freebsd-skq/tools/regression/README
marcel 9f28abd980 Remove ia64.
This includes:
o   All directories named *ia64*
o   All files named *ia64*
o   All ia64-specific code guarded by __ia64__
o   All ia64-specific makefile logic
o   Mention of ia64 in comments and documentation

This excludes:
o   Everything under contrib/
o   Everything under crypto/
o   sys/xen/interface
o   sys/sys/elf_common.h

Discussed at: BSDcan
2014-07-07 00:27:09 +00:00

89 lines
3.5 KiB
Plaintext

$FreeBSD$
This directory is for regression test programs.
A regression test program is one that will exercise a particular bit of the
system to check that we have not reintroduced an old bug.
Tests should be implemented in files with a .t extension. Each .t file
can contain more than one test, and can be implemented in any scripting
language -- /bin/sh, Perl...
The test protocol is quite simple. At its most basic, each .t file should,
when run, print a line in this format:
1..m
where m is the number of tests that will be run.
Each test should produce a single line of output. This line should start
with one of
ok n
not ok n
to indicate whether or not the test succeeded. 'n' is the test's number.
Anything after this on the line (up to the first '#' if present) is
considered to be the name of the test. Naming tests is optional, but
encouraged.
A test may be written which is conditional, and may need to be skipped.
For example, the netinet tests require 'options INET' in the kernel.
A test may be skipped by printing '# skip Reason for skipping' after the
test name. For example,
ok 1 - netinet # skip 'options INET' not compiled in
A test may be flagged as 'todo'. This indicates that you expect the test
to fail (perhaps because the necessary functionality hasn't been written
yet). 'todo' tests are expected to fail, so when they start working the
test framework can alert you to this happy occurrence. Flag these tests
with a '# TODO' comment after the test name
not ok 1 - infiniteloop # TODO write test for an infinite loop
This is modelled on the protocol followed by the Test::Harness Perl
module (and therefore much of the automated testing carried out by the
Perl community). More documentation can be found at:
http://search.cpan.org/~petdance/Test-Harness-2.42/lib/Test/Harness.pm
To run the tests and parse their output install the devel/p5-Test-Harness
port. This includes the prove(1) command which is used to run the tests
and collate the output.
prove geom_concat # run all the tests in geom_concat
prove -r lib # run all tests in lib/, and subdirectories
prove -r -v lib # as above, with verbose output
prove -r # run *all* the tests
Tests that are for parts of the base system should go into a directory here
which is the same as their path relative to src/, for example the uuencode(1)
utility resides in src/usr.bin/uuencode so its regression test resides in
src/tools/regression/usr.bin/uuencode.
To avoid the pre-commit check program complaining about the lack of
CVS keywords in test data files, use a .in suffix for input files and
a .out suffix for output files.
To execute individual regression tests for binaries that you are
developing, add their directory in the path before running the tests.
Example:
cd /usr/src/tools/regression/usr.bin
(PATH=/home/user/src/experimental/jot:$PATH ; make SUBDIR=jot)
Please make a subdir per other regression test, and add a brief description to
this file.
acct Exercise the integer to float conversion used in acct(5)
geom Some tests and an out-of-kernel simulator for the GEOM code
nfsmmap Some tests to exercise some tricky cases in NFS and mmap
p1003_1b Exercise 1003.1B scheduler
pipe Pipe code regression test
fsx General filesystem exerciser
sysvmsg SysV IPC Message Queue Regression Utility
sysvsem SysV IPC Semaphore Regression Utility
sysvshm SysV IPC Shared Memory Regression Utility
gaithrstress General threaded getaddrinfo(3) exerciser
date Date(1) + format string regression test