_BRIDGECTRL, |CBBM_BRIDGECTRL_INTR_IREQ_ISA_EN, 2); cbb_set(sc, CBB_SOCKET_CONTROL, sock_ctrl); if (on) { mtx_lock(&sc->mtx); cnt = sc->powerintr; sane = 200; while (!(cbb_get(sc, CBB_SOCKET_STATE) & CBB_STATE_POWER_CYCLE) && cnt == sc->powerintr && sane-- > 0) cv_timedwait(&sc->powercv, &sc->mtx, hz / 10); mtx_unlock(&sc->mtx); if (sane <= 0) device_printf(sc->dev, "power timeout, doom?\n"); } /* * After the power is good, we can turn off the power interrupt. * However, the PC Card standard says that we must delay turning the * CD bit back on for a bit to allow for bouncyness on power down * (recall that we don't wait above for a power down, since we don't * get an interrupt for that). We're called either from the suspend * code in which case we don't want to turn card change on again, or * we're called from the card insertion code, in which case the cbb * thread will turn it on for us before it waits to be woken by a * change event. */ cbb_clrb(sc, CBB_SOCKET_MASK, CBB_SOCKET_MASK_POWER); status = cbb_get(sc, CBB_SOCKET_STATE); if (on) { if ((status & CBB_STATE_POWER_CYCLE) == 0) device_printf(sc->dev, "Power not on?\n"); } if (status & CBB_STATE_BAD_VCC_REQ) { device_printf(sc->dev, "Bad Vcc requested\n"); /* XXX Do we want to do something to mitigate things here? */ goto done; } PCI_MASK_CONFIG(brdev, CBBR_BRIDGECTRL, & ~CBBM_BRIDGECTRL_INTR_IREQ_ISA_EN, 2); retval = 1; done:; if (volts != 0 && sc->chipset == CB_O2MICRO) cbb_o2micro_power_hack2(sc, reg); return (retval); } static int cbb_current_voltage(device_t brdev) { struct cbb_softc *sc = device_get_softc(brdev); uint32_t ctrl; ctrl = cbb_get(sc, CBB_SOCKET_CONTROL); switch (ctrl & CBB_SOCKET_CTRL_VCCMASK) { case CBB_SOCKET_CTRL_VCC_5V: return CARD_5V_CARD; case CBB_SOCKET_CTRL_VCC_3V: return CARD_3V_CARD; case CBB_SOCKET_CTRL_VCC_XV: return CARD_XV_CARD; case CBB_SOCKET_CTRL_VCC_YV: return CARD_YV_CARD; } return 0; } /* * detect the voltage for the card, and set it. Since the power * used is the square of the voltage, lower voltages is a big win * and what Windows does (and what Microsoft prefers). The MS paper * also talks about preferring the CIS entry as well, but that has * to be done elsewhere. We also optimize power sequencing here * and don't change things if we're already powered up at a supported * voltage. * * In addition, we power up with OE disabled. We'll set it later * in the power up sequence. */ static int cbb_do_power(device_t brdev) { struct cbb_softc *sc = device_get_softc(brdev); uint32_t voltage, curpwr; uint32_t status; /* Don't enable OE (output enable) until power stable */ exca_clrb(&sc->exca[0], EXCA_PWRCTL, EXCA_PWRCTL_OE); voltage = cbb_detect_voltage(brdev); curpwr = cbb_current_voltage(brdev); status = cbb_get(sc, CBB_SOCKET_STATE); if ((status & CBB_STATE_POWER_CYCLE) && (voltage & curpwr)) return 0; /* Prefer lowest voltage supported */ cbb_power(brdev, CARD_OFF); if (voltage & CARD_YV_CARD) cbb_power(brdev, CARD_VCC(YV)); else if (voltage & CARD_XV_CARD) cbb_power(brdev, CARD_VCC(XV)); else if (voltage & CARD_3V_CARD) cbb_power(brdev, CARD_VCC(3)); else if (voltage & CARD_5V_CARD) cbb_power(brdev, CARD_VCC(5)); else { device_printf(brdev, "Unknown card voltage\n"); return (ENXIO); } return (0); } /************************************************************************/ /* CardBus power functions */ /************************************************************************/ static void cbb_cardbus_reset(device_t brdev) { struct cbb_softc *sc = device_get_softc(brdev); int delay; /* * 20ms is necessary for most bridges. For some reason, the Ricoh * RF5C47x bridges need 400ms. */ delay = sc->chipset == CB_RF5C47X ? 400 : 20; PCI_MASK_CONFIG(brdev, CBBR_BRIDGECTRL, |CBBM_BRIDGECTRL_RESET, 2); tsleep(sc, PZERO, "cbbP3", hz * delay / 1000); /* If a card exists, unreset it! */ if (CBB_CARD_PRESENT(cbb_get(sc, CBB_SOCKET_STATE))) { PCI_MASK_CONFIG(brdev, CBBR_BRIDGECTRL, &~CBBM_BRIDGECTRL_RESET, 2); tsleep(sc, PZERO, "cbbP3", hz * delay / 1000); } } static int cbb_cardbus_power_enable_socket(device_t brdev, device_t child) { struct cbb_softc *sc = device_get_softc(brdev); int err; if (!CBB_CARD_PRESENT(cbb_get(sc, CBB_SOCKET_STATE))) return (ENODEV); err = cbb_do_power(brdev); if (err) return (err); cbb_cardbus_reset(brdev); return (0); } static void cbb_cardbus_power_disable_socket(device_t brdev, device_t child) { cbb_power(brdev, CARD_OFF); cbb_cardbus_reset(brdev); } /************************************************************************/ /* CardBus Resource */ /************************************************************************/ static int cbb_cardbus_io_open(device_t brdev, int win, uint32_t start, uint32_t end) { int basereg; int limitreg; if ((win < 0) || (win > 1)) { DEVPRINTF((brdev, "cbb_cardbus_io_open: window out of range %d\n", win)); return (EINVAL); } basereg = win * 8 + CBBR_IOBASE0; limitreg = win * 8 + CBBR_IOLIMIT0; pci_write_config(brdev, basereg, start, 4); pci_write_config(brdev, limitreg, end, 4); return (0); } static int cbb_cardbus_mem_open(device_t brdev, int win, uint32_t start, uint32_t end) { int basereg; int limitreg; if ((win < 0) || (win > 1)) { DEVPRINTF((brdev, "cbb_cardbus_mem_open: window out of range %d\n", win)); return (EINVAL); } basereg = win*8 + CBBR_MEMBASE0; limitreg = win*8 + CBBR_MEMLIMIT0; pci_write_config(brdev, basereg, start, 4); pci_write_config(brdev, limitreg, end, 4); return (0); } /* * XXX The following function belongs in the pci bus layer. */ static void cbb_cardbus_auto_open(struct cbb_softc *sc, int type) { uint32_t starts[2]; uint32_t ends[2]; struct cbb_reslist *rle; int align; int prefetchable[2]; uint32_t reg; starts[0] = starts[1] = 0xffffffff; ends[0] = ends[1] = 0; if (type == SYS_RES_MEMORY) align = CBB_MEMALIGN; else if (type == SYS_RES_IOPORT) align = CBB_IOALIGN; else align = 1; /* * This looks somewhat bogus, and doesn't seem to really respect * alignment. The alignment stuff is happening too late (it * should happen at allocation time, not activation time) and * this code looks generally to be too complex for the purpose * it surves. */ SLIST_FOREACH(rle, &sc->rl, link) { if (rle->type != type) ; else if (rle->res == NULL) { device_printf(sc->dev, "WARNING: Resource not reserved? " "(type=%d, addr=%lx)\n", rle->type, rman_get_start(rle->res)); } else if (!(rman_get_flags(rle->res) & RF_ACTIVE)) { /* XXX */ } else if (starts[0] == 0xffffffff) { starts[0] = rman_get_start(rle->res); ends[0] = rman_get_end(rle->res); prefetchable[0] = rman_get_flags(rle->res) & RF_PREFETCHABLE; } else if (rman_get_end(rle->res) > ends[0] && rman_get_start(rle->res) - ends[0] < CBB_AUTO_OPEN_SMALLHOLE && prefetchable[0] == (rman_get_flags(rle->res) & RF_PREFETCHABLE)) { ends[0] = rman_get_end(rle->res); } else if (rman_get_start(rle->res) < starts[0] && starts[0] - rman_get_end(rle->res) < CBB_AUTO_OPEN_SMALLHOLE && prefetchable[0] == (rman_get_flags(rle->res) & RF_PREFETCHABLE)) { starts[0] = rman_get_start(rle->res); } else if (starts[1] == 0xffffffff) { starts[1] = rman_get_start(rle->res); ends[1] = rman_get_end(rle->res); prefetchable[1] = rman_get_flags(rle->res) & RF_PREFETCHABLE; } else if (rman_get_end(rle->res) > ends[1] && rman_get_start(rle->res) - ends[1] < CBB_AUTO_OPEN_SMALLHOLE && prefetchable[1] == (rman_get_flags(rle->res) & RF_PREFETCHABLE)) { ends[1] = rman_get_end(rle->res); } else if (rman_get_start(rle->res) < starts[1] && starts[1] - rman_get_end(rle->res) < CBB_AUTO_OPEN_SMALLHOLE && prefetchable[1] == (rman_get_flags(rle->res) & RF_PREFETCHABLE)) { starts[1] = rman_get_start(rle->res); } else { uint32_t diffs[2]; int win; diffs[0] = diffs[1] = 0xffffffff; if (rman_get_start(rle->res) > ends[0]) diffs[0] = rman_get_start(rle->res) - ends[0]; else if (rman_get_end(rle->res) < starts[0]) diffs[0] = starts[0] - rman_get_end(rle->res); if (rman_get_start(rle->res) > ends[1]) diffs[1] = rman_get_start(rle->res) - ends[1]; else if (rman_get_end(rle->res) < starts[1]) diffs[1] = starts[1] - rman_get_end(rle->res); win = (diffs[0] <= diffs[1])?0:1; if (rman_get_start(rle->res) > ends[win]) ends[win] = rman_get_end(rle->res); else if (rman_get_end(rle->res) < starts[win]) starts[win] = rman_get_start(rle->res); if (!(rman_get_flags(rle->res) & RF_PREFETCHABLE)) prefetchable[win] = 0; } if (starts[0] != 0xffffffff) starts[0] -= starts[0] % align; if (starts[1] != 0xffffffff) starts[1] -= starts[1] % align; if (ends[0] % align != 0) ends[0] += align - ends[0] % align - 1; if (ends[1] % align != 0) ends[1] += align - ends[1] % align - 1; } if (type == SYS_RES_MEMORY) { cbb_cardbus_mem_open(sc->dev, 0, starts[0], ends[0]); cbb_cardbus_mem_open(sc->dev, 1, starts[1], ends[1]); reg = pci_read_config(sc->dev, CBBR_BRIDGECTRL, 2); reg &= ~(CBBM_BRIDGECTRL_PREFETCH_0| CBBM_BRIDGECTRL_PREFETCH_1); reg |= (prefetchable[0]?CBBM_BRIDGECTRL_PREFETCH_0:0)| (prefetchable[1]?CBBM_BRIDGECTRL_PREFETCH_1:0); pci_write_config(sc->dev, CBBR_BRIDGECTRL, reg, 2); } else if (type == SYS_RES_IOPORT) { cbb_cardbus_io_open(sc->dev, 0, starts[0], ends[0]); cbb_cardbus_io_open(sc->dev, 1, starts[1], ends[1]); } } static int cbb_cardbus_activate_resource(device_t brdev, device_t child, int type, int rid, struct resource *res) { int ret; ret = BUS_ACTIVATE_RESOURCE(device_get_parent(brdev), child, type, rid, res); if (ret != 0) return (ret); cbb_cardbus_auto_open(device_get_softc(brdev), type); return (0); } static int cbb_cardbus_deactivate_resource(device_t brdev, device_t child, int type, int rid, struct resource *res) { int ret; ret = BUS_DEACTIVATE_RESOURCE(device_get_parent(brdev), child, type, rid, res); if (ret != 0) return (ret); cbb_cardbus_auto_open(device_get_softc(brdev), type); return (0); } static struct resource * cbb_cardbus_alloc_resource(device_t brdev, device_t child, int type, int *rid, u_long start, u_long end, u_long count, u_int flags) { struct cbb_softc *sc = device_get_softc(brdev); int tmp; struct resource *res; u_long align; switch (type) { case SYS_RES_IRQ: tmp = rman_get_start(sc->irq_res); if (start > tmp || end < tmp || count != 1) { device_printf(child, "requested interrupt %ld-%ld," "count = %ld not supported by cbb\n", start, end, count); return (NULL); } start = end = tmp; flags |= RF_SHAREABLE; break; case SYS_RES_IOPORT: if (start <= cbb_start_32_io) start = cbb_start_32_io; if (end < start) end = start; break; case SYS_RES_MEMORY: if (start <= cbb_start_mem) start = cbb_start_mem; if (end < start) end = start; if (count < CBB_MEMALIGN) align = CBB_MEMALIGN; else align = count; if (align > (1 << RF_ALIGNMENT(flags))) flags = (flags & ~RF_ALIGNMENT_MASK) | rman_make_alignment_flags(align); break; } res = BUS_ALLOC_RESOURCE(device_get_parent(brdev), child, type, rid, start, end, count, flags & ~RF_ACTIVE); if (res == NULL) { printf("cbb alloc res fail\n"); return (NULL); } cbb_insert_res(sc, res, type, *rid); if (flags & RF_ACTIVE) if (bus_activate_resource(child, type, *rid, res) != 0) { bus_release_resource(child, type, *rid, res); return (NULL); } return (res); } static int cbb_cardbus_release_resource(device_t brdev, device_t child, int type, int rid, struct resource *res) { struct cbb_softc *sc = device_get_softc(brdev); int error; if (rman_get_flags(res) & RF_ACTIVE) { error = bus_deactivate_resource(child, type, rid, res); if (error != 0) return (error); } cbb_remove_res(sc, res); return (BUS_RELEASE_RESOURCE(device_get_parent(brdev), child, type, rid, res)); } /************************************************************************/ /* PC Card Power Functions */ /************************************************************************/ static int cbb_pcic_power_enable_socket(device_t brdev, device_t child) { struct cbb_softc *sc = device_get_softc(brdev); int err; DPRINTF(("cbb_pcic_socket_enable:\n")); /* power down/up the socket to reset */ err = cbb_do_power(brdev); if (err) return (err); exca_reset(&sc->exca[0], child); return (0); } static void cbb_pcic_power_disable_socket(device_t brdev, device_t child) { struct cbb_softc *sc = device_get_softc(brdev); DPRINTF(("cbb_pcic_socket_disable\n")); /* reset signal asserting... */ exca_clrb(&sc->exca[0], EXCA_INTR, EXCA_INTR_RESET); tsleep(sc, PZERO, "cbbP1", hz / 100); /* power down the socket */ exca_clrb(&sc->exca[0], EXCA_PWRCTL, EXCA_PWRCTL_OE); cbb_power(brdev, CARD_OFF); /* wait 300ms until power fails (Tpf). */ tsleep(sc, PZERO, "cbbP1", hz * 300 / 1000); } /************************************************************************/ /* POWER methods */ /************************************************************************/ int cbb_power_enable_socket(device_t brdev, device_t child) { struct cbb_softc *sc = device_get_softc(brdev); if (sc->flags & CBB_16BIT_CARD) return (cbb_pcic_power_enable_socket(brdev, child)); else return (cbb_cardbus_power_enable_socket(brdev, child)); } void cbb_power_disable_socket(device_t brdev, device_t child) { struct cbb_softc *sc = device_get_softc(brdev); if (sc->flags & CBB_16BIT_CARD) cbb_pcic_power_disable_socket(brdev, child); else cbb_cardbus_power_disable_socket(brdev, child); } static int cbb_pcic_activate_resource(device_t brdev, device_t child, int type, int rid, struct resource *res) { struct cbb_softc *sc = device_get_softc(brdev); return (exca_activate_resource(&sc->exca[0], child, type, rid, res)); } static int cbb_pcic_deactivate_resource(device_t brdev, device_t child, int type, int rid, struct resource *res) { struct cbb_softc *sc = device_get_softc(brdev); return (exca_deactivate_resource(&sc->exca[0], child, type, rid, res)); } static struct resource * cbb_pcic_alloc_resource(device_t brdev, device_t child, int type, int *rid, u_long start, u_long end, u_long count, u_int flags) { struct resource *res = NULL; struct cbb_softc *sc = device_get_softc(brdev); int align; int tmp; switch (type) { case SYS_RES_MEMORY: if (start < cbb_start_mem) start = cbb_start_mem; if (end < start) end = start; if (count < CBB_MEMALIGN) align = CBB_MEMALIGN; else align = count; if (align > (1 << RF_ALIGNMENT(flags))) flags = (flags & ~RF_ALIGNMENT_MASK) | rman_make_alignment_flags(align); break; case SYS_RES_IOPORT: if (start < cbb_start_16_io) start = cbb_start_16_io; if (end < start) end = start; break; case SYS_RES_IRQ: tmp = rman_get_start(sc->irq_res); if (start > tmp || end < tmp || count != 1) { device_printf(child, "requested interrupt %ld-%ld," "count = %ld not supported by cbb\n", start, end, count); return (NULL); } flags |= RF_SHAREABLE; start = end = rman_get_start(sc->irq_res); break; } res = BUS_ALLOC_RESOURCE(device_get_parent(brdev), child, type, rid, start, end, count, flags & ~RF_ACTIVE); if (res == NULL) return (NULL); cbb_insert_res(sc, res, type, *rid); if (flags & RF_ACTIVE) { if (bus_activate_resource(child, type, *rid, res) != 0) { bus_release_resource(child, type, *rid, res); return (NULL); } } return (res); } static int cbb_pcic_release_resource(device_t brdev, device_t child, int type, int rid, struct resource *res) { struct cbb_softc *sc = device_get_softc(brdev); int error; if (rman_get_flags(res) & RF_ACTIVE) { error = bus_deactivate_resource(child, type, rid, res); if (error != 0) return (error); } cbb_remove_res(sc, res); return (BUS_RELEASE_RESOURCE(device_get_parent(brdev), child, type, rid, res)); } /************************************************************************/ /* PC Card methods */ /************************************************************************/ int cbb_pcic_set_res_flags(device_t brdev, device_t child, int type, int rid, uint32_t flags) { struct cbb_softc *sc = device_get_softc(brdev); struct resource *res; if (type != SYS_RES_MEMORY) return (EINVAL); res = cbb_find_res(sc, type, rid); if (res == NULL) { device_printf(brdev, "set_res_flags: specified rid not found\n"); return (ENOENT); } return (exca_mem_set_flags(&sc->exca[0], res, flags)); } int cbb_pcic_set_memory_offset(device_t brdev, device_t child, int rid, uint32_t cardaddr, uint32_t *deltap) { struct cbb_softc *sc = device_get_softc(brdev); struct resource *res; res = cbb_find_res(sc, SYS_RES_MEMORY, rid); if (res == NULL) { device_printf(brdev, "set_memory_offset: specified rid not found\n"); return (ENOENT); } return (exca_mem_set_offset(&sc->exca[0], res, cardaddr, deltap)); } /************************************************************************/ /* BUS Methods */ /************************************************************************/ int cbb_activate_resource(device_t brdev, device_t child, int type, int rid, struct resource *r) { struct cbb_softc *sc = device_get_softc(brdev); if (sc->flags & CBB_16BIT_CARD) return (cbb_pcic_activate_resource(brdev, child, type, rid, r)); else return (cbb_cardbus_activate_resource(brdev, child, type, rid, r)); } int cbb_deactivate_resource(device_t brdev, device_t child, int type, int rid, struct resource *r) { struct cbb_softc *sc = device_get_softc(brdev); if (sc->flags & CBB_16BIT_CARD) return (cbb_pcic_deactivate_resource(brdev, child, type, rid, r)); else return (cbb_cardbus_deactivate_resource(brdev, child, type, rid, r)); } struct resource * cbb_alloc_resource(device_t brdev, device_t child, int type, int *rid, u_long start, u_long end, u_long count, u_int flags) { struct cbb_softc *sc = device_get_softc(brdev); if (sc->flags & CBB_16BIT_CARD) return (cbb_pcic_alloc_resource(brdev, child, type, rid, start, end, count, flags)); else return (cbb_cardbus_alloc_resource(brdev, child, type, rid, start, end, count, flags)); } int cbb_release_resource(device_t brdev, device_t child, int type, int rid, struct resource *r) { struct cbb_softc *sc = device_get_softc(brdev); if (sc->flags & CBB_16BIT_CARD) return (cbb_pcic_release_resource(brdev, child, type, rid, r)); else return (cbb_cardbus_release_resource(brdev, child, type, rid, r)); } int cbb_read_ivar(device_t brdev, device_t child, int which, uintptr_t *result) { struct cbb_softc *sc = device_get_softc(brdev); switch (which) { case PCIB_IVAR_BUS: *result = sc->secbus; return (0); } return (ENOENT); } int cbb_write_ivar(device_t brdev, device_t child, int which, uintptr_t value) { struct cbb_softc *sc = device_get_softc(brdev); switch (which) { case PCIB_IVAR_BUS: sc->secbus = value; break; } return (ENOENT); } /************************************************************************/ /* PCI compat methods */ /************************************************************************/ int cbb_maxslots(device_t brdev) { return (0); } uint32_t cbb_read_config(device_t brdev, int b, int s, int f, int reg, int width) { uint32_t rv; /* * Pass through to the next ppb up the chain (i.e. our grandparent). */ rv = PCIB_READ_CONFIG(device_get_parent(device_get_parent(brdev)), b, s, f, reg, width); return (rv); } void cbb_write_config(device_t brdev, int b, int s, int f, int reg, uint32_t val, int width) { /* * Pass through to the next ppb up the chain (i.e. our grandparent). */ PCIB_WRITE_CONFIG(device_get_parent(device_get_parent(brdev)), b, s, f, reg, val, width); } int cbb_suspend(device_t self) { int error = 0; struct cbb_softc *sc = device_get_softc(self); cbb_set(sc, CBB_SOCKET_MASK, 0); /* Quiet hardware */ bus_teardown_intr(self, sc->irq_res, sc->intrhand); sc->flags &= ~CBB_CARD_OK; /* Card is bogus now */ error = bus_generic_suspend(self); return (error); } int cbb_resume(device_t self) { int error = 0; struct cbb_softc *sc = (struct cbb_softc *)device_get_softc(self); uint32_t tmp; /* * Some BIOSes will not save the BARs for the pci chips, so we * must do it ourselves. If the BAR is reset to 0 for an I/O * device, it will read back as 0x1, so no explicit test for * memory devices are needed. * * Note: The PCI bus code should do this automatically for us on * suspend/resume, but until it does, we have to cope. */ pci_write_config(self, CBBR_SOCKBASE, rman_get_start(sc->base_res), 4); DEVPRINTF((self, "PCI Memory allocated: %08lx\n", rman_get_start(sc->base_res))); sc->chipinit(sc); /* reset interrupt -- Do we really need to do this? */ tmp = cbb_get(sc, CBB_SOCKET_EVENT); cbb_set(sc, CBB_SOCKET_EVENT, tmp); /* re-establish the interrupt. */ if (bus_setup_intr(self, sc->irq_res, INTR_TYPE_AV | INTR_MPSAFE, cbb_intr, sc, &sc->intrhand)) { device_printf(self, "couldn't re-establish interrupt"); bus_release_resource(self, SYS_RES_IRQ, 0, sc->irq_res); bus_release_resource(self, SYS_RES_MEMORY, CBBR_SOCKBASE, sc->base_res); sc->irq_res = NULL; sc->base_res = NULL; return (ENOMEM); } /* CSC Interrupt: Card detect interrupt on */ cbb_setb(sc, CBB_SOCKET_MASK, CBB_SOCKET_MASK_CD); /* Signal the thread to wakeup. */ mtx_lock(&sc->mtx); cv_signal(&sc->cv); mtx_unlock(&sc->mtx); error = bus_generic_resume(self); return (error); } int cbb_child_present(device_t self) { struct cbb_softc *sc = (struct cbb_softc *)device_get_softc(self); uint32_t sockstate; sockstate = cbb_get(sc, CBB_SOCKET_STATE); return (CBB_CARD_PRESENT(sockstate) && (sc->flags & CBB_CARD_OK) == CBB_CARD_OK); }