/* $NetBSD: svc_dg.c,v 1.4 2000/07/06 03:10:35 christos Exp $ */ /* * Sun RPC is a product of Sun Microsystems, Inc. and is provided for * unrestricted use provided that this legend is included on all tape * media and as a part of the software program in whole or part. Users * may copy or modify Sun RPC without charge, but are not authorized * to license or distribute it to anyone else except as part of a product or * program developed by the user. * * SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE * WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. * * Sun RPC is provided with no support and without any obligation on the * part of Sun Microsystems, Inc. to assist in its use, correction, * modification or enhancement. * * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC * OR ANY PART THEREOF. * * In no event will Sun Microsystems, Inc. be liable for any lost revenue * or profits or other special, indirect and consequential damages, even if * Sun has been advised of the possibility of such damages. * * Sun Microsystems, Inc. * 2550 Garcia Avenue * Mountain View, California 94043 */ /* * Copyright (c) 1986-1991 by Sun Microsystems Inc. */ #if defined(LIBC_SCCS) && !defined(lint) #ident "@(#)svc_dg.c 1.17 94/04/24 SMI" #endif #include __FBSDID("$FreeBSD$"); /* * svc_dg.c, Server side for connectionless RPC. * * Does some caching in the hopes of achieving execute-at-most-once semantics. */ #include "namespace.h" #include "reentrant.h" #include #include #include #include #include #include #include #include #include #include #ifdef RPC_CACHE_DEBUG #include #include #endif #include #include "un-namespace.h" #include "rpc_com.h" #include "mt_misc.h" #define su_data(xprt) ((struct svc_dg_data *)(xprt->xp_p2)) #define rpc_buffer(xprt) ((xprt)->xp_p1) #ifndef MAX #define MAX(a, b) (((a) > (b)) ? (a) : (b)) #endif static void svc_dg_ops(SVCXPRT *); static enum xprt_stat svc_dg_stat(SVCXPRT *); static bool_t svc_dg_recv(SVCXPRT *, struct rpc_msg *); static bool_t svc_dg_reply(SVCXPRT *, struct rpc_msg *); static bool_t svc_dg_getargs(SVCXPRT *, xdrproc_t, void *); static bool_t svc_dg_freeargs(SVCXPRT *, xdrproc_t, void *); static void svc_dg_destroy(SVCXPRT *); static bool_t svc_dg_control(SVCXPRT *, const u_int, void *); static int cache_get(SVCXPRT *, struct rpc_msg *, char **, size_t *); static void cache_set(SVCXPRT *, size_t); int svc_dg_enablecache(SVCXPRT *, u_int); /* * Usage: * xprt = svc_dg_create(sock, sendsize, recvsize); * Does other connectionless specific initializations. * Once *xprt is initialized, it is registered. * see (svc.h, xprt_register). If recvsize or sendsize are 0 suitable * system defaults are chosen. * The routines returns NULL if a problem occurred. */ static const char svc_dg_str[] = "svc_dg_create: %s"; static const char svc_dg_err1[] = "could not get transport information"; static const char svc_dg_err2[] = " transport does not support data transfer"; static const char svc_dg_err3[] = "getsockname failed"; static const char __no_mem_str[] = "out of memory"; SVCXPRT * svc_dg_create(fd, sendsize, recvsize) int fd; u_int sendsize; u_int recvsize; { SVCXPRT *xprt; struct svc_dg_data *su = NULL; struct __rpc_sockinfo si; struct sockaddr_storage ss; socklen_t slen; if (!__rpc_fd2sockinfo(fd, &si)) { warnx(svc_dg_str, svc_dg_err1); return (NULL); } /* * Find the receive and the send size */ sendsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)sendsize); recvsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)recvsize); if ((sendsize == 0) || (recvsize == 0)) { warnx(svc_dg_str, svc_dg_err2); return (NULL); } xprt = svc_xprt_alloc(); if (xprt == NULL) goto freedata; su = mem_alloc(sizeof (*su)); if (su == NULL) goto freedata; su->su_iosz = ((MAX(sendsize, recvsize) + 3) / 4) * 4; if ((rpc_buffer(xprt) = mem_alloc(su->su_iosz)) == NULL) goto freedata; xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), su->su_iosz, XDR_DECODE); su->su_cache = NULL; xprt->xp_fd = fd; xprt->xp_p2 = su; xprt->xp_verf.oa_base = su->su_verfbody; svc_dg_ops(xprt); xprt->xp_rtaddr.maxlen = sizeof (struct sockaddr_storage); slen = sizeof ss; if (_getsockname(fd, (struct sockaddr *)(void *)&ss, &slen) < 0) { warnx(svc_dg_str, svc_dg_err3); goto freedata_nowarn; } xprt->xp_ltaddr.buf = mem_alloc(sizeof (struct sockaddr_storage)); xprt->xp_ltaddr.maxlen = sizeof (struct sockaddr_storage); xprt->xp_ltaddr.len = slen; memcpy(xprt->xp_ltaddr.buf, &ss, slen); xprt_register(xprt); return (xprt); freedata: (void) warnx(svc_dg_str, __no_mem_str); freedata_nowarn: if (xprt) { if (su) (void) mem_free(su, sizeof (*su)); svc_xprt_free(xprt); } return (NULL); } /*ARGSUSED*/ static enum xprt_stat svc_dg_stat(xprt) SVCXPRT *xprt; { return (XPRT_IDLE); } static int svc_dg_recvfrom(int fd, char *buf, int buflen, struct sockaddr *raddr, socklen_t *raddrlen, struct sockaddr *laddr, socklen_t *laddrlen) { struct msghdr msg; struct iovec msg_iov[1]; struct sockaddr_in *lin = (struct sockaddr_in *)laddr; int rlen; bool_t have_lin = FALSE; char tmp[CMSG_LEN(sizeof(*lin))]; struct cmsghdr *cmsg; memset((char *)&msg, 0, sizeof(msg)); msg_iov[0].iov_base = buf; msg_iov[0].iov_len = buflen; msg.msg_iov = msg_iov; msg.msg_iovlen = 1; msg.msg_namelen = *raddrlen; msg.msg_name = (char *)raddr; msg.msg_control = (caddr_t)tmp; msg.msg_controllen = CMSG_LEN(sizeof(*lin)); rlen = _recvmsg(fd, &msg, 0); if (rlen >= 0) *raddrlen = msg.msg_namelen; if (rlen == -1 || !laddr || msg.msg_controllen < sizeof(struct cmsghdr) || msg.msg_flags & MSG_CTRUNC) return rlen; for (cmsg = CMSG_FIRSTHDR(&msg); cmsg != NULL; cmsg = CMSG_NXTHDR(&msg, cmsg)){ if (cmsg->cmsg_level == IPPROTO_IP && cmsg->cmsg_type == IP_RECVDSTADDR) { have_lin = TRUE; memcpy(&lin->sin_addr, (struct in_addr *)CMSG_DATA(cmsg), sizeof(struct in_addr)); break; } } if (!have_lin) return rlen; lin->sin_family = AF_INET; lin->sin_port = 0; *laddrlen = sizeof(struct sockaddr_in); return rlen; } static bool_t svc_dg_recv(xprt, msg) SVCXPRT *xprt; struct rpc_msg *msg; { struct svc_dg_data *su = su_data(xprt); XDR *xdrs = &(su->su_xdrs); char *reply; struct sockaddr_storage ss; socklen_t alen; size_t replylen; ssize_t rlen; again: alen = sizeof (struct sockaddr_storage); rlen = svc_dg_recvfrom(xprt->xp_fd, rpc_buffer(xprt), su->su_iosz, (struct sockaddr *)(void *)&ss, &alen, (struct sockaddr *)xprt->xp_ltaddr.buf, &xprt->xp_ltaddr.len); if (rlen == -1 && errno == EINTR) goto again; if (rlen == -1 || (rlen < (ssize_t)(4 * sizeof (u_int32_t)))) return (FALSE); if (xprt->xp_rtaddr.len < alen) { if (xprt->xp_rtaddr.len != 0) mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.len); xprt->xp_rtaddr.buf = mem_alloc(alen); xprt->xp_rtaddr.len = alen; } memcpy(xprt->xp_rtaddr.buf, &ss, alen); #ifdef PORTMAP if (ss.ss_family == AF_INET) { xprt->xp_raddr = *(struct sockaddr_in *)xprt->xp_rtaddr.buf; xprt->xp_addrlen = sizeof (struct sockaddr_in); } #endif /* PORTMAP */ xdrs->x_op = XDR_DECODE; XDR_SETPOS(xdrs, 0); if (! xdr_callmsg(xdrs, msg)) { return (FALSE); } su->su_xid = msg->rm_xid; if (su->su_cache != NULL) { if (cache_get(xprt, msg, &reply, &replylen)) { (void)_sendto(xprt->xp_fd, reply, replylen, 0, (struct sockaddr *)(void *)&ss, alen); return (FALSE); } } return (TRUE); } static int svc_dg_sendto(int fd, char *buf, int buflen, const struct sockaddr *raddr, socklen_t raddrlen, const struct sockaddr *laddr, socklen_t laddrlen) { struct msghdr msg; struct iovec msg_iov[1]; struct sockaddr_in *laddr_in = (struct sockaddr_in *)laddr; struct in_addr *lin = &laddr_in->sin_addr; char tmp[CMSG_SPACE(sizeof(*lin))]; struct cmsghdr *cmsg; memset((char *)&msg, 0, sizeof(msg)); msg_iov[0].iov_base = buf; msg_iov[0].iov_len = buflen; msg.msg_iov = msg_iov; msg.msg_iovlen = 1; msg.msg_namelen = raddrlen; msg.msg_name = (char *)raddr; if (laddr->sa_family == AF_INET) { msg.msg_control = (caddr_t)tmp; msg.msg_controllen = CMSG_LEN(sizeof(*lin)); cmsg = CMSG_FIRSTHDR(&msg); cmsg->cmsg_len = CMSG_LEN(sizeof(*lin)); cmsg->cmsg_level = IPPROTO_IP; cmsg->cmsg_type = IP_SENDSRCADDR; memcpy(CMSG_DATA(cmsg), lin, sizeof(*lin)); } return _sendmsg(fd, &msg, 0); } static bool_t svc_dg_reply(xprt, msg) SVCXPRT *xprt; struct rpc_msg *msg; { struct svc_dg_data *su = su_data(xprt); XDR *xdrs = &(su->su_xdrs); bool_t stat = TRUE; size_t slen; xdrproc_t xdr_proc; caddr_t xdr_where; xdrs->x_op = XDR_ENCODE; XDR_SETPOS(xdrs, 0); msg->rm_xid = su->su_xid; if (msg->rm_reply.rp_stat == MSG_ACCEPTED && msg->rm_reply.rp_acpt.ar_stat == SUCCESS) { xdr_proc = msg->acpted_rply.ar_results.proc; xdr_where = msg->acpted_rply.ar_results.where; msg->acpted_rply.ar_results.proc = (xdrproc_t) xdr_void; msg->acpted_rply.ar_results.where = NULL; if (!xdr_replymsg(xdrs, msg) || !SVCAUTH_WRAP(&SVC_AUTH(xprt), xdrs, xdr_proc, xdr_where)) stat = FALSE; } else { stat = xdr_replymsg(xdrs, msg); } if (stat) { slen = XDR_GETPOS(xdrs); if (svc_dg_sendto(xprt->xp_fd, rpc_buffer(xprt), slen, (struct sockaddr *)xprt->xp_rtaddr.buf, (socklen_t)xprt->xp_rtaddr.len, (struct sockaddr *)xprt->xp_ltaddr.buf, xprt->xp_ltaddr.len) == (ssize_t) slen) { stat = TRUE; if (su->su_cache) cache_set(xprt, slen); } } return (stat); } static bool_t svc_dg_getargs(xprt, xdr_args, args_ptr) SVCXPRT *xprt; xdrproc_t xdr_args; void *args_ptr; { struct svc_dg_data *su; assert(xprt != NULL); su = su_data(xprt); return (SVCAUTH_UNWRAP(&SVC_AUTH(xprt), &su->su_xdrs, xdr_args, args_ptr)); } static bool_t svc_dg_freeargs(xprt, xdr_args, args_ptr) SVCXPRT *xprt; xdrproc_t xdr_args; void *args_ptr; { XDR *xdrs = &(su_data(xprt)->su_xdrs); xdrs->x_op = XDR_FREE; return (*xdr_args)(xdrs, args_ptr); } static void svc_dg_destroy(xprt) SVCXPRT *xprt; { struct svc_dg_data *su = su_data(xprt); xprt_unregister(xprt); if (xprt->xp_fd != -1) (void)_close(xprt->xp_fd); XDR_DESTROY(&(su->su_xdrs)); (void) mem_free(rpc_buffer(xprt), su->su_iosz); (void) mem_free(su, sizeof (*su)); if (xprt->xp_rtaddr.buf) (void) mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.maxlen); if (xprt->xp_ltaddr.buf) (void) mem_free(xprt->xp_ltaddr.buf, xprt->xp_ltaddr.maxlen); if (xprt->xp_tp) (void) free(xprt->xp_tp); svc_xprt_free(xprt); } static bool_t /*ARGSUSED*/ svc_dg_control(xprt, rq, in) SVCXPRT *xprt; const u_int rq; void *in; { return (FALSE); } static void svc_dg_ops(xprt) SVCXPRT *xprt; { static struct xp_ops ops; static struct xp_ops2 ops2; /* VARIABLES PROTECTED BY ops_lock: ops */ mutex_lock(&ops_lock); if (ops.xp_recv == NULL) { ops.xp_recv = svc_dg_recv; ops.xp_stat = svc_dg_stat; ops.xp_getargs = svc_dg_getargs; ops.xp_reply = svc_dg_reply; ops.xp_freeargs = svc_dg_freeargs; ops.xp_destroy = svc_dg_destroy; ops2.xp_control = svc_dg_control; } xprt->xp_ops = &ops; xprt->xp_ops2 = &ops2; mutex_unlock(&ops_lock); } /* The CACHING COMPONENT */ /* * Could have been a separate file, but some part of it depends upon the * private structure of the client handle. * * Fifo cache for cl server * Copies pointers to reply buffers into fifo cache * Buffers are sent again if retransmissions are detected. */ #define SPARSENESS 4 /* 75% sparse */ #define ALLOC(type, size) \ (type *) mem_alloc((sizeof (type) * (size))) #define MEMZERO(addr, type, size) \ (void) memset((void *) (addr), 0, sizeof (type) * (int) (size)) #define FREE(addr, type, size) \ mem_free((addr), (sizeof (type) * (size))) /* * An entry in the cache */ typedef struct cache_node *cache_ptr; struct cache_node { /* * Index into cache is xid, proc, vers, prog and address */ u_int32_t cache_xid; rpcproc_t cache_proc; rpcvers_t cache_vers; rpcprog_t cache_prog; struct netbuf cache_addr; /* * The cached reply and length */ char *cache_reply; size_t cache_replylen; /* * Next node on the list, if there is a collision */ cache_ptr cache_next; }; /* * The entire cache */ struct cl_cache { u_int uc_size; /* size of cache */ cache_ptr *uc_entries; /* hash table of entries in cache */ cache_ptr *uc_fifo; /* fifo list of entries in cache */ u_int uc_nextvictim; /* points to next victim in fifo list */ rpcprog_t uc_prog; /* saved program number */ rpcvers_t uc_vers; /* saved version number */ rpcproc_t uc_proc; /* saved procedure number */ }; /* * the hashing function */ #define CACHE_LOC(transp, xid) \ (xid % (SPARSENESS * ((struct cl_cache *) \ su_data(transp)->su_cache)->uc_size)) /* * Enable use of the cache. Returns 1 on success, 0 on failure. * Note: there is no disable. */ static const char cache_enable_str[] = "svc_enablecache: %s %s"; static const char alloc_err[] = "could not allocate cache "; static const char enable_err[] = "cache already enabled"; int svc_dg_enablecache(transp, size) SVCXPRT *transp; u_int size; { struct svc_dg_data *su = su_data(transp); struct cl_cache *uc; mutex_lock(&dupreq_lock); if (su->su_cache != NULL) { (void) warnx(cache_enable_str, enable_err, " "); mutex_unlock(&dupreq_lock); return (0); } uc = ALLOC(struct cl_cache, 1); if (uc == NULL) { warnx(cache_enable_str, alloc_err, " "); mutex_unlock(&dupreq_lock); return (0); } uc->uc_size = size; uc->uc_nextvictim = 0; uc->uc_entries = ALLOC(cache_ptr, size * SPARSENESS); if (uc->uc_entries == NULL) { warnx(cache_enable_str, alloc_err, "data"); FREE(uc, struct cl_cache, 1); mutex_unlock(&dupreq_lock); return (0); } MEMZERO(uc->uc_entries, cache_ptr, size * SPARSENESS); uc->uc_fifo = ALLOC(cache_ptr, size); if (uc->uc_fifo == NULL) { warnx(cache_enable_str, alloc_err, "fifo"); FREE(uc->uc_entries, cache_ptr, size * SPARSENESS); FREE(uc, struct cl_cache, 1); mutex_unlock(&dupreq_lock); return (0); } MEMZERO(uc->uc_fifo, cache_ptr, size); su->su_cache = (char *)(void *)uc; mutex_unlock(&dupreq_lock); return (1); } /* * Set an entry in the cache. It assumes that the uc entry is set from * the earlier call to cache_get() for the same procedure. This will always * happen because cache_get() is calle by svc_dg_recv and cache_set() is called * by svc_dg_reply(). All this hoopla because the right RPC parameters are * not available at svc_dg_reply time. */ static const char cache_set_str[] = "cache_set: %s"; static const char cache_set_err1[] = "victim not found"; static const char cache_set_err2[] = "victim alloc failed"; static const char cache_set_err3[] = "could not allocate new rpc buffer"; static void cache_set(xprt, replylen) SVCXPRT *xprt; size_t replylen; { cache_ptr victim; cache_ptr *vicp; struct svc_dg_data *su = su_data(xprt); struct cl_cache *uc = (struct cl_cache *) su->su_cache; u_int loc; char *newbuf; #ifdef RPC_CACHE_DEBUG struct netconfig *nconf; char *uaddr; #endif mutex_lock(&dupreq_lock); /* * Find space for the new entry, either by * reusing an old entry, or by mallocing a new one */ victim = uc->uc_fifo[uc->uc_nextvictim]; if (victim != NULL) { loc = CACHE_LOC(xprt, victim->cache_xid); for (vicp = &uc->uc_entries[loc]; *vicp != NULL && *vicp != victim; vicp = &(*vicp)->cache_next) ; if (*vicp == NULL) { warnx(cache_set_str, cache_set_err1); mutex_unlock(&dupreq_lock); return; } *vicp = victim->cache_next; /* remove from cache */ newbuf = victim->cache_reply; } else { victim = ALLOC(struct cache_node, 1); if (victim == NULL) { warnx(cache_set_str, cache_set_err2); mutex_unlock(&dupreq_lock); return; } newbuf = mem_alloc(su->su_iosz); if (newbuf == NULL) { warnx(cache_set_str, cache_set_err3); FREE(victim, struct cache_node, 1); mutex_unlock(&dupreq_lock); return; } } /* * Store it away */ #ifdef RPC_CACHE_DEBUG if (nconf = getnetconfigent(xprt->xp_netid)) { uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr); freenetconfigent(nconf); printf( "cache set for xid= %x prog=%d vers=%d proc=%d for rmtaddr=%s\n", su->su_xid, uc->uc_prog, uc->uc_vers, uc->uc_proc, uaddr); free(uaddr); } #endif victim->cache_replylen = replylen; victim->cache_reply = rpc_buffer(xprt); rpc_buffer(xprt) = newbuf; xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), su->su_iosz, XDR_ENCODE); victim->cache_xid = su->su_xid; victim->cache_proc = uc->uc_proc; victim->cache_vers = uc->uc_vers; victim->cache_prog = uc->uc_prog; victim->cache_addr = xprt->xp_rtaddr; victim->cache_addr.buf = ALLOC(char, xprt->xp_rtaddr.len); (void) memcpy(victim->cache_addr.buf, xprt->xp_rtaddr.buf, (size_t)xprt->xp_rtaddr.len); loc = CACHE_LOC(xprt, victim->cache_xid); victim->cache_next = uc->uc_entries[loc]; uc->uc_entries[loc] = victim; uc->uc_fifo[uc->uc_nextvictim++] = victim; uc->uc_nextvictim %= uc->uc_size; mutex_unlock(&dupreq_lock); } /* * Try to get an entry from the cache * return 1 if found, 0 if not found and set the stage for cache_set() */ static int cache_get(xprt, msg, replyp, replylenp) SVCXPRT *xprt; struct rpc_msg *msg; char **replyp; size_t *replylenp; { u_int loc; cache_ptr ent; struct svc_dg_data *su = su_data(xprt); struct cl_cache *uc = (struct cl_cache *) su->su_cache; #ifdef RPC_CACHE_DEBUG struct netconfig *nconf; char *uaddr; #endif mutex_lock(&dupreq_lock); loc = CACHE_LOC(xprt, su->su_xid); for (ent = uc->uc_entries[loc]; ent != NULL; ent = ent->cache_next) { if (ent->cache_xid == su->su_xid && ent->cache_proc == msg->rm_call.cb_proc && ent->cache_vers == msg->rm_call.cb_vers && ent->cache_prog == msg->rm_call.cb_prog && ent->cache_addr.len == xprt->xp_rtaddr.len && (memcmp(ent->cache_addr.buf, xprt->xp_rtaddr.buf, xprt->xp_rtaddr.len) == 0)) { #ifdef RPC_CACHE_DEBUG if (nconf = getnetconfigent(xprt->xp_netid)) { uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr); freenetconfigent(nconf); printf( "cache entry found for xid=%x prog=%d vers=%d proc=%d for rmtaddr=%s\n", su->su_xid, msg->rm_call.cb_prog, msg->rm_call.cb_vers, msg->rm_call.cb_proc, uaddr); free(uaddr); } #endif *replyp = ent->cache_reply; *replylenp = ent->cache_replylen; mutex_unlock(&dupreq_lock); return (1); } } /* * Failed to find entry * Remember a few things so we can do a set later */ uc->uc_proc = msg->rm_call.cb_proc; uc->uc_vers = msg->rm_call.cb_vers; uc->uc_prog = msg->rm_call.cb_prog; mutex_unlock(&dupreq_lock); return (0); }